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Abstract—Two effects have been analytically and numerically studied: Goos−Hänchen shift, which is
acquired by an optical beam reflected from a gradient inhomogeneity, and tunneling of radiation through a
narrow induced inhomogeneity. A possibility of increasing the lateral beam shift in comparison with total
internal reflection from a homogeneous medium is revealed. The dependence of the tunneling coefficient on
the inhomogeneity parameters is determined and the critical inhomogeneity width at which the tunneling
effect arises is found.
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1. INTRODUCTION

To date, a number of techniques have been pro-
posed to implement completely optical light control
using different nonlinear optical mechanisms [1]. A
possibility of spatial switching of light-beam propa-
gation direction in media with nonlinearities of dif-
ferent types by modulating the reference-beam in-
tensity was discussed in [2−4]. In this case, the
reference radiation forms an inhomogeneity of re-
fractive index, and, when the inhomogeneity ampli-
tude exceeds some critical value, the signal beam
undergoes total internal reflection from the reference
beam. The effect of total internal reflection of a
signal beam from a reference one was described in
[2−4] in the framework of the geometric-optical and
diffraction theories. It was noted that the ray theory
may incorrectly predict the character of signal beam
propagation at parameters close to critical, which
separate modes of reflection from inhomogeneity and
transmission through it. In this study, we analyze
two effects: Goos−Hänchen shift and tunneling of
radiation through an induced inhomogeneity; the dif-
ference between the geometric-optical and diffraction
approaches to reflection also manifests itself in these
effects.

The Goos−Hänchen effect is observed under total
internal reflection of an optical beam from a bound-
ary of a medium with a smaller refractive index; its
essence is a lateral shift of the beam with respect to
the propagation path predicted by geometric optics.
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The Goos−Hänchen effect is due to the fact that,
under total internal reflection, different components of
the optical-beam angular spectrum acquire different
phase shifts, as a result of which the beam undergoes
a shift along the interface. Another explanation of this
effect implies that radiation penetrates the interface in
the form of components damping in a medium with a
lower optical density. The Goos−Hänchen effect was
predicted for the first time for a beam reflected from
a homogeneous interface between dielectric media
[5]; then it was also studied for an interface with a
smoothly varying refractive index [6], as well as for
interfaces with metamaterials [7, 8], photonic crystals
[9], metals [10], and absorbing media [11−13].

A specific feature of the problem under consid-
eration is that the induced change in the refractive
index nonmonotonically depends on the spatial coor-
dinate. One might expect the Goos−Hänchen shift
to be increased due to the increase in the penetration
depth for the components exponentially decaying in
the region with a lower refractive index.

We also investigated the tunneling of radiation
through an induced inhomogeneity, which occurs at
reflection of a signal beam from a narrow inhomo-
geneity (for example, the waist of a focused reference
beam). In accordance with the geometric-optical
and diffraction theories developed in [2−4], the signal
beam propagation mode (reflection or transmission
through inhomogeneity) is determined by only the
amplitude of this inhomogeneity, σ0, and is indepen-
dent of its profile and width. However, when the
inhomogeneity becomes sufficiently narrow, tunnel-
ing (similar to that considered in quantum mechanics
[14]) occurs. The essence of this effect is that the

251



252 IGNATYEVA, SUKHORUKOV

signal beam transmission through a narrow inhomo-
geneity can be observed even under the conditions of
total internal reflection. Tunneling of an optical beam
through an induced inhomogeneity was revealed in
the numerical calculations [4, 15]. In this study, we
present an analytical description of this effect. Specif-
ically, we determined the dependence of the tunnel-
ing coefficient on the inhomogeneity parameters and
found the critical inhomogeneity width at which the
tunneling arises.

2. GOOS−HÄNCHEN SHIFT
AT REFLECTION FROM A GAUSSIAN

INHOMOGENEITY

Let us consider the case where a high-power
Gaussian pump beam induces a permittivity inhomo-
geneity in a dielectric with a defocusing nonlinearity.
In the case of a Kerr or quadratic nonlinearity, the
spatial distribution of the refractive index repeats the
pump beam profile and has the form

n(y) = n0

[
1 + σ(y)

]
= n0

{
1 − σ0 exp

[
−(y − w)2

w2

]}
, (1)

where n0 is the linear part of the refractive index, σ0

is the amplitude of induced inhomogeneity, and w
is its half-width. In the chosen coordinate system
the inhomogeneity center is located on the straight
line y = w. To simplify the analytical description of
the signal beam propagation in this medium, we will
approximate the inhomogeneity by a parabolic profile:⎧⎪⎨

⎪⎩
σ(y) = σ0

[
(y − w)2

w2
− 1

]
, |y − w| < w,

σ(y) = 0, |y − w| � w.

(2)

This approximation makes it possible to obtain an
analytical solution to the trajectory equation (derived,
for example, in [2−4]) for a signal beam propagating
through a medium with an induced inhomogeneity at
a small angle θ with respect to the Ox axis:

y(x) = −w cosh
√

2σ0x

w
+

θw√
2σ0

sinh
√

2σ0x

w
, (3)

and, thus, undergoing total internal reflection at the
point

yt = w

⎛
⎝1 ±

√
1 − θ2

2σ0

⎞
⎠. (4)

Here, the plus and minus signs correspond to the
signal beam incidence from the regions with y > 2w
and y < 0, respectively. For definiteness, we assume
the geometry of the problem under consideration to

correspond to the second case. Note that the effect of
total internal reflection of the beam from an induced
inhomogeneity manifests itself only at initial angles
below the critical value [2−4]:

θ < θcr =
√

2σ0. (5)

To calculate the shift acquired by the beam re-
flected from the induced inhomogeneity, it is neces-
sary to take into account the phase acquired during
the beam transmission through the gradient medium:

ϕ = k0n0w
√

2σ0

⎡
⎢⎢⎢⎣ θ

θcr
−

(
1 − θ2

θ2
cr

)
ln

√√√√√√√
1 +

θ

θcr

1 − θ

θcr

⎤
⎥⎥⎥⎦.

(6)
Thus, the total beam shift can be found as

D =
1
k

∂ϕ

∂θ
= 2wχ ln

√
1 + χ

1 − χ
, (7)

where the angular parameter χ = θ/θ cr. This shift
can be compared with the Goos−Hänchen shift ac-
quired by an optical beam when the inhomogene-
ity has a rectangular rather than parabolic profile;
this situation corresponds to reflection from a fairly
thick (kw� 1) plate with a smaller refractive index
n0(1 − σ0). In this case, the lateral shift determined
from the classical formula (see, for example, [16]) has
the form

D =
2

θcr
√

1 − χ
. (8)

Note that formulas (7) and (8) are applicable for
the Goos−Hänchen shift only when the initial angle
of signal beam inclination differs from the critical
angle θcr by a value exceeding the half-width of the
spatial (angular) spectrum of the beam:

θcr − θ >
2
ka

, (9)

where a is the signal (Gaussian) beam half-width.
For initial angles close to the critical value, one

must take into account the partial transmission of
the corresponding angular component of the signal
beam through the inhomogeneity (as this was done,
for example, in [17]).

Figure 1 shows the dependence of the shift for
an optical beam reflected from inhomogeneities with
rectangular (gray lines) and gradient (black lines)
profiles. The solid lines present the results of calcu-
lation based on analytical formulas (7) and (8). The
numerical calculation of the beam shift was performed
by determining the difference between the geometric-
optical trajectory and the position of the center of
mass, ycm =

∫ +∞
−∞ y|A(y)|2dy/

∫ +∞
−∞ |A(y)|2dy, of the
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Fig. 1. Dependences of the Goos−Hänchen shift under
reflection from rectangular and gradient inhomogeneities
on the angular parameter χ.

entire beam (method 1) or only the reflected part
(method 2). The position of the center of mass was
found by solving the equation of beam diffraction
in an inhomogeneous medium. The range of the
angular parameters χ in which relation (9) is not
fulfilled is colored gray. The normalized half-width
of the inhomogeneity and signal beam turned out to
be kw = 300; the induced inhomogeneity amplitude
σ0 = 1.25×10−3.

At small values of the parameter χ, correspond-
ing to signal beam propagation in a direction almost
parallel to the inhomogeneity, the beam shift at inho-
mogeneities of different shapes depends strongly on
the refractive index gradient. In particular, at some χ
values the Goos−Hänchen shift may be larger in the
case of reflection from a inhomogeneity with a rect-
angular profile than under reflection from a parabolic
inhomogeneity.

The signal beam trajectory approaches the inho-
mogeneity center with an increase in the parameter χ.
Thus, the change in the refractive index in the region
behind the turning point is smaller than in the region
before it, as a result of which the exponentially de-
caying components penetrate deeper the region with a
smaller refractive index, and the beam shift increases.
Due to the trajectory bending in the inhomogeneous
(gradient) medium, the beam shift may be larger than
under reflection in a medium with a rectangular inho-
mogeneity of the same amplitude.

Note that a parabolic profile of inhomogeneity ap-
proximates well a Gaussian profile only at relatively
small distances from the center. This circumstance
explains the difference in the results of the analytical
and numerical calculations performed at rather small
values of the angular parameter χ (in this case, reflec-
tion occurs far from the inhomogeneity center).

3. TUNNELING THROUGH
A NARROW INHOMOGENEITY

Tunneling is another example, in which the beam
propagation dynamics predicted by geometric optics
is not consistent with the solution to the wave equa-
tion. If the inhomogeneity is sufficiently wide and
condition (5) is satisfied, the signal beam undergoes
total internal reflection. At the same time, with a
decrease in the inhomogeneity width, the fraction of
radiation tunneling through the inhomogeneity con-
stantly increases and, in the case of a very narrow
inhomogeneity, complete transmission is observed
[4, 15]. The signal beam tunneling is due to the
leaking out of the radiation exponentially decaying in
the reflection region between the turning points; thus,
it depends strongly on the inhomogeneity width and
profile.

To calculate approximately the tunneling coeffi-
cient through a narrow inhomogeneity, one can use
the approach applied in quantum mechanics. First,
turning points are determined for the central spectral
component from formula (4) and then, using the
quasi-classical (Wentzel−Kramers−Brillouin) ap-
proximation, one can obtain the following tunneling
coefficient through the inhomogeneity [14]:

T̃ =
exp(−2ψ)

[1 + (1/4) exp(−2ψ)]2
, (10)

where the coefficient ψ is defined as

ψ =

yt2∫
yt1

k√
−[σ(y) + θ2/2)]

dy. (11)

The approximation of a rectangular quantum-
mechanical barrier yields the following transmission
coefficient:

T̃ =
[
1 +

(k2θ2 + κ2)2

4k2θ2
sinh2 ψ̃

]−1

, (12)

where ψ̃ = κ(yt2 − yt1), κ = k
√

2σ − θ2 is the imag-
inary component of the propagation constant in the
region of total internal reflection.

A similar effect, referred to as frustrated total inter-
nal reflection, manifests itself in optics. Its essence is
as follows: radiation incident on a thin dielectric plate
under an angle exceeding the total internal reflection
angle passes through this plate. The transmission
coefficient through the plate depends on the radiation
polarization and has the form

T̃ = |t12t21|2
exp(−2ψ̃)

|1 − r2
12 exp(−2ψ̃)|2

, (13)

where t12, t21, and r12 are the corresponding am-
plitude coefficients of reflection and transmission
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Fig. 2. Dependence of the tunneling coefficient on the in-
homogeneity width: direct calculation (solid line), Went-
zel−Kramers−Brillouin approximation (dashed line), ap-
proximation of a rectangular quantum-mechanical bar-
rier (dotted line), and approximation of a homogeneous
dielectric plate (short-dash line).

through an interface between two media with re-
fractive indices n0 (subscript 1) and n0(1 − σ0)
(subscript 2).

Figure 2 shows a dependence of the signal-beam
tunneling coefficient on the induced-inhomogeneity
width. The values obtained as a result of direct simu-
lation of the signal beam propagation via numerical
solution of the diffraction equation in the presence
of inhomogeneity, as well as the tunneling coeffi-
cients calculated in the above-described approxima-
tions, are presented here.

Despite the absence of complete numerical agree-
ment between the tunneling coefficients calculated
using the aforementioned techniques and the values
obtained by direct calculation, we should note fairly
good qualitative agreement, which manifests itself
in the following. First, when the inhomogeneity is
approximated by a rectangular barrier, one obtains
an estimate of the tunneling coefficient with an er-
ror of 5% in the region where it significantly differs
from zero (the Wentzel−Kramers−Brillouin approxi-
mation is less exact in this region). Second, all afore-
mentioned approximations yield a rather exact esti-
mate for the induced-inhomogeneity width at which
the tunneling effect arises. According to (10), (12),
and (13), tunneling occurs if the distance between the
turning points satisfies the relation

yt2 − yt1 = κ−1, (14)

in other words, for the width of inhomogeneity in-
duced by a reference beam,

kw <
1

2
√

2σ0(1 − χ2)
. (15)

For an inhomogeneity with σ0 = 1.25×10−3 and
angular parameter χ = 0.8, the inhomogeneity width
corresponding to the occurrence of tunneling effect is
5λ (see Fig. 2).

The tunneling effect is of particular importance
when the reference beam is focused to increase its
intensity (and, therefore, the induced- inhomogeneity
intensity). In this case, the optimal version is the
reflection of the signal beam from the waist, where the
inhomogeneity reaches the maximum value. Thus,
to implement efficient signal-beam control, one must
provide the reference-beam width in the interaction
region sufficiently large to suppress the tunneling
effect.

4. CONCLUSIONS

We performed an analytical and numerical study
of signal beam tunneling through an induced inho-
mogeneity and the effect of lateral shift of a beam
reflected from a gradient inhomogeneity. An anal-
ysis of the shift of a beam reflected from a gradient
induced inhomogeneity showed that this shift may be
sufficiently large to exceed the Goos−Hänchen shift
under reflection from a homogeneous boundary due
to the bending of the signal beam trajectory. The
study of the tunneling effect yielded the dependence
of the transmission coefficient through a narrow inho-
mogeneity on its parameters and revealed the critical
inhomogeneity width at which this effect occurs.
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6. W. Löffler, M.P. van Exter, G.W. ’t Hooft, E.R. Eliel,
K. Hermans, D.J. Broer, and J.P. Woerdman,
“Polarization-Dependent Goos−Hänchen Shift
at a Graded Dielectric Interface,” Opt. Commun.
283, 3367 (2010).

7. De-Kui Qing and Gang Chen, “Goos−Hänchen
Shifts at the Interfaces Between Left- and Right-
Handed Media,” Opt. Lett. 29(8), 872 (2004).

8. Xiaolong Hu, Yidong Huang, Wei Zhang, De-Kui
Qing, and Jiangde Peng, “Opposite Goos−Hänchen
Shifts for Transverse-Electric and Transverse-
Magnetic Beams at the Interface Associated with
Single-Negative Materials,” Opt. Lett. 30(8), 899
(2005).

9. V.V. Moskalenko, I.V. Soboleva, and A.A. Fedya-
nin, “Surface Wave-Induced Enhancement of the
Goos−Hänchen Effect in One-Dimensional Photonic
Crystals,” JETP Lett. 91(8), 382 (2010).

10. M. Merano, A. Aiello, G.W. ’t Hooft, M.P. van Exter,
E.R. Eliel, and J.P. Woerdman, “Observation of
Goos−Hänchen Shifts in Metallic Reflection,” Opt.
Exp. 15(24), 15928 (2007).

11. W.J. Wild and C.L. Giles, “Goos−Hänchen Shifts
from Absorbing Media,” Phys. Rev. A. 25(4), 2099
(1982).

12. J.B. Götte, A. Aiello, and J.P. Woerdman, “Loss-
Induced Transition of the Goos−Hänchen Effect
for Metals and Dielectrics,” Opt. Exp. 16(6), 3961
(2008).

13. Li-Gang Wang and Shi-Yao Zhu, “Large Positive
and Negative Goos−Hänchen Shifts from a Weakly
Absorbing Left-Handed Slab,” J. Appl. Phys. 98,
043522 (2005).

14. M. Razavy, Quantum Theory of Tunneling (World
Scientific, 2003).

15. A.A. Kalinovich, V.E. Lobanov, A.P. Sukhorukov, and
A.L. Tolstik, “Tunneling of Optical Beams Through
Inhomogeneity of a Refractive Index,” Bull. Russ.
Acad. Sci. Phys. 74(12), 1718 (2010).

16. M. McGuirk and C.K. Carniglia, “An Angular
Spectrum Representation Approach to the Goos−
Hänchen Shift,” J. Opt. Soc. Am. 67(1), 103 (1977).

17. H.M.L̇ai, F.C. Cheng, and W.K. Tang, “Goos−
Hänchen Effect Around and Off the Critical Angle,”
J. Opt. Soc. Am. A. 3(4), 550 (1986).

PHYSICS OF WAVE PHENOMENA Vol. 21 No. 4 2013


