Stat. Sol. (b). 1983. 116, N 1. P. 169. [11] Girifalco L. A., Weizer V. G.//Phys. Rev. 1959. 114, N 3. P. 687. [12] Harrison D. E., Jr., Gay W. L., Effron H. M.// #/J. Math. Phys. 1969. 10, N 7. P. 1179. [13] Robinson M. T.//Sputtering by Particle Bombardment I./Ed. by R. Behrisch. Berlin, Heidelberg, New York: Springer, 1981. P. 73.

Поступила в редакцию 22.07.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989, Т. 30, № 6

УДК 536.764

СТРУКТУРНЫЕ ФАЗОВЫЕ ПЕРЕХОДЫ В КРИСТАЛЛАХ С ПРОСТРАНСТВЕННОЙ ГРУППОЙ С⁵3.0

А. И. Лебедев

(кафедра физики полупроводников)

Проведен теоретико-групповой анализ фазовых переходов 2-го рода, допускаемых в кристаллах с пространственной группой $R3m(C^5_{3v})$. Проанализированы условия появления и устойчивость низкосимметричных фаз, рассмотрена физическая реализация параметра порядка для всех фазовых переходов.

В настоящей работе проведен теоретико-групповой анализ фазовых переходов ($\Phi\Pi$) 2-го рода, допускаемых в кристаллах с пространственной группой $R3m(C^5_{3v})$. Такую структуру, в частности, имеют при низкой температуре (ниже температуры сегнетоэлектрического $\Phi\Pi$ $O_h^5 \rightarrow C^5_{3v}$) узкозонные полупроводники-сегнетоэлектрики группы A^4B^6 (GeTe, $Pb_{1-x}Ge_x$ Te и др.). Необходимость анализа связана с поиском возможных структур, которые могут возникать в результате последовательных $\Phi\Pi$ в этих кристаллах, на что указывают некоторые эксперименты [1, 2].

Вопрос о возможных $\Phi\Pi$ 2-го рода в кристаллах с симморфной пространственной группой (пр. гр.) C^5_{3v} изучался ранее [3]. В этой работе, однако, были найдены не все возможные $\Phi\Pi$; совсем не рассматривались $\Phi\Pi$ 2-го рода, которые могут происходить в изолированных точках на (p, T)-плоскости; не анализировались условия возникновения и устойчивость образующихся фаз, а также физическая реализация параметра порядка.

В настоящей работе мы следовали подходу, описанному в работе [4] *. Условие вещественности плотности накладывает существенные ограничения на возможные векторы k, характеризующие представления, которые описывают изменение симметрии при $\Phi\Pi$ 2-го рода. Согласно [4, 7], в пр. гр. C^5_{3v} такими векторами являются: 1) векторы, эквивалентные обратным ($\mathbf{k} = -\mathbf{k}$), которые лежат в точках $\Gamma(\mathbf{k} = 0)$, $L(\mathbf{k} = \mathbf{b}_1/2)$, $X(\mathbf{k} = (\mathbf{b}_1 + \mathbf{b}_2)/2)$ и $T(\mathbf{k} = (\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3)/2)$; 2) векторы k, которые переходят в $-\mathbf{k}$ при операции отражения σ_v . Это векторы, лежащие на оси Σ ($\mathbf{k} = \lambda(\mathbf{b}_2 - \mathbf{b}_3)$) и векторы, лежащие на поверхности зоны Бриллюэна на линии $Y(\mathbf{k} = \mathbf{b}_1/2 + \lambda(\mathbf{b}_2 - \mathbf{b}_3))$.

В пр. гр. C^5_{3v} имеются три неприводимых представления, отвечающих точке Γ : два одномерных (Γ_1 , Γ_2) и одно двумерное (Γ_3). Для того чтобы в кристалле был возможен $\Phi\Pi$ 2-го рода, необходимо, чтобы

^{*} Задача нахождения возможных ФП 2-го рода в рамках теории Ландау детально обсуждается в книгах [5, 6]. Из других подходов к решению этой задачи следует отметить подход, основанный на анализе критерия Бирмана [6]. Он очень удобен для анализа ФП, происходящих без изменения объема примитивной ячейки, однако для представлений с k≠0 требует построения всех подгрупп заданной пр. гр. с кратным объемом примитивной ячейки.

представление \mathcal{D} , по которому преобразуется параметр порядка (ПП), удовлетворяло условиям Ландау ($[\mathcal{D}]^3 \not \supset \Gamma_1$) и Лифшица ($\{\mathcal{D}\}^2 \times V \not \supset \mathcal{D}\Gamma_1$); такие представления называют активными. Примером активного представления является Γ_2 . Представление Γ_3 удовлетворяет условию Лифшица, но не удовлетворяет условию Ландау (симметрия допускает существование кубического инварианта). Поэтому связанный с этим представлением ФП может быть переходом 2-го рода только в изолированной точке на (p, T)-плоскости, в которой одновременно обращаются в нуль коэффициенты при инвариантах второй и третьей степени ПП. Симметрия образующейся фазы определяется инвариантом пятой степени, причем независимо от его знака возникает моноклинная ячейка, описываемая ДВУ (по). где $n, o \ne 0$, неустойчива при малых $n^2 + o^2$ [8].

сываемая ПП ($\eta \rho$), где η , $\rho \neq 0$, неустойчива при малых $\eta^2 + \rho^2$ [8]. Звезда волнового вектора T состоит из одного луча; группа волнового вектора $G_T = C_{3v}$. В точке T пр. гр. C^5_{3v} также имеет три неприводимых представления: два одномерных (T_1 , T_2) и одно двумерное (T_3); все они являются активными, Находя элементы симметрии и векторы трансляции, которые оставляют преобразующуюся по данному неприводимому представлению плотность

 $\delta \rho \sim \varphi(r) \exp(i\mathbf{k}\mathbf{r}) + \kappa. c.$

инвариантной, можно определить получающуюся в результате $\Phi\Pi$ пр. гр. низкосимметричной фазы. Результаты проведенного анализа сведены в таблицу. В ней для каждого неприводимого представления указаны все удовлетворяющие условию устойчивости значения вектора параметра порядка, векторы трансляций параллелепипеда Бравэ, число, указывающее, во сколько раз увеличивается объем примитивной ячейки при $\Phi\Pi$, и, наконец, пр. гр. низкосимметричной фазы. В случае двух- и трехкомпонентных $\Pi\Pi$, когда в зависимости от соотношения коэффициентов при инвариантах 4-й и более высоких степеней $\Pi\Pi$ возможны различные типы искажения структуры, в таблице дополнительно указаны условия устойчивости данной фазы. Так, например, в зависимости от знака K_6 при инварианте шестой степени $\Phi_6 = K_6 (\eta^3 - 3\eta \rho^2)^2$, где η и ρ — компоненты вектора $\Pi\Pi$, неприводимое представление T_3 будет описывать $\Phi\Pi$ в пр. гр. C_8 3 или C_8 4. Состояние, описываемое $\Pi\Pi$ ($\eta\rho$), где η , $\rho \neq 0$, которому отвечала бы пр. гр. C_1 1, неустойчиво при малых $\eta^2 + \rho^2$ и поэтому не включено в таблицу.

Группы волновых векторов, лежащих в точках L и X, совпадают: $G_L = G_X = C_s$. Малые представления, отвечающие этим точкам, распадаются на два одномерных неприводимых представления. Поскольку звезды этих волновых векторов состоят из трех лучей, то полное представление пр. гр. C^5_{3v} распадается на два трехмерных неприводимых представления: L_1 и L_2 (X_1 и X_2). Из них активными являются L_1 , L_2 и X_2 ; представление X_1 допускает появление кубического инварианта, и поэтому $\Phi\Pi$ 2-го рода, описываемый этим представлением, может про-

исходить лишь в изолированной точке.

Функция плотности для представлений L_1 , L_2 , X_1 , X_2 описывается совокупностью трех функций (ϕ_1 , ϕ_2 , ϕ_3), а ПП оказывается трехкомпонентным. Поэтому пр. гр. низкосимметричных фаз могут быть найдены только после того, как будут получены векторы ПП, отвечающие минимуму энергии кристалла. Записывая все допускаемые симметрией инварианты 4-й степени, составленные из коэффициентов c_i при функциях ϕ_i :

$$\Phi_4 = B_1 (c_1^2 + c_2^2 + c_3^2)^2 + B_2 (c_1^2 c_2^2 + c_1^2 c_3^2 + c_2^2 c_3^2),$$

Возможные фазовые переходы 2-го рода в кристаллах с пространственной группой C_{3n}^5

Пред- став- ление	Вектор ПП	Решет- ка Бравэ	Векторы трансляции	Изме- нение объема	Пр. гр.	Условня устойчивости	Реализация ПП**
Γ_2	(η)	Γ_{rh}	[100, 010, 001]	1	$R3 (C_3^4)$	_	M C ₃
Γ_8	(ŋ0)*	Γ_m^b	[100, 010, 001]	1	$Bm(C_s^3)$	_	Р∥σ; М⊥σ
T_1	(η)	Γ_{rh}	[011, 101, 110]	2	$R3m\ (C_{3v}^5)$	_	P C₃; CC (AB)
T_2	(η)	Γ_{rh}	[011, 101, 110]	2	$R3c(C_{3v}^6)$	_	J C ₃
T_3	(η0)	Γ_m^b	[011, 101, 110]	2	$Bm(C_s^3)$	$K_{\theta} < 0$	P σ; J ⊥σ; CC (AB)
	(0η)	Γ_m^b	[222, 101, 110]	2	$Bb (C_s^4)$	$K_6 > 0$	Ρ⊥σ; Ј∦σ
L_1	(η00)	Γ_m^b	[200, 010, 001]	2	$Bm(C_s^3)$	$B_2 > 0$	P σ; J ⊥σ; CC (AB)
	(ηηη)	Γ_{rh}	[200, 020, 002]	8	$R3m\left(C_{3v}^5\right)$	$B_2 < 0$	CC (ABC ₃ D ₃); ACЭ
	(ηη0)*	Γ_m^b	[001, 200, 020]	4	$Bm(C_s^3)$	$B_2 = 0, K_2 < 0, K_3 > 9 K_2 /4$	CC (ABC₂); ACЭ
L_2	(η00)	Γ_m^b	[200, 010, 001]	2	$Bb\ (C_s^4)$	$B_2 > 0$	Ρ⊥σ; Ј∥σ
	(ηηη)	Γ_{rh}	[200, 020, 002]	8	$R3c\ (C_{3v}^6)$	$B_2 < 0$	АФМ
	(η η 0)*	Γ_m^b	[001, 200, 020]	4	$Bm (C_s^3)$	$B_2 = 0, K_2 < 0, K_3 > 9 K_2 /4$	АФМ
<i>X</i> ₁	(η00)*	Γ_m	[100, 011, 011]	2	$Pm(C_s^1)$	$B_2 > 0$	P σ; J ⊥σ; CC (AB)
	(ηηη)*	Γ_{rh}	[ពីរ, អារី, អារី]	4	$R3m (C_{3v}^5)$	$B_2 < 0$	CC (AB ₃); ACЭ
X ₂	(η00)	Γ_t	[100, 011, 011]	2	$PI(C_1^1)$	$B_2 > 0$	произвольные Р , J ; CC (AB)
	(ηηη)	Γ_{rh}	[[11, 11], 11]	4	$R3 (C_3^4)$	$B_2 < 0$	АФМ
	(ηη̄0̄)*	Γ_m^b	[ររ៊ា, រីរេ, ររីរ]	4	$Bm(C_s^3)$	$B_2 = 0, K_2 < 0, K_3 > 9 K_2 /4$	CC (ABC ₂); ACЭ

^{*} Отмеченные ФП могут быть переходами 2-го рода только в изолированных точках

на (p, T)-плоскости. ** Принятые сокращения: СС — сверхструктура; АСЭ — сложная антисегнетоэлектрическая структура; АФМ — сложная антиферромагнитная структура или структурное искажение; М — однородный аксиальный, J — неоднородный аксиальный, P — полярный вектор.

и минимизируя потенциал Φ_4 , находим, что при $B_2>0$ минимуму Φ_4 отвечает ПП ($\eta00$), а при $B_2<0$ — ПП ($\eta\eta\eta$). Пр. гр., соответствующие этим решениям, указаны в таблице. Для представлений L_1 , L_2 и X_2 в изолированной точке на $(p,\ T)$ -плоскости, в которой одновременно обращаются в нуль коэффициент при инварианте второй степени и B_2 ,

симметрия образующейся фазы определяется минимизацией потенциала, составленного из инвариантов шестой степени:

 $\Phi_6 = K_1 (c_1^2 + c_2^2 + c_3^2)^3 + K_2 (c_1^2 + c_2^2 + c_3^2) (c_1^2 c_2^2 + c_1^2 c_3^2 + c_2^2 c_3^2) + K_3 c_1^2 c_2^2 c_3^2.$

Минимизация Φ_6 приводит не только к известным фазам с $\Pi\Pi$ (η 00) и ($\eta\eta\eta$), но еще и к фазе с $\Pi\Pi$ ($\eta\eta$ 0), устойчивой при $K_2<0$ и $K_3>9|K_2|/4$; ей отвечает пр. гр. C_s^3 (см. таблицу).

Представления с волновыми векторами, лежащими в точках Σ и Y, одномерны и неприводимы. В общем случае они не удовлетворяют ни условию Ландау, ни условию Лифшица. Поэтому Φ П 2-го рода с образованием несоразмерных фаз в пр. гр. C^5_{3v} могут происходить толь-

ко в изолированных точках на (p, T)-плоскости.

Анализируя локальную симметрию всех узлов в ячейке низкосимметричной фазы, нетрудно найти физическую реализацию ПП для каждого из рассмотренных $\Phi\Pi$. Так, функция, осуществляющая неприводимое представление Γ_2 , преобразуется как однородный аксиальный вектор $\mathbf{M} \| C_3$, т. е. такое искажение решетки должно наблюдаться при ферромагнитном $\Phi\Pi$. Представлению Γ_3 могут отвечать как сегнето-электрический $\Phi\Pi$ (полярный вектор лежит в одной из плоскостей σ), так и ферромагнитный $\Phi\Pi$ (аксиальный вектор \mathbf{M} перпендикулярен σ). Однако, поскольку по представлению Γ_3 преобразуются и компоненты тензора деформации, эти $\Phi\Pi$ должны быть соответственно сегнетоэластическим и магнитоэластическим.

Неприводимым представлениям с $\mathbf{k}\neq 0$ отвечают другие $\Phi\Pi$: сверхструктурное упорядочение атомов; образование сегнетиэлектрических и антисегнетоэлектрических структур, описываемых полярным вектором \mathbf{P} ; появление антиферромагнитных структур или структурных искажений, описываемых аксиальным вектором \mathbf{J} . Результаты анализа для всех возможных $\Phi\Pi$ 2-го рода из пр. гр. C^5_{3v} приведены в последнем столбце таблицы; для сверхструктур в скобках указана формула

сверхструктуры.

В заключение обсудим данные работ [1, 9] в связи с настоящими расчетами. Рентгеновские исследования образцов $Pb_{0,78}Sn_{0,22}Te(In)$ обнаружили в них последовательные $\Phi\Pi$ $\Gamma_c{}^f \rightarrow \Gamma_{rh} \rightarrow \Gamma_m$ при 140 и 50 К [1]. Хотя температура первого $\Phi\Pi$ слишком высока для возможного в этих кристаллах сегнетоэлектрического $\Phi\Pi$ $O_h{}^5 \rightarrow C^5{}_{3v}$, не исключено, что второй $\Phi\Pi$ ($\Gamma_{rh} \rightarrow \Gamma_m$) также является сегнетоэлектрическим (сегнетоэластическим). Как следует из анализа, такой $\Phi\Pi$ должен быть переходом 1-го рода и должен происходить по представлению Γ_3 . Поскольку он будет сопровождаться смягчением TA-фонона в направлении $q\bot\sigma$, то в кристаллах следует ожидать появления сильных акустических аномалий и небольшого рассеяния электронов проводимости на мягких акустических фононах. Такой же $\Phi\Pi$, вероятно, мог бы отвечать и особенности в рассеянии около 50 К в кристаллах n- Pb_{1-x} Ge $_x$ Te $_{1-y}S_y$ [9].

СПИСОК ЛИТЕРАТУРЫ

[1] Александров О. В., Киселева К. В.//Кр. сообщ. по физике ФИАН СССР. 1984. № 8. С. 7. [2] Огта11 і І.//Fеггоеlectrics. 1984. 54. Р. 325. [3] Гаджиев Б. Р., Мехтиев Т. Р.//Изв. АН АзССР, сер. физ.-техн. и матем. наук. 1983. № 4. С. 70. [4] Любарский Г. Я. Теория групп и ее применение в физике. М., 1957. [5] Изюмов Ю. А., Найш В. Е., Озеров Р. П. Нейтронография магнетиков.////Нейтроны и твердое тело. М., 1981. Т. 2. [6] Изюмов Ю. А., Сыромятников В. Н. Фазовые переходы и симметрия кристаллов. М., 1984. [7] Ковалев О. В. Неприводимые и индуцированные представления и копредставления федоровских групп. М., 1986. [8] Гуфан Ю. М., Сахненко В. П.//ЖЭТФ. 1972. 63, № 5. С. 1909. [9] Лебедев А. И., Случинская И. А.//Изв. АН СССР, сер. физ. 1987. 51, № 10. С. 1683.

Поступила в редакцию 05.09.88