МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В. ЛОМОНОСОВА

На правах рукописи

Зимарев Владислав Сергеевич

P,S-бидентатные диамидофосфиты и фосфорамидиты в асимметрическом металлокомплексном катализе

1.4.3 – Органическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Москва-2024

Работа выполнена на кафедре органической химии Химического факультета

МГУ имени М.В. Ломоносова.

Научный руководитель:	Гулюкина Наталия Сергеевна кандидат химических наук
Официальные оппоненты:	Асаченко Андрей Федорович доктор химических наук, ФГБУН «Институт нефтехимического синтеза им. А.В. Топчиева РАН», заведующий лабораторией № 22 "Органического катализа"
	Гриднев Илья Дмитриевич доктор химических наук, ФГБУН «Институт органической химии им. Н. Д. Зелинского РАН», ведущий научный сотрудник лаборатории органических и металл-органических азот- кислородных систем (№ 9)
	Осипов Сергей Николаевич доктор химических наук, ФГБУН «Институт элементоорганических соединений им. А.Н. Несмеянова РАН», заведующий лабораторией экологической химии

Защита состоится «5» июня 2024 г. в 12.30 часов на заседании диссертационного совета МГУ.014.1 Московского государственного университета имени М.В. Ломоносова по адресу: 119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 3, Химический факультет МГУ, аудитория 446.

E-mail: maloshitskaya@org.chem.msu.ru

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова по адресу: г. Москва, Ломоносовский проспект, д. 27 и на портале: https://dissovet.msu.ru/dissertation/2988

Автореферат разослан «__» ____ 2024 г.

Ученый секретарь диссертационного совета, кандидат химических наук

О.А. Малошицкая

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Одним из основных методов получения оптически активных органических соединений является асимметрический металлокомплексный катализ. Прогресс в этой области связан прежде всего с дизайном новых доступных и эффективных лигандовстереиндукторов. Среди фосфорсодержащих лигандов интерес в последние годы смещается в сторону фосфорамидитов и диамидофосфитов, имеющих ряд преимуществ в сравнении с более традиционными фосфинами и отличающихся относительной простотой получения, возможностью варьирования заместителей у атомов азота и кислорода, большей устойчивостью к окислению и хорошей растворимостью соответствующих комплексов переходных металлов. Хиральными предшественниками в их синтезе могут служить доступные производные аминокислот и сахаров, диолы типа BINOL, TADDOL, BIPHEN, а также энантиомерно чистые амины и аминоспирты.

Особый интерес представляет применение хиральных бидентатных гетеродонорных лигандов, заданная стереохимия которых способствует расположению субстрата возле каталитического центра преимущественно или строго определенным образом, а различие в электронных эффектах донорных центров (*транс*-эффектов) определяет направление атаки нуклеофила. Возможность независимо регулировать стерическое окружение и электронные параметры двух донорных центров существенно облегчает задачу создания эффективного стереоиндуктора. В литературе широко представлены гетеродонорные *P*,*P*'- и *P*,*N*-бидентатные лиганды. В то же время число примеров хиральных *P*,*S*-бидентатных лигандов крайне ограничено, хотя включение тиоэфирного донорного атома серы в состав лиганда весьма перспективно, поскольку *P*,*S*-лиганды обладают следующими важными качествами:

- выраженной хелатообразующей способностью, обусловленной высоким сродством тиоэфирного атома серы к мягким ионам-комплексообразователям, причем после координации с металлом атом серы становится асимметрическим;
- С₁-симметрией, благоприятствующей асимметрической индукции на стадии ключевого каталитического интермедиата;
- различающимися стерическими требованиями *P* и *S*-донорных центров, поскольку тиоэфирный атом серы с двумя заместителями создает меньшие пространственные затруднения, чем атом фосфора с тремя заместителями;
- -разными *транс*-эффектами двух донорных центров.

Актуальной является проблема универсальности хиральных лигандов, т.е. возможности их эффективного использования в каталитических превращениях разных типов, в том числе, нетривиальных. В рамках настоящей работы были выбраны реакции:

– Рd-катализируемого аллильного замещения с участием как традиционных модельных субстратов (*rac-(E*)-1,3-дифенилаллилацетата, циннамилацетата и соответствующих алкилкарбонатов), так и нестандартного *rac-*2-(диэтоксифосфорил)-1-фенилаллилацетата; – Rh-катализируемого гидрирования функционализированных олефинов, в частности, 1-арилвинилфосфонатов.

Цель работы: создание новых эффективных и универсальных *P*,*S*-бидентатных лигандов для асимметрического металлокомплексного катализа.

Задачи исследования:

- синтез новых *P*,*S*-бидентатных лигандов фосфорамидитной и диамидофосфитной природы и изучение их координационного поведения;
- оценка каталитической активности и стереодифференцирующей способности новых стереоиндуктов в модельной реакции Pd-катализируемого асимметрического аллильного алкилирования *rac*-(*E*)-1,3-дифенилаллилацетата диметилмалонатом;
- применение лигандов, продемонстрировавших наибольшую эффективность в модельной реакции, в практически значимых Pd-катализируемых асимметрических превращениях;
- применение лигандов-лидеров в Rh-катализируемом энантиофасном дифференцирующем гидрировании 1-арилвинилфосфонатов.

Научная новизна. Осуществлен синтез следующих групп неописанных ранее фосфорсодержащих индукторов хиральности с тиоэфирными фрагментами:

– диамидофосфитов на основе (*R*)- и (*S*)-*N*-(пирролидин-2-илметил)анилинов, $(1R,2R)-N^1,N^2$ дифенилциклогексан-1,2-диамина, (*S*)- N^2 -бензил-3,3-диметил- N^1 -фенилбутан-1,2-диамина и $(1R,2R)-N^1,N^2,1,2$ -тетрафенилэтан-1,2-диамина;

- фосфорамидитов на основе (*R_a*)-BIPHEN H2, (*R*)-BINOL, (*S*,*S*)- и (*R*,*R*)-TADDOL и их производных.

Изучено их координационное поведение. Впервые продемонстрирован гемилабильный характер некоторых *P*,*S*-бидентатных лигандов.

Новые индукторы хиральности диамидофосфитной природы протестированы в модельной реакции Pd-катализируемого аллильного алкилирования *rac-(E)*-1,3-дифенилаллилацетата диметилмалонатом, при этом было достигнуто до 94% *ee*.

Показано, что среди фосфорамидитов наибольшей стереодифференцирующей способностью обладают *P,S*-лиганды на основе TADDOL и его производных, которые обеспечили в классическом алкилировании *rac*-(*E*)-1,3-дифенилаллилацетата диметилмалонатом до 99% *ee*, а в аминировании пирролидином – до 97% *ee*. Они также успешно применены в реакциях аллилирования β -кетоэфиров (до 90% *ee*), аллильной деароматизации 2,5-диметилпиррола (до 89% *ee*) и в аминировании *rac*-2-(диэтоксифосфорил)-1-фенилаллилацетата анилином (до 92% *ee*). С участием этой группы лигандов развит метод Rh-катализируемого гидрирования диизопропил-1-арилвинилфосфонатов с энантиоселективностью до 99% *ee*.

Практическая значимость работы. Эффективность новых *P*,*S*-бидентатных лигандов продемонстрирована на примере практически значимых каталитических превращений, открывающих доступ к ценным хиральным соединениям, в том числе, биоактивным. Так, продукты

Рd-катализируемого аллилирования диметилмалоната могут быть легко превращены в оптически активные ненасыщенные карбоновые кислоты. Аллилирование β-дикарбонильных соединений обеспечивает возможность получения труднодоступных хиральных соединений с четвертичным асимметрическим атомом углерода – важных строительных блоков, используемых в том числе в химии макроциклических лактонов. Аллиламины применяются для получения αаминокислот и азагетероциклов. Полезными интермедиатами в синтезе β-аминофосфоновых кислот могут служить α-метилензамещенные β-аминофосфонаты (фосфорные аналоги неприродных α-метилен-β-аминокарбоновых кислот, используемых в синтезе биологически активных соединений), образующиеся при аминировании 2-(диэтоксифосфорил)замещенных аллилацетатов. Тризамещенные 2*H*-пирролы – продукты асимметрической деароматизации 2,5-дизамещенных пирролов, важны для получения хиральных 1-пирролинов и пирролидинов.

Продукты гидрирования 1-арилвинилфосфонатов – 1-арилэтилфосфонаты, являются структурными фосфорными аналогами 2-арилпропионовых кислот (известного класса нестероидных противовоспалительных и болеутоляющих препаратов). В литературе имеются данные о том, что 1-арилэтилфосфонаты обладают отрицательной инотропной, Ca²⁺-антагонистической, нейропротекторной и психотропной активностью, ингибируют действие циклооксигеназы и служат гаптенами для получения абзимов.

Положения, выносимые на защиту:

1. Новые хиральные диамидофосфит- и фосфорамидит-тиоэфиры могут быть получены двустадийным синтезом *one-pot* из доступных оптически активных 1,2-диаминов или 1,4-диолов соответственно.

2. Тестирование новых *P*,*S*-бидентатных лигандов в модельной реакции Pd-катализируемого алкилирования показало, что наиболее эффективными стереоиндукторами являются фосфорамидит-тиоэфиры на основе TADDOL; подтверждено принципиальное значение наличия *S*-донорного центра и фосфорамидитной природы *P*-донора в лигандах этого типа.

3. Устойчивый результат, демонстрируемый фосфорамидит-тиоэфирами на основе TADDOL в Pd-катализируемых асимметрических превращениях, коррелирует с их способностью выступать при комплексообразовании с Pd(II) исключительно в роли хелатирующих лигандов.

4. Модульный подход, использованный в синтезе новых лигандов, позволил оптимизировать структуру фосфорамидит-тиоэфиров на основе TADDOL в соответствии с потребностями конкретных Pd-катализируемых асимметрических превращений, а также Rh-катализируемого гомогенного гидрирования. В последнем случае определены ограничения метода по субстрату.

5. В Pd-катализируемом аллильном алкилировании при использовании фосфорамидиттиоэфиров на основе (R_a)-BINOL абсолютная конфигурация продукта реакции зависит от мольного соотношения лиганд/палладий.

6. Новые диамидофосфит-тиоэфиры демонстрируют способность стабилизировать аллильные комплексы палладия(II) разных типов и в модельных реакциях значительно уступают фосфорамидит-тиоэфирам на основе TADDOL в стереодифференцирующей способности. Апробация работы. Результаты работы представлены на следующих конференциях: Всероссийская научная конференция «Марковниковские чтения: Органическая химия от Марковникова до наших дней» (Красновидово, Россия, 2020), The Sixth International Scientific Conference «Advances in synthesis and complexing» (Москва, Россия, 2022), Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2023» (Москва, Россия, 2023), научная конференция-школа РАН «Лучшие катализаторы для органического синтеза» (Москва, Россия, 2023), Всероссийская научная конференция «Марковниковские чтения: Органическая химия от Марковникова до наших дней» (Домбай, Россия, 2023).

Публикации. По материалам диссертации опубликовано 7 статей в рецензируемых журналах, рекомендованных ВАК, и 5 тезисов докладов на научных конференциях.

Структура и объем работы. Работа изложена на 184 страницах машинописного текста и содержит 58 рисунков, 32 схемы, 23 таблицы. Диссертация состоит из введения, обзора литературы, обсуждения результатов, экспериментальной части, заключения и списка литературы.

Личный вклад автора. Автор проводил сбор и анализ литературных данных по теме исследования, синтез, выделение и очистку целевых и промежуточных соединений, анализ данных, полученных методами ЯМР, масс-спектроскопии и РСА, принимал непосредственное участие в составлении плана исследований, обсуждении полученных результатов, подготовке их к публикации в научных журналах и их представлении на научных конференциях.

Автор выражает благодарность своему учителю, профессору К.Н. Гаврилову, и членам его научной группы за тесную кооперацию при выполнении работы в рамках общего проекта РНФ.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Р, S-бидентатные диамидофосфит-тиоэфиры

Серия диамидофосфит-тиоэфиров **L1-9** (Рис. 1) получена с выходами 69-98% по двустадийной схеме, включающей реакцию доступного оптически активного 1,2-диамина с PCl₃ в присутствии Et₃N в качестве основания и последующую конденсацию образующегося хлордиамида с гидроксил-тиоэфиром.

Рисунок 1. Группа диамидофосфит-тиоэфиров.

Модульное строение соединений **L1-9** позволило независимо варьировать характер хирального диамидофосфитного фрагмента, заместитель у атома серы и длину цепи между донорными центрами. Лиганды **L3,4** синтезированы из (*S*)-*N*-(1-гидрокси-4-(метилтио)бут-2ил)бензамида (получен из *L*-метионина) и ((4S,5R)-2,2-диметил-5-((фенилтио)метил)-1,3диоксолан-4-ил)метанола (получен из *L*-винной кислоты) соответственно и содержат дополнительные центры хиральности. Кроме того, наличие дополнительного заместителя в **L3** и ограничение конформационной подвижности экзоциклического фрагмента в **L4**, по нашему мнению, должно было повысить хелатирующую способность этих лигандов. Пример синтеза **L1а** проиллюстрирован на схеме 1.

Все соединения получены в виде индивидуальных диастереомеров, их состав и строение подтверждены данными элементного анализа и спектроскопии ЯМР, включая двумерные корреляции. В случае диамидофосфит-тиоэфиров L1-5, содержащих асимметрический атом фос-*Р**-стереоцентра φopa, абсолютная конфигурация противоположна конфигурации С*-стереоцентра исходного диамина, что подтверждается величиной КССВ углерода С(8) пирролидинового фрагмента и фосфора. Известно, что для 1,3-диаза-2-фосфабицикло[3.3.0]октана с противоположными конфигурациями С*- и Р*-стереоцентров, когда углерод С(8) и неподеленная пара электронов фосфора син-ориентированы относительно плоскости диазафосфолидинового кольца, значение ${}^{2}J_{C(8),P}$ лежит в диапазоне 33.2–42.0 Гц. При совпадении конфигураций C*- и P*-стереоцентров величина ${}^{2}J_{C(8)P}$ уменьшается до 3.0-5.0 Гц. Для L1a ${}^{2}J_{C(8)P}$ =38.1 о $(R_{\rm P})$ -конфигурации (Рис. 2, слева). Аналогично установлены Гш. что говорит $(R_{\rm P})$ -конфигурация для L1b,c, L2, L3a, L4a, L5, полученных из $(S_{\rm C})$ -диамина, и (S_P)-конфигурация для L3b и L4b, полученных из (R_C)-диамина. Правильность отнесения для L5 подтверждена данными РСА (Рис. 2, в центре).

Рисунок 2. Стереохимия и ключевые константы спин-спинового взаимодействия лиганда L1a (слева) и *P**-эпимеров L6 (справа). В центре приведена молекулярная структура L5.

Синтез лиганда **L6** при комнатной температуре приводил к смеси двух диастереомеров в соотношении 55/45 (Рис. 2, справа). Известно, что конфигурация азота в диазафосфолидинах является планарной или промежуточной между планарной и тетраэдрической. Величины ${}^{2}J_{PhCH2,P}$ для двух диастереомеров **L6** различаются, что говорит о непланарности азота PhCH₂N, вероятно, вследствие наличия рядом объемного Bu^t-заместителя. Основному диастереомеру отвечает большая КССВ ${}^{2}J_{PhCH2,P}$ =39.8 Гц, что указывает на *син*-ориентацию фрагмента PhCH₂ и неподеленной пары электронов атома фосфора ((*S*_P)-конфигурация *P**-стереоцентра). Стереоспецифический синтез (*S*_C,*S*_P)-диастереомера удалось осуществить при проведении реакции диамидохлорфосфита с 2-(фенилтио)этан-1-олом при -90°С, и именно он использовался в катализе.

Каталитическое тестирование диамидофосфит-тиоэфиров **L1-9** проведено на модельной реакции аллильного алкилирования *rac-*(*E*)-1,3-дифенилаллилацетата (**1a**) диметилмалонатом в CH_2Cl_2 с использованием $[Pd(\eta^3-C_3H_5)Cl]_2$ в качестве палладиевого прекурсора (при мольном соотношении **L**/Pd = 1 или 2) и комбинированного основания – *N*,*O*-бис(триметилсилил)-ацетамида (BSA) в присутствии каталитического количества КОАс (Схема 2). Энантиомерный избыток и абсолютную конфигурацию продукта **2a**, а также конверсию **1a** определяли методом ВЭЖХ на стационарных хиральных фазах; полученные результаты представлены в Таблице 1.

Схема 2.

Таблица 1. Диамидофосфит-тиоэфиры в аллильном алкилировании 1а диметилмалонатом.

№ опыта	L	ее проду	<i>ее</i> продукта 2а , %		L	ее проду	кта 2а , %
		$\mathbf{L}/\mathbf{Pd} = 1$	$\mathbf{L}/\mathrm{Pd} = 2$			$\mathbf{L}/\mathbf{Pd} = 1$	$\mathbf{L}/\mathrm{Pd} = 2$
1	L1a	43 (S)	84 (<i>S</i>)	8	L4a	82 (S)	85 (<i>S</i>)
2	L1b	59 (S)	82 (S)	9	L4b	80 (<i>R</i>)	82 (<i>R</i>)
3	L1c	53 (S)	77 (<i>S</i>)	10	L5	34 (S)	29 (S)
4	L2a	90 (<i>S</i>)	91 (<i>S</i>)	11	L6	43 (S)	85 (<i>R</i>)
5	L2b	90 (<i>S</i>)	91 (S)	12	L7	62 (S)	72 (S)
6	L3a	90 (<i>S</i>)	89 (<i>S</i>)	13	L8	73 (<i>R</i>)	82 (<i>R</i>)
7	L3b	87 (<i>R</i>)	94 (<i>R</i>)	14	L9	80 (<i>R</i>)	82 (R)

Во всех опытах наблюдалась количественная конверсия. Наиболее эффективными оказались лиганды L2,3 с 1,3-диаза-2-фосфабицикло[3.3.0]октановым фрагментом и длинным экзоциклическим заместителем, обеспечившие энантиомерный избыток продукта 2a 87-94% (оп. 4-7). Отметим, что наличие дополнительного асимметрического центра в L3 довольно слабо сказывалось на стереохимическом результате (оп. 6, 7), а использование конформационно жесткого линкера в L4 имело негативный эффект (оп. 8, 9). По эффективности L2b превосходил аналогичный лиганд L9 с 2,4-диаза-3-фосфабицикло[3.4.0]октановым ядром (оп. 5, 14). Среди лигандов с коротким линкером между донорными атомами, соединения L1,6-8 показали умеренную стереодифференцирующую способность: энантиомерный избыток продукта **2a** не превышал 85% (оп. 1-3, 11-13). Исключением оказался **L5**, оказавшийся плохим стереоиндуктором (оп. 10). Особенностью лигандов с коротким линкером является зависимость стереохимического результата реакции от использованного мольного отношения **L**/Pd. Как правило, отношение **L**/Pd = 2 было более эффективно, чем **L**/Pd = 1. Более того, в случае **L6** отношение **L**/Pd влияло и на абсолютную конфигурацию продукта **2a** (оп. 11). Подобные эффекты указывают на то, что диамидофосфит-тиоэфиры способны образовывать каталитические комплексы разных типов, обладающие различной стереодифференцирующей способностью.

Координационное поведение диамидофосфит-тиоэфиров изучено на примере L1a,b,4a,9. В результате комплексообразования лигандов L1a,b с $[Pd(\eta^3-C_3H_5)Cl]_2$ (L/Pd = 1) в ТГФ в присутствии AgBF₄ с выходами 85 и 93% соответственно были получены хелатные комплексы общей формулы $[Pd(\eta^3-C_3H_5)L]BF_4$ (Схема 3, путь *a*); их строение однозначно подтверждено рентгеноструктурным анализом (Рис. 3*a*,*б*).

Рисунок 3. Молекулярные структуры комплексов [Pd(η^3 -C₃H₅)L1a]BF₄ (*a*), [Pd(η^3 -C₃H₅)L1b]BF₄ (*b*), *HT*-[Pd(η^3 -C₃H₅)(μ -L4a)]_n(BF₄)_n (*b*) и *HH*-[Pd₂Cl₄(μ -L9)₂] (*c*).

Известно, что для C_1 -симметричных аллильных комплексов палладия характерна диастереомерия, связанная с эндо- или экзо-ориентацией аллильного фрагмента. Кроме того, при координации тиоэфирный атом серы становится асимметрическим. В общем случае, для комплексов типа [Pd(η^3 -C₃H₅)L]BF₄ возможно существование четырех диастереомеров (Puc. 4), находящихся в динамическом равновесии. Действительно, при комнатной температуре сигналы в спектрах ЯМР комплекса [Pd(η^3 -C₃H₅)L1a]BF₄ оказались уширены. При -30°C в спектре ЯМР ³¹Р наблюдалось два уширенных синглета равной интенсивности (δ_P 124.7 и 125.3 м.д.), а в спектрах ЯМР ¹³С и ¹H – два набора сигналов, отвечающих эндо- и экзо-диастереомерам. «Заморозить» эпимеризацию донорного S-атома удалось при регистрации спектра ЯМР ³¹Р при -60°C; в этом случае наблюдались четыре фосфорных резонанса при δ_P 124.4 (17%), 125.0

(16%), 125.9 (35%), 126.6 (32%) м.д. Отметим, что в кристалле $[Pd(\eta^3-C_3H_5)(L1a)]BF_4$, повидимому, сокристаллизуются оба η^3 -аллильных диастереомера. Колебательные эллипсоиды некоторых атомов, в частности углеродов аллильного фрагмента (Рис. 3*a*), значительно вытянуты вдоль одной из осей, и, по сути, являются результатом суперпозиции атомов разных изомеров.

Рисунок 4. Возможные диастереомеры катиона $[Pd(\eta^3-C_3H_5)L1a]^+$.

Реакция $[Pd(\eta^3-C_3H_5)L1a]BF_4$ с L1a (1 экв.) привела к образованию комплекса $[Pd(\eta^3-C_3H_5)(L1a)_2]BF_4$ с двумя *P*-монодентатно координированными лигандами (Схема 1, путь δ), который был выделен с выходом 87% и полностью охарактеризован. В его спектре ЯМР ¹³С из-за наличия в координационной сфере палладия двух атомов фосфора метиновому углероду аллильного фрагмента отвечает характерный триплет, а терминальным углеродам – виртуальный триплет (Табл. 2). Об исчезновении связи Pd-S говорит отсутствие координационных сдвигов сигналов углеродов CH₂SCH₃ в сравнении с их положением для свободного лиганда. Спектр ЯМР ³¹Р *C*₁-симметричного комплекса [Pd(η^3 -C₃H₅)(L1a)₂]BF₄ содержит единственный узкий синглет, что говорит о быстрой во временной шкале ЯМР инверсии аллильного фрагмента.

Аналогичные комплексы $[Pd(\eta^3-C_3H_5)(L4a)_2]BF_4$ и $[Pd(\eta^3-C_3H_5)(L9)_2]BF_4$ получены реакцией лигандов L4a,9 с $[Pd(\eta^3-C_3H_5)Cl]_2$ (L/Pd = 2) и AgBF₄ в ТГФ с выходами 94 и 71% соответственно (Схема 3, путь *в*). Их спектральные характеристики согласуются с описанными выше для $[Pd(\eta^3-C_3H_5)(L1a)_2]BF_4$ (Табл. 2). Отметим, что спектр *ЯМР*³¹Р комплекса $[Pd(\eta^3-C_3H_5)(L4a)_2]BF_4$ типичен для системы AB.

	5 5/ ().			
Соединение	ЯМР ³¹ Р,		ЯМР ¹³ С{ ¹ H}, б, м.д. (<i>J</i> _{С,Р} , Гц)	
	δ, м.д.	SCH ₂	CH _{2(allyl)}	CH _(allyl)
L1a	123.1	34.85 (д, ³ <i>J</i> _{C,P} =2.9) ^{<i>a</i>}	-	-
$[Pd(\eta^{3}-C_{3}H_{5})(L1a)_{2}]BF_{4}$	116.4	34.55 (bt, $J_{C,P}=3.0$) ⁶	70.59 (вт, J _{C,P} =21.6)	123.95 (t, ${}^{2}J_{C,P}=8.6$)
L4a	122.7	36.83 (c)	-	-
$[Pd(\eta^{3}-C_{3}H_{5})(L4a)_{2}]BF_{4}$	116.9, 117.0	37.25 (c)	71.38 (дд, ² <i>J</i> _{C,P} =16.8, ² <i>J</i> _{C,P} =43.7)	124.34 (t, ${}^{2}J_{C,P}=8.5$)
	$(^{2}J_{P,P}=95.2)$		71.59 (дд, ² <i>J</i> _{C,P} =16.5, ² <i>J</i> _{C,P} =41.9)	
L9	130.6	33.29 (c)	-	-
$[Pd(\eta^{3}-C_{3}H_{5})(L9)_{2}]BF_{4}$	110.3 (уш.)	33.95 (уш.с)	70.67 (м), 72.02 (м)	123.17 (t, ${}^{2}J_{C,P}=8.8$)
^{<i>a</i>} δ _C 15.76 (SCH ₃). ^{<i>b</i>} δ _C 15.	78 (SCH ₃).			

Таблица 2. Данные спектроскопии ЯМР ³¹Р и ¹³С (выборочно) лигандов **L1a,b,4a,9** и их комплексов типа $[Pd(\eta^3-C_3H_5)(L1a)_2]BF_4$.

Попытки получить индивидуальные хелатные комплексы лигандов **L4a**,**9** оказались безуспешны. Реакция **L4a** с $[Pd(\eta^3-C_3H_5)Cl]_2$ (**L**/Pd = 1, AgBF₄, TГФ) привела к образованию нерастворимого полимерного комплекса *HT*- $[Pd(\eta^3-C_3H_5)(\mu-L4a)]_n(BF_4)_n$, в котором лиганды играют роль мостиковых, соединяющих два Pd-центра и ориентированных по типу «голова к хвосту». Структура комплекса подтверждена методом порошковой рентгеновской дифракции (Рис. 3*в*).

В аналогичных условиях лиганд **L9** привел к образованию комплекса, в MALDI-TOF масс-спектре которого наблюдается сигнал m/z 623, отвечающий фрагменту $[Pd(\eta^3-C_3H_3)L9]^+$. Поведение комплекса в растворе оказалось достаточно сложным. При комнатной температуре в его спектре ЯМР ³¹Р наблюдаются четыре синглета равной интенсивности при δ_P 110.66, 110.73, 110.86 и 110.93 м.д., а в спектре ЯМР ¹³С – два синглета углеродов CH₂S при δ_C 39.18 и 39.50 м.д.; химические сдвиги которых подтверждают координацию *P*- и *S*-донорных центров. Характеристичными для метиленовых углеродов аллильного фрагмента, *транс*-расположенных относительно фосфора, являются дублеты при δ_C 84.12 (${}^{3}J_{C,P}$ =41.4 Гц, 2C), 84.20 (${}^{3}J_{C,P}$ =40.5 Гц) и 84.89 (${}^{3}J_{C,P}$ =41.7 Гц) м.д. Наблюдаемая спектральная картина не исключает, что полученный комплекс существует в растворе в виде равновесной смеси диастереомеров хелатного комплекса [Pd(η^3 -C₃H₅)L9]BF₄ и димера *HT*-[Pd(η^3 -C₃H₅)(μ -L9)]₂(BF₄)₂. Возможность L9 участвовать в качестве мостикового лиганда с образованием биядерной структуры подтверждена синтезом комплекса *HH*-[Pd₂Cl₄(μ -L9)₂], строение которого установлено методом PCA (Схема 4, Рис. 3*г*).

2. Р, S-бидентатные фосфорамидит-тиоэфиры

Фосфорамидит-тиоэфир L10 получен конденсацией (R_a)-ВІРНЕN H2 с PCl₃ в присутствии каталитического количества *N*-метилпирролидона (NMP) с последующей обработкой образующегося хлорфосфита *N*-метил-2-(метилтио)этан-1-амином в толуоле в присутствии Et₃N как основания (Схема 5).

В спектрах ЯМР ³¹Р лиганда **L10** наблюдаются два уширенных синглета, относительная интенсивность которых зависит от природы растворителя (δ_P 141.5 (49%), 142.5 (51%) в CDCl₃ и δ_P 143.0 (55%), 144.4 (45%) в толуоле- d_8). В спектрах ЯМР ¹Н и ¹³С сигналы также уширены, особенно относящиеся к экзоциклическому фрагменту –N(Me)CH₂CH₂SMe. Известно, что в

фосфорамидитах атом азота имеет почти идеальную тригональную конфигурацию, а вращение вокруг связи N-P происходит быстро. Можно предположить, что в присутствии объемных *трет*-бутильных заместителей в 3,3'-положениях ВІРНЕN H2 это вращение становится медленным во временной шкале ЯМР, и два сигнала отвечают двум возможным ротамерам. Действительно, нагревание раствора L10 в толуоле- d_8 до 100°С приводит к коалесценции фосфорных сигналов, а последующее охлаждение до 25°С возвращает исходное состояние.

Аналогично из (R_a)-BINOL и его производных, различающихся наличием и положением 1-адамантильных заместителей, и (R,R)-TADDOL получены лиганды L11a-c и L12 соответственно, отличающиеся строением хирального фосфорамидитного фрагмента, но включающие одинаковый 2-(метилтио)этильный экзоциклический заместитель (Рис. 5). Спектры ЯМР L11,12 содержат по одному набору сигналов, что подтверждает их стереоиндивидуальность. Для фосфорамидит-тиоэфира L11c, содержащего асимметрический атом фосфора, это означает, что формирующийся стереоцентр закрепляется в строго определенной конфигурации, вероятно, изза влияния объемного 1-Ad-заместителя в положении 3.

Рисунок 5. Фосфорамидит-тиоэфиры на основе (R_a)-BIPHEN H2, (R_a)-BINOL и его производных и (R,R)-TADDOL.

Таблица 3. Данные спектроскопии ЯМР ³¹Р и ¹³С (выборочно) лигандов **L10,12** и комплексов $[Pd(\eta^3-C_3H_5)L10]BF_4$ и $[Pd(\eta^3-C_3H_5)L12]BF_4$.

Соединение	ЯМР ³¹ Р,	ЯМР ¹³ С{ ¹ Н}, б, м.д. (<i>J</i> , Гц)					
	δ, м.д.	SCH ₃	CH _{2(allyl)} транс к Р	CH _{2(allyl)} цис к Р	CH _(allyl)		
L10	141.5 (49%)	14.81 уш.	-	-	-		
	142.5 (51%)						
$[Pd(\eta^{3}-C_{3}H_{5})L10]BF_{4}$	127.7 (40%)	24.08 (${}^{3}J_{C,P}=2.2$)	78.18 ($^{2}J_{C,P}$ =40.2)	$63.36 (^2 J_{C,P} = 7.8)$	$123.41 (^2 J_{C,P} = 10.9)$		
	128.1 (60%)	24.75 (${}^{3}J_{C,P}=2.4$)	79.28 ($^{2}J_{C,P}=39.8$)	$64.53 (^2 J_{C,P} = 7.5)$	$124.02 (^2 J_{C,P} = 10.8)$		
L12	139.9	15.48	_	_	_		
$[Pd(\eta^{3}-C_{3}H_{5})L12]BF_{4}$	105.6 (54%)	24.96 (${}^{3}J_{C,P}=4.0$)	79.21 ($^{2}J_{C,P}=42.1$)	$63.72 (^2 J_{C,P} = 8.5)$	$123.83 (^2 J_{C,P} = 10.6)$		
	108.0 (46%)	$25.72 (^{3}J_{C,P}=4.8)$	$80.54 (^2 J_{C,P} = 42.0)$	$62.94 (^2 J_{C,P} = 8.1)$	123.87 ($^{2}J_{C,P}=10.8$)		

Для лигандов L10,12 удалось получить катионные комплексы $[Pd(\eta^3-C_3H_5)L10]BF_4$ и $[Pd(\eta^3-C_3H_5)L12]BF_4$ (Схема 3, путь *a*), для каждого из которых в спектре ЯМР ³¹Р наблюдаются два узких синглета (Табл. 3), а в спектрах ЯМР ¹Н и ¹³С – два набора сигналов, отвечающих двум диастереомерам с *эндо-* или *экзо*-ориентацией η^3 -аллильного фрагмента. О бидентатной координации лигандов свидетельствуют сильнопольное смещение фосфорных резонансов и слабопольное смещение сигналов углеродов SCH₃, проявляющихся в спектрах комплексов в виде дублетов вследствие спин-спинового взаимодействия с ядром фосфора. Для каждого из диастереомеров, сравнение химических сдвигов дублетов терминальных углеродов аллильного

фрагмента, легко различимых по величине константы ${}^{2}J_{CP}$, показывает, что более электрофильный атом находится в *транс*-положении относительно фосфора.

Полученные фосфорамидит-тиоэфиры протестированы в модельной реакции асимметрического аллильного алкилирования 1а диметилмалонатом в CH₂Cl₂ (Схема 2, Табл. 4). При использовании лигандов **L10,11a,b** (L/Pd = 1) продукт (*R*)-2a получен с энантиомерным избытком 63-75% ее (оп. 1, 3, 5). Увеличение мольного отношения L/Pd до 2 привело в случае L10 к значительному снижению скорости и энантиоселективности процесса (оп. 2), а в случае L11a,b – к образованию энантиомерного продукта (S)-2a (оп. 4, 6). Подобный эффект может быть связан с участием в каталитическом цикле на стадии стереодифференциации разных по структуре ключевых интермедиатов, стерические и электронные параметры которых существенно различаются, – диастереомеров катионного комплекса $[(\eta^3 - 1, 3 - Ph_2C_3H_3)PdL]^+$ с *P*,*S*-хелатированным лигандом или катионного комплекса $[(\eta^3 - 1, 3 - Ph_2C_3H_3)PdL_2]^+$ с двумя P-монодентатно связанными лигандами. Комплексы второго типа характерны прежде всего для монодентатных лигандов и, как правило, малоэффективны из-за большой конформационной свободы. Так, известно, что лиганд (R_a)-Monophos (Рис. 6), являющийся монодентатным аналогом L11a, обеспечивает в обсуждаемой реакции лишь 29% ее (оп. 7).

L/Pd № опыта L Конверсия 1а, % № опыта L/Pd Конверсия 1а, % ee, % L ee, % L10 L11c 100 63 (R) 2 100 79 (R) 1 1 9 10 2 2 L10 49 (R) L12 1 51 98 (R) 61 3 11⁶ 1 100 75 (R) L11a L12 1 76 97 (R) 4 L11a 2 100 56 (S) 12 L12 2 35 98 (R) 5 L11b 1 100 69 (R) 13 L13a 2 41 86 (S)

57 (S)

29(S)

78 (R)

14

15

16

L13b

L13c

L13d 1

1

1

40

68

90

81 (S)

82 (R)

63 (R)

Таблица 4. Фосфорамидит-тиоэфиры в аллильном алкилировании 1а диметилмалонатом.

100 ^{*а*} Лит. данные. ^{*б*} В качестве катализатора использован [Pd(η^3 -C₃H₅)L12]BF₄.

100

>99

2

2

1

6

7 ^{*a*}

8

L11b

L11c

 (R_a) -Monophos

Рисунок 6. Лиганды сравнения на основе (R_a) -BINOL и (R,R)-TADDOL.

На примере лиганда L11b была проведена дополнительная серия экспериментов с разным мольным отношением L11b/Pd (Рис. 7). В случае L11b/Pd = 0.5 и 1 стереохимический результат реакции оказался одинаковым (69% ee(R)) и обусловлен, вероятно, преимущественным формированием каталитического комплекса с хелатированным лигандом. При L11b/Pd = 1.5, 2 и 3 образующийся продукт имел *S*-конфигурацию, а его оптическая чистота монотонно возрастала (42, 57 и 62% *ее* соответственно), что согласуется с ожидаемым смещением равновесия в сторону каталитического комплекса с монодентатно координированными лигандами.

Рисунок 7. Зависимость абсолютной конфигурации и оптической чистоты продукта 2a от мольного отношения L11b/Pd.

При использовании 2,9,14-три(адамант-1-ил)-замещенного фосфорамидит-тиоэфира L11с продукт алкилирования (R)-2a получен с 78-79% *ее*, причем стереохимический результат реакции практически не зависел от мольного отношения L11c/Pd (Табл. 4, оп. 8, 9). Можно предположить, что наличие объемного заместителя, близко расположенного к донорному фосфорному центру, с одной стороны, препятствует образованию комплекса с двумя лигандами в координационной сфере палладия, а с другой, способствует формированию более эффективного хирального окружения вокруг каталитического центра в хелатном комплексе, что увеличивает стереодифференцирующую способность лиганда L11c в сравнении с L11a,b.

Фосфорамидит-тиоэфир L12 показал высокую эффективность, обеспечив получение продукта (*R*)-2а с 98% *ee*, независимо от мольного отношения L12/Pd (оп. 10-12). Вероятно, аналогично L11с, стерические требования лиганда L12 делают крайне невыгодным образование катионного комплекса $[(\eta^3-1,3-Ph_2C_3H_3)Pd(L12)_2]^+$. Об этом свидетельствуют и спектральные наблюдения: в спектре *ЯМР* ³¹P смеси комплекса $[Pd(\eta^3-C_3H_5)L12]BF_4$ и свободного лиганда L12 (1 : 1) наблюдаются лишь 2 сигнала, отвечающие указанным соединениям. Низкая конверсия в случае L12/Pd = 2 (35%, оп. 12) позволяет предположить, что избыток лиганда способствует прерыванию каталитического цикла.

Принципиальное значение наличия *S*-донорного центра и фосфорамидитной природы *P*-донорного центра для эффективности **L12** демонстрирует каталитическое поведение синтезированных нами структурно сопоставимых лигандов **L13** (Рис. 6): *P*-монодентатного (**L13a**, оп. 13) и *P*,*P*-бидентатного (**L13b**, оп. 14) фосфорамидитов, *P*,*N*-бидентатного фосфорамидитамина **L13c** (оп. 15) и *P*,*S*-бидентатного фосфит-тиоэфира **L13d** (оп. 16). Все они как по активности, так и по энантиоселективности уступали **L12**. Отметим, что в отличие от **L12** и **L13c,d** лиганды **L13a,b** приводили к образованию (*S*)-энантиомера продукта **2a**.

3. Фосфорамидит-тиоэфиры на основе TADDOL в асимметрических реакциях

На основе энантиомеров TADDOL и его аналогов с выходами 37-98% получена серия родственных стереоиндукторов L14-20 (Рис. 8). Синтез осуществлялся аналогично L12 комби-

нированием различных фосфорамидитных и тиоэфирных фрагментов, что позволило выявить и оптимизировать параметры структуры лиганда, контролирующие каталитическую активность и селективность.

Рисунок 8. Семейство *P*,*S*-бидентатных фосфорамидит-тиоэфиров на основе TADDOL.

В сравнении с L12, лиганды L14 отличаются заместителем у атома серы, L15 – заместителем у атома азота, L16 – длиной алкильного *N*,*S*-линкера. Лиганды L17 иллюстрируют вариацию заместителей в каркасе TADDOL. Диастереомерные пары L18a,b, L19a,b и L20a,b получены из хиральных аминов и имеют дополнительный стереогенный центр на атоме углерода рядом с азотом.

Лиганды L12,14-20 представляют собой устойчивые на воздухе вещества, легкорастворимые в органических растворителях. Их строение доказано данными элементного анализа и спектроскопии ЯМР ³¹P, ¹H и ¹³C с привлечением двумерных корреляционных методов ЯМР (COSY, HSQC и HMBC). Кроме того, молекулярная структура L14b подтверждена методом PCA (Рис. 9). Отметим, что лиганд L17c, содержащий бензилиденовый фрагмент, получен в виде смеси двух диастереомеров (δ_P 140.9 м.д. (59%) и 145.1 м.д. (41%)), которая использовалась в катализе без разделения, поскольку дополнительный хиральный центр расположен далеко от донорного атома фосфора. Лиганд L17b, включающий асимметрический P-атом, выделен хроматографически с выходом 37% в виде единственного диастереомера.

Рисунок 9. Молекулярная структура **L14b**. Атомы водорода опущены для ясности.

Рисунок 10. Молекулярная структура катиона $[Pd(\eta^3-C_3H_5)L16]^+$. Атомы водорода и фенильные заместители опущены для ясности.

Для подтверждения возможности бидентатной координации фосфорамидит-тиоэфира L16 с образованием семичленного палладацикла получен хелатный комплекс $[Pd(\eta^3-C_3H_5)L16]BF_4$ (Схема 3, путь *a*), строение которого подтверждено методами РСА (Рис. 10) и спектроскопии ЯМР, в том числе с применением двумерных корреляций.

3.1. Реакции асимметрического аллильного замещения

Энантиодифференцирующую способность лигандов L14-20 первоначально оценивали в Pd-катализируемом аллильном алкилировании 1а диметилмалонатом (Схема 2). Предварительные эксперименты показали, что энантиомерный избыток продукта 2а и особенно конверсия 1а выше при мольном отношении L/Pd = 1 и проведении реакции в CH_2Cl_2 ; лишь для L12 лучшим растворителем оказался ТГФ, позволивший увеличить конверсию до 94%. Полученные результаты (Табл. 5) показывают, что стереодифференцирующая способность лиганда уменьшается с ростом объема S-заместителя в ряду Me>Ph>Bu^t (оп. 1-3). В сравнении с L12, лиганд L15a с Nфенильным заместителем обеспечил близкий уровень каталитической активности и энантиоселективности (оп. 4). Напротив, фосфорамидит-тиоэфир L15b, полученный из первичного 2-(метилтио)этан-1-амина, привел к снижению величины ее (оп. 5), что подчеркивает положительный эффект наличия N-заместителя. Увеличение длины боковой цепи в L16 влияло на стереохимический результат реакции незначительно (оп. 6). Введение трет-бутильных групп в *пара*-положения фенильных колец ведет к падению энантиоконтроля (оп. 7). Лиганд L17b с нарушенной симметрией скелета TADDOL обеспечил полную конверсию при минимальном снижении энантиоселективности (оп. 8) в сравнении с L12. Фосфорамидит L17с с бензилиденовым фрагментом продемонстрировал превосходные каталитическую активность и энантиоселективность (99% ее, оп. 9).

№ оп.	L	Конверсия 1 , %	Продукт	ee, %	№ оп.	L	Конверсия 1 , %	Продукт	ee, %
1 ⁶	L12	94	(<i>R</i>)-2a	98	10	L18a	100	(S)- 2a	21
2	L14a	100	(<i>R</i>)-2a	92	11	L18b	100	(S)- 2a	88
3	L14b	74	(<i>R</i>)-2a	76	12	L19a	100	(<i>R</i>)-2a	21
4	L15a	95	(R)- 2a	97	13	L19b	95	(S)- 2a	7
5	L15b	81	(R)- 2a	90	14	L20a	100	(R)- 2a	44
6	L16	92	(<i>R</i>)-2a	97	15	L20b	100	(S)- 2a	95
7	L17a	100	(R)- 2a	78	16 <i>°</i>	L12	75	(R)- 2a	87
8	L17b	100	(<i>R</i>)-2a	96	17 ²	L12	73	(<i>R</i>)- 2b	99
9	L17c	100	(<i>R</i>)-2a	99	18 ^{2,∂}	L12	100	(<i>R</i>)- 2b	97
					19 ^e	L12	85	(<i>R</i>)-2c	96

Таблица 5. Фосфорамидит-тиоэфиры на основе TADDOL в аллильном алкилировании 1 диалкилмалонатами.^{*a*}

^{*a*} Если не указано иное, использованы **1а** в качестве субстрата и $CH_2(CO_2Me)_2$ в качестве нуклеофила в CH_2Cl_2 . ^{*b*} Растворитель ТГФ. ^{*e*} **1b** в качестве субстрата. ^{*c*} $CH_2(CO_2Bu')_2$ в качестве нуклеофила. ^{*d*} При 40°C в течение 12 ч. ^{*e*} $CH_2(CO_2Bn)_2$ в качестве нуклеофила.

Диастереомерные лиганды **L18а,b**, полученные из (*S*)-*N*-метил-1-фенил-2-(фенилтио)этан-1-амина, и особенно **L19а,b**, полученные из (*S*)-1-фенил-*N*-(2-(фенилтио)этил)этан-1-амина, дали неудовлетворительные результаты: энантиомерный избыток не превышал 88% *ее* (оп. 10-13). Однако L20b, синтезированный из конформационно ограниченного амина (*S*)-2-((фенилтио)метил)пирролидина и (*S*,*S*)-TADDOL, продемонстрировал умеренный кооперативный эффект разных элементов хиральности и обеспечил несколько более высокую асимметрическую индукцию (оп. 15), чем сопоставимый лиганд L14a (оп. 2). Напротив, диастереомер L20a на основе (*R*,*R*)-TADDOL с альтернативной комбинацией хиральных центров оказался плохим стереоиндуктором (оп. 14). Отметим, что лиганды L20b и L14a,20a способствовали образованию энантиомерных продуктов 2a, что указывает на то, что доминирующим фактором стереоконтроля является хиральность остова TADDOL.

На примере лиганда **L12** в реакции аллильного алкилирования были протестированы также *rac*-(*E*)-1,3-дифенилаллил(этил)карбонат (**1b**) в качестве электрофила и CH₂(CO₂Bu¹)₂ и CH₂(CO₂Bn)₂ в качестве нуклеофилов. Использование **1b** привело к снижению *ee* продукта (*R*)-**2a** до 87% (оп. 16). Ди*-трет*-бутилмалонат позволил получить продукт (*R*)-**2b** с 99% *ee*, но превращение было неполным (оп. 17). Повышение температуры реакции до 40°C позволило достичь количественной конверсии при незначительном снижении оптической чистоты продукта (оп. 18). В случае дибензилмалоната продукт (*R*)-**2c** получен с 96% *ee* (оп. 19).

Лучшие стереоиндукторы L12,15а,16,17b,с,20b были протестированы в Pd-катализируемом аллильном аминировании 1a пирролидином (Табл. 6). Максимальную каталитическую активность и энантиоселективность обеспечили лиганды L17с,20b (97% *ee*, оп. 5, 6). Другие лиганды значительно уступали в стереодифференцирующей способности и/или не обеспечили приемлемый уровень конверсии (оп. 1-4). Результативность лиганда L12 оказалась выше при использовании в качестве субстрата 1b: при количественной конверсии продукт (*S*)-3 получен с 96% *ee*.

		OAc Ph Ph	[Pd(η ³ -C ₃ H ₅)Cl] ₂ (1 мол%), L (4 мол%) пирролидин (3 экв.), CH ₂ Cl ₂ , 20°C, 24 ч Рh → Ph							
		1a				3				
№ оп.	L	Конверсия 1а , %	<i>ee</i> , %	№ оп.	L	Конверсия 1а , %	ee, %			
1	L12	74 [100] ^{<i>a</i>}	85 (<i>S</i>) [96 (<i>S</i>)] ^{<i>a</i>}	4	L17b	100	86 (S)			
2	L15a	20	91 (<i>S</i>)	5	L17c	100	97 (S)			
3	L16	34	96 (<i>S</i>)	6	L20b	100	97 (<i>R</i>)			

Таблица 6. Фосфорамидит-тиоэфиры на основе TADDOL в аллильном аминировании **1а** пирролидином.

^а В квадратных скобках указан результат при использовании в качестве субстрата 1b.

На следующем этапе фосфорамидит-тиоэфиры L12,14-20 были применены в Pdкатализируемом аллилировании *rac*-этил-2-оксоциклогексанкарбоксилата и *rac*-этил-2-ацетамидо-3-оксобутаноата циннамилацетатом (4а) (Табл. 7). Стереоиндукцию в подобных процессах, когда стереоцентр формируется на атоме углерода, принадлежащем нуклеофилу, сложно контролировать, поскольку в ходе реакции нуклеофил подходит к аллильному фрагменту η^3 -аллилпалладиевого интермедиата со стороны, противоположной центральному ионукомплексообразователю и связанному с ним хиральному лиганду. Оказалось, что в этих реакциях некоторые закономерности в стереодифференцирующей способности лигандов, выявленные в аллилировании диметилмалоната, сохраняются. Так, асимметрическая индукция падает с ростом объема S-заместителя (оп. 1-3 и 16-18) и при отсутствии N-заместителя (оп. 1, 4, 5 и 16, 19. 20). Напротив, Bu^t-группы в *пара*-положении фенильных колец в L17a (оп. 7, 22) повышают энантиоконтроль, а замена 2-пропилиденового фрагмента на бензилиденовый в L17c (оп. 9, 24) и особенно нарушение симметрии каркаса TADDOL в L17b (оп. 8, 23) – понижают. Негативный эффект имеет и удлинение линкера между донорными атомами (оп. 6, 21). Отметим, что монодентатный фосфорамидит L13a оказался совершенно неактивен, а фосфит-тиоэфир L13d обеспечил всего 26% *ее* в аллилировании β-кетоэфира и 49% *ее* в аллилировании α-ацетамидо-βкетоэфира.

Таблица 7. Фосфорамидит-тиоэфиры на основе TADDOL в аллилировании *rac*-этил-2-оксоцикло-гексанкарбоксилата и *rac*-этил-2-ацетамидо-3-оксобутаноата.

	CO ₂ Et	Ph [Pd(η ³ -C ₃ H ₅)C L (2 мол%), E Zn(OAc) ₂ (7 PhMe, 20	CO ₂ Et (1.5 экв.)) H] ₂ (1 мол%), SSA (2 экв.), 10 мол%), °C, 24 ч	`Ph [Ас <u>AcHN</u> CO ₂ Et (1.5 экв.) Pd(η ³ -C ₃ H ₅)Cl] ₂ (1 мол%), L (2 мол%), BSA (2 экв.), KOAc (10 мол%), PhMe, 20°C, 24 ч	Ac Ph AcHN CO ₂ Et
L	Аллилир	ование rac-этил-2-оксоц	иклогексанкарбоксилата	Аллили	рование rac-этил-2-ацет	амидо-3-оксобутаноата
	№ оп.	Конверсия 4 а, %	<i>ее</i> продукта 5, %	№ оп.	Конверсия 4 а, %	<i>ее</i> продукта 6 , %
L12	1	23	81 (<i>R</i>)	16	98	74 (<i>S</i>)
L14a	2	72	78 (<i>R</i>)	17	100	74 (<i>S</i>)
L14b	3	38	56 (<i>R</i>)	18	100	63 (<i>S</i>)
L15a	4	100	80 (<i>R</i>)	19	100	64 (<i>S</i>)
L15b	5	13	70 (<i>R</i>)	20	84	56 (<i>S</i>)
L16	6	74	37 (<i>R</i>)	21	100	20 (<i>S</i>)
L17a	7	12	87 (<i>R</i>)	22	100	75 (<i>S</i>)
L17b	8	14	0	23	100	18 (<i>S</i>)
L17c	9	46	64 (<i>R</i>)	24	100	66 (<i>S</i>)
L18a	10	36	31 (<i>R</i>)	25	52	8 (<i>S</i>)
L18b	11	29	47 (<i>R</i>)	26	84	50 (<i>R</i>)
L19a	12	35	72 (<i>R</i>)	27	96	36 (<i>S</i>)
L19b	13	32	65 (<i>S</i>)	28	100	17 (<i>R</i>)
L20a	14	47	82 (<i>R</i>)	29	100	27 (<i>S</i>)
L20b	15	95 [100] ^{<i>a</i>}	87 (<i>S</i>) [90 (<i>S</i>)] ^{<i>a</i>}	30	100	66 (<i>R</i>)

^{*а*} В квадратных скобках указан результат при использовании качестве субстрата **4b**.

Среди лигандов, содержащих дополнительный асимметрический центр, **L18,19** были, как и прежде, малоэффективны (оп. 10-13, 25-28), но **L20b**, хотя и показал умеренный результат в случае α -ацетамидо- β -кетоэфира (оп. 30), оказался оптимальным в аллилировании β -кетоэфира, обеспечив 87% *ее* при конверсии 95% (оп. 15). Замена аллилирующего агента на циннамил(метил)карбонат (**4b**) позволила добиться 90% *ее* при количественной конверсии. В аллилировании α -ацетамидо- β -кетоэфира лучший результат достигнут при использовании **L17a** (75% *ее* при количественной конверсии, оп. 22), а также **L12** и **14a** (74% *ee*, оп. 16, 17).

Лиганд **L20b** оказался лучшим и в Pd-катализируемом С-аллилировании 2,5-диметилпиррола, позволив получить продукт асимметрической деароматизации – (R)-2-циннамил-2,5-диметил-2H-пиррол ((R)-7), с препаративным выходом 73% и 89% *ее* (Схема 6). Его диастереомер **L20а** ожидаемо привел к образованию энантиомерного продукта (*S*)-7 с более низким энантиомерным избытком 60% *ее* и выходом 50%. При использовании лигандов **L12,14,15a,16,17c,19a** оптическая чистота продукта (*S*)-7 варьировала в интервале 22-77% *ее* при выходе 30-73%. Лиганды **L15b,17a,b,18,19b** и лиганды сравнения **L13** оказались полностью неактивны.

Наконец, эффективность новых лигандов была оценена асимметрическом В Рd-катализируемом аллильном аминировании rac-2-(диэтоксифосфорил)-1-фенилаллилацетата (8) анилином (Табл. 8). Специфика этой реакции заключается в том, что наряду с целевым хиральным В-аминофосфонатом 9 возможно образование изомерного ахирального Ваминофосфоната 10 и/или изомеризация исходного 8 с образованием продукта 11. При использовании L12,14-16 оптическая чистота продукта (R)-9 не превышала 76% ее, и в большинстве случаев реакция проходила неселективно (оп. 1-9). Для L18-20 картина кардинально изменилась: при количественной конверсии субстрата процесс в большинстве случаев, за исключением L18b, протекал хемо- и региоспецифично (оп. 10-15). Диастереомеры лигандов L18.20, содержащие дополнительный (S)-C*-стереоцентр в линкере между атомами фосфора и серы, приводили к образованию (S)-энантиомера продукта независимо от абсолютной конфигурации фрагмента TADDOL. Лучший результат показал L18a (92% ee (S), оп. 10). Напротив, в случае L19 с хиральным N-заместителем абсолютная конфигурация каркаса TADDOL определяла абсолютную конфигурацию продукта. Более эффективным в этой паре оказался L19b (87% ee(R), оп. 13).

Таблица 8. Фосфорамидит-тиоэфиры на основе TADDOL в аминировании *rac*-2-(диэтоксифосфорил)-1-фенилаллилацетата.

OA S	c _P(O)(OE	$Et_{2} = \frac{[Pd(\eta^3 - C_3H_5)Cl]_2}{[Pd(\eta^3 - C_3H_5)Cl]_2}$	(1 мол%), L (2	2 мол%)	NHPh	P(O)(OEt) ₂	Ph P(O)(OEt)2	Ph	_P(0)(0Et) ₂
Ph	8	^{/2} PhNH ₂ (2 экв CH ₂ Cl ₂	в.), К ₂ СО ₃ (2 э ₂ , 20°С, 24 ч	кв.),	Ph'	9	10 NHPh	11	OAc
№ оп.	L	Конверсия 8 , %	9/10/11	ee, %	№ оп.	L	Конверсия 8 , %	9/10/11	ee, %
1	L12	100	92/8/0	58 (R)	10	L18a	100	100 /0/0	92 (S)
2	L14a	100	74/26/0	37 (R)	11	L18b	100	80/20/0	71 (S)
3	L14b	95	84/16/0	76 (<i>R</i>)	12	L19a	100	100/0/0	84 (S)
4	L15a	100	100/0/0	29 (R)	13	L19b	100	100/0/0	87 (<i>R</i>)
5	L15b	62	62/27/11	50 (R)	14	L20a	100	100/0/0	67 (S)
6	L16	100	95/5/0	73 (R)	15	L20b	100	100/0/0	70 (S)
7	L17a	100	63/37/0	0	16	L13b	90	37/58/5	13 (S)
8	L17b	100	45/55/0	11 (<i>R</i>)	17	L13c	100	71/29/0	83 (S)
9	L17c	100	82/18/0	52 (R)	18	L13d	100	72/18/10	19 (<i>R</i>)

3.2. Rh-Катализируемое асимметрическое гидрирование 1-арилвинилфосфонатов

Потенциал фосфорамидит-тиоэфиров L12,14-20 как стереоиндукторов в гомогенном энантиоселективном Rh-катализируемом гидрировании прохиральных субстратов был оценен при использовании в качестве модельного соединения диметил(1-фенилвинил)фосфоната (12) и $[Rh(COD)_2]BF_4$ в качестве предкатализатора. Реакции проводили в CH_2Cl_2 при комнатной температуре и давлении водорода 10 атм. Ход реакции контролировали методом ЯМР ³¹Р.

Предварительные эксперименты, выполненные при загрузке катализатора 2 мол% (S/C = 50) (L/Rh = 1), показали, что асимметризующая способность лиганда несколько увеличивается с ростом объема N-заместителя в ряду H < Me < Ph (Табл. 9, оп. 6, 1, 5) и длины линкера между донорными атомами (оп. 1, 7).

	H_2 (10) атм.), [Rh(COD) ₂]BF ₄ , L (L	(Rh = 1)	*		Ph Ph
Ph	P(O)(OR)2	CH ₂ C	Сl ₂ , 20 ^о С, 3 ч	P	'n [∕] ₽(0)(0	R) ₂	Me O
12 R =	= Me, δ _P 20.7 м.д.			13	R = Me, δ _P 3	2.8 м.д.	
14 R=	= Et, б _Р 17.9 м.д			15	R = Et, δ _P 3	0.5 м.д	
10a R -	= <i>I</i> -Pr, о _Р 15.5 м.д			17a	$R = I - Pr, o_P Z$	5.8 м.д	PI Ph L21
№ опыта	Субстрат (S)	R	[S], M	L	S/C	Конве	ерсия, % <i>ее</i> , %
1	12	Me	0.07	L12	50	100	83
2^{a}	12	Me	0.07	L12	50	2	-
3	12	Me	0.07	L14a	50	86	0
4	12	Me	0.07	L14b	50	33	55
5	12	Me	0.07	L15a	50	100	89
6	12	Me	0.07	L15b	50	96	81
7	12	Me	0.07	L16	50	95	89
8	12	Me	0.07	L17a	50	62	88
9	12	Me	0.07	L17b	50	100	74
10	12	Me	0.07	L17c	50	91	85
11	12	Me	0.07	L18a	50	0	-
12	12	Me	0.07	L18b	50	96	6
13	12	Me	0.07	L19a	50	0	-
14	12	Me	0.07	L19b	50	9	0
15	12	Me	0.07	L20a	50	15	19
16	12	Me	0.07	L20b	50	0	-
17 ^a	12	Me	0.07	L13a	50	0	-
18	12	Me	0.07	L13c	50	11	0
19	12	Me	0.07	L13d	50	28	22
20^{a}	12	Me	0.07	L21	50	36	10
21	14	Et	0.07	L15a	50	100	90
22	16a	\mathbf{Pr}^{i}	0.07	L15a	50	100	95
23	16a	\mathbf{Pr}^{i}	0.07	L15a	200	100	95
24 ⁶	16a	\mathbf{Pr}^{i}	0.07	L15a	500	100	94
25 ^e	16a	\mathbf{Pr}^{i}	0.07	L15a	200	47	95
26	16a	Pr^{i}	0.1	L15a	200	100	95
27 ²	16a	\mathbf{Pr}^{i}	0.1	L15a	200	100	95
28	16a	Pr^{i}_{j}	0.2	L15a	200	91	95
29	16a	$\mathbf{Pr}^{i}_{\mathbf{I}}$	0.5	L15a	200	84	95
30 <i>°</i>	16a	\mathbf{Pr}^{i}	0.1	L15a	200	47	-
						100^{e}	95

Таблица 9. Оптимизация условий Rh-катализируемого гидрирования эфиров (1-фенилвинил)фосфоновой кислоты при использовании фосфорамидит-тиоэфиров на основе TADDOL.

^{*a*} L/Rh = 2. ^{*б*} Время реакции 24 ч. ^{*в*} Растворитель – ClCH₂CH₂Cl. ^{*г*} В качестве катализатора использован комплекс [Rh(COD)L15a]BF₄ (0.5 мол%). ^{*д*} Предкатализатор – [Rh(COD)₂]OTf. ^{*е*} Время реакции 16 ч.

Введение Bu^{*t*}-групп в *пара*-положения фенильных колец таддольного каркаса (**L17a**), или нарушение его симметрии (**L17b**), или замена изопропильного фрагмента на бензилиденовый (**L17c**) вели к заметному снижению скорости или энантиоселективности реакции (оп. 8-10). Наиболее ярким оказалось влияние S-заместителя: при замене метильной группы на объемную *трет*-бутильную конверсия уменьшалась со 100 до 33%, а энантиомерный избыток продукта – с 83 до 55% (оп. 1, 4). В случае лигандов **L14a,18-20**, содержащих *S*-фенильный заместитель, оптическая чистота продукта не превышала 19% *ее* при значительном падении конверсии, зачастую до нуля (оп. 3, 11-16), вероятно, из-за снижения донорной способности атома серы.

Лиганды сравнения, в частности, бидентатные фосфорамидит-амин L13c и фосфиттиоэфир L13d оказались неэффективны (оп. 18, 19). То же касается и монодентатных фосфорамидита L13a и фосфита L21 (при L/Rh=2) (оп. 17, 20). На примере лиганда L12 мы убедились, что изменение мольного отношения L12/[Rh(COD)₂]BF₄ с 1 до 2 приводит к полному торможению реакции, что свидетельствовало в пользу *P*,*S*-бидентатной координации лиганда в случае эквимольных количеств (оп. 1, 2). Для подтверждения был синтезирован катионный хелатный комплекс [Rh(COD)L15a]BF₄, структура которого доказана методом PCA (Рисунок 11).

Рисунок 11. Синтез и описание хелатного комплекса [Rh(COD)L15a]BF4.

Оптимизацию условий гидрирования мы продолжили с использованием лиганда L15a как лучшего из изученных. Оказалось, что скорость реакции практически не зависит от объема алкильного радикала в исходном (1-фенилвинил)фосфонате, но стереоселективность возрастает при переходе от диметилового эфира 12 (89% *ee*, оп. 1) к диэтиловому 14 (90% *ee*, оп. 21) и диизопропиловому 16a (95% *ee*, оп. 22). Более того, в случае субстрата 16a загрузку катализатора удалось снизить до 0.5 мол% (S/C = 200) без потери оптической чистоты продукта 17a (оп. 23). Дальнейшее снижение до 0.2 мол%, по существу, не сказалось на стереохимическом результате, но для полного превращения требовалось 24 ч (оп. 24). Среди проверенных растворителей (ClCH₂CH₂Cl, CHCl₃, TГФ, EtOAc, MeOH и *i*-PrOH), лишь в 1,2-дихлорэтане энантиомерный избыток продукта 16a также достигал 95%, но при серьезном падении скорости реакции (оп. 25). Вариация давления в диапазоне 10-50 атм. не влияла на стереоселективность процесса, но при уменьшении давления водорода до 1 атм. реакция останавливалась. Обнаружено, что с ростом концентрации реакционной смеси скорость гидрирования замедляется (оп. 23, 26-29). Оптимальной представляется концентрация субстрата [S] = 0.1 M, при этом было проверено, что готовый комплекс [Rh(COD)L15a]BF₄ и каталитический прекурсор, приготовленный *in situ*, paботают одинаково (оп. 26, 27). Сравнение нескольких катионных родиевых предкатализаторов показало, что $[Rh(COD)_2][BAr^F_4]$ (Ar^F = 3,5-(CF_3)_2C_6H_3) очень малоактивен. Комплекс [Rh(COD)₂]OTf обеспечил 95% ее в гидрировании субстрата 16а, но работал заметно медленнее, чем его тетрафторборатный аналог: для завершения реакции требовалось 16 ч (оп. 30). Наконец, мы проверили возможность использования в качестве предкатализатора комплекса [Ir(COD)₂Cl]₂, который оказался полностью неактивен.

В найденных оптимальных условиях проведено гидрирование серии диизопропил(1арилвинил)фосфонатов 16, содержащих как донорные, так и акцепторные заместители в ароматическом кольце. Полученные результаты показывают, что каталитическая система L15а/[Rh(COD)₂]BF₄ является достаточно универсальной: гидрирование 16 гладко протекало при давлении водорода 10 атм. при комнатной температуре и по данным ЯМР³¹Р не сопровождалось образованием каких-либо побочных продуктов (Табл. 10). Строение целевых диизопропил(1-арилэтил)фосфонатов 17 подтверждено стандартным набором физико-химических методов.

		H ₂ (10 атм.), [Rh(COD) ₂]BF ₄ (0.5 г	мол%), L15a (0.5 мол%)		
	Ar P(O)(C	$(Pr^{i})_2$ $CH_2Cl_2, 20^{\circ}$	°C	Ar P(O)(OPr ⁱ) ₂	
№ опыта	Субстрат	Ar	Время реакции, ч	Конверсия, %	ee, %
1	16a	Ph	3	100	95 (R)
2	16b	$4-BrC_6H_4$	5	100	93 (R)
3	16c	$3-ClC_6H_4$	5	100	95
4	16d	$4-ClC_6H_4$	3	100	94 (<i>R</i>)
5	16e	$4-FC_6H_4$	3	100	90 (<i>R</i>)
6	16f	$3,4-F_2C_6H_3$	5	100	90
7	16g	$4-Me_2NC_6H_4$	6	100	93
8	16h	$3-NO_2C_6H_4$	6	100	82
9 ^{<i>a</i>}	16i	$2-MeOC_6H_4$	24	100	81
10	16j	$3-MeOC_6H_4$	5	100	96
11	16k	$4-MeOC_6H_4$	3	100	95 (R)
12	16 l	$4-\text{MeC}_6\text{H}_4$	3	100	96 (<i>R</i>)
13	16m	$4-\mathrm{Bu}^{i}\mathrm{C}_{6}\mathrm{H}_{4}$	3	100	97 (R)
14	16n	$4-CyC_6H_4$	3	100	99
15	160	5,6,7,8-тетрагидро-2-нафтил	5	100	98
16	16p	$4-PhC_6H_4$	3	100	96
17	16q	2-Naph	5	100	96 (R)
18	16r	6-MeO-2-Naph	3	100	96 (<i>R</i>)
19 ⁶	16s	1-Naph	24	90	5
20 ⁶	16t	3-индолил	24	100	47

Таблица 10. Гомогенное энантиоселективное Rh(I)-катализируемое гидрирование диизопропил(1-арилвинил)фосфонатов 16.

^{*а*} 2 мол% катализатора. ^{*б*} 5 мол% катализатора.

В большинстве случаев реакция завершалась через 3-6 ч; продукты 17а-g,j-r получены с 90-99% ее (оп. 1-7, 10-18), среди них – фосфорные аналоги известных медицинских препаратов Ибупрофен (17m, 97% ее) и Напроксен (17r, 96% ее). Энантиоселективность гидрирования субстрата 16h, содержащего электроноакцепторную NO₂-группу в ароматическом кольце, оказалась ниже: продукт 17h получен с энантиомерным избытком 82%; нитрогруппа при восстановлении не затрагивалась (оп. 8). В случае субстратов 16i,s,t с 2-метоксифенильным, 1-нафтильным и 3-индолильным фрагментами соответственно реакция протекала очень медленно, вероятно, по стерическим причинам. Например, конверсия 16s через 12 ч составляла всего 2%, а при увеличении времени взаимодействия до 5 суток – 6%. Количественной или близкой к количественной конверсии удалось добиться при увеличении загрузки катализатора до 2 (для 16i) или 5 мол% (для 16s,t) (время реакции 24 ч); оптическая чистота продуктов 17j,s,t составила 81, 5 и 47% ее (оп. 9, 19, 20).

Абсолютная конфигурация описанных в литературе продуктов **17а, b, d, e, k-m, q, r** отнесена как (R) на основании сравнения знака угла оптического вращения с ранее опубликованными данными. Кроме того, гидролиз **17d** позволил получить кислоту **18**, для которой на основании данных РСА и знака оптического вращения установлена (R)-конфигурация (Рис. 12).

Рисунок 12. Синтез и молекулярная структура фосфоновой кислоты 18.

Мы попытались распространить каталитическую систему L15a/[Rh(COD)₂]BF₄ на более широкий круг субстратов. Оказалось, что гидрирование α -бензилзамещённого винилфосфоната 16u при загрузке катализатора 0.5 мол% протекает количественно за 24 ч, но стереоселективность процесса крайне низка (13% *ee*) (Схема 7). α , β -Дизамещенный фосфонат 16v вступал в реакцию с трудом: даже при увеличении загрузки катализатора до 5 мол% конверсия составила 50% через 16 ч, а оптическая чистота продукта 17v – 55% *ee*. Очевидно, что лиганд L15a для восстановления подобного типа субстратов не подходит.

Выводы

1. Осуществлен синтез тридцати четырех новых оптически активных диамидофосфит- и фосфорамидит-тиоэфиров как потенциальных лигандов для асимметрического катализа.

2. Показано, что диамидофосфит-тиоэфиры способны стабилизировать аллильные комплексы палладия(II), содержащие как один, так и два лиганда на металл, играя роль как *P*,*S*-бидентатных (хелатирующих или мостиковых), так и *P*-монодентатных лигандов, что значительно осложняет их каталитическое применение.

3. Продемонстрирована возможность использования фосфорамидит-тиоэфирных лигандов на основе (R_a)-BINOL для дивергентного синтеза энантиомерных продуктов Pd-катализируемого аллильного алкилирования в зависимости от соотношения L/Pd.

4. Установлено, что при комплексообразовании с Pd(II) фосфорамидит-тиоэфиры на основе TADDOL выступают исключительно в роли *P*,*S*-бидентатных хелатирующих лигандов, образуя шести- и семичленные палладациклы.

5. Новые фосфорамидит-тиоэфиры на основе TADDOL продемонстрировали высокую стереодифференцирующую способностью в Pd-катализируемых реакциях аллильного замещения, превосходя по эффективности аналогичные *P*,*N*-бидентатные фосфорамидит-амины, *P*,*S*-бидентатные фосфит-тиоэфиры, *P*,*P*-бидентатные и *P*-монодентатные фосфорамидиты. Их модульное строение позволило оптимизировать структуру лиганда в соответствии с потребностями конкретных асимметрических каталитических превращений.

6. В энантиоселективном Rh(I)-катализируемом гидрировании диизопропил(1-арилвинил)фосфонатов лиганд **L15a** обеспечил до 99% *ее*, что демонстрирует универсальность предложенных фосфорамидит-тиоэфирных стереоиндукторов на основе TADDOL.

Основные результаты работы изложены в следующих публикациях:

Публикации в рецензируемых научных изданиях, рекомендованных для защиты

в диссертационном совете МГУ

1. Gavrilov K.N., Chuchelkin I.V., Zheglov S.V., Firsin I.D., **Zimarev V.S.**, Gavrilov V.K., Maximychev A.V., Perepukhov A.M., Goulioukina N.S. First *P**,*S*-bidentate diamidophosphite ligand in Pd-catalyzed asymmetric reactions // Mendeleev Communications. – 2020. – V. 30. – № 1. – Р. 31– 33. IF = 1.9 (Web of Science). Объем 0.40 п.л. Личный вклад автора 40%.

2. Chuchelkin I.V., Gavrilov K.N., Gavrilov V.K., Zheglov S.V., Firsin I.D., Perepukhov A.M., Maximychev A.V., Borisova N.E., Zamilatskov I.A., Tyurin V.S., Dejoie C., Chernyshev V.V., **Zimarev V.S.**, Goulioukina N.S. Formation of Allylpalladium Complexes and Asymmetric Allylation Involving Modular Bridging Diamidophosphite-Sulfides Based on 1,4-Thioether Alcohols // Organo-metallics. – 2021. – V. 40. – № 21. – P. 3645–3658. IF = 2.8 (Web of Science). Объем 1.96 п.л. Личный вклад автора 25%.

3. Gavrilov K.N., Chuchelkin I.V., Zheglov S.V., Firsin I.D., Trunina V.M., Gavrilov V.K., Borisova N.E., **Zimarev V.S.**, Denesh A.A., Goulioukina N.S. Novel BIPHEN H2 based *P*,*S*-bidentate phosphoramidite ligand in palladium-catalyzed asymmetric allylation // Mendeleev Communications – 2021. – V. 31 – № 5. – P. 651–653. IF = 1.9 (Web of Science). Объем 0.43 п.л. Личный вклад автора 40%.

4. Firsin I.D., Chuchelkin I.V., Gavrilov V.K., Trunina V.M., **Zimarev V.S.**, Zheglov S.V., Gavrilov K.N., Goulioukina N.S. Chiral *P**,*S*-bidentate diamidophosphites with 1,2-thioether alcohol–based exocyclic substituents in asymmetric Pd-catalyzed reactions // Phosphorus, Sulfur, and Silicon and the Related Elements. – 2021. – V. 197 – № 5–6. – P. 518–519. IF = 1.3 (Web of Science). Объем 0.17 п.л. Личный вклад автора 20%.

5. Гаврилов К.Н., Чучелкин И.В., Трунина В.М., Фирсин И.Д., Битяк Я.П., Федоров Д.А., **Зимарев В.С.**, Гулюкина Н.С. *Р,S*-Бидентатные амидофосфиты с ядром (R_a)-ВІNOL в катализируемом палладием асимметрическом аллильном замещении // Журнал органической химии. – 2022. – Т 92. – № 12. – С. 1884–1892. IF = 0.619 (РИНЦ). Объем 0.65 п.л. Личный вклад автора 40%. [Gavrilov K.N., Chuchelkin I.V., Trunina V.M., Firsin I.D., Bityak Y.P., Fedorov D.A., **Zimarev V.S.**, Goulioukina N.S. *P,S*-bidentate amidophosphites with (R_A)-BINOL core in palladiumcatalyzed asymmetric allylic substitution // Russian Journal of General Chemistry – 2020. – V. 92. – № 12. – P. 1884–1892. IF = 0.8 (Web of Science)].

6. Gavrilov K.N., Chuchelkin I.V., Firsin I.D., Trunina V.M., Gavrilov V.K., Zheglov S.V., Fedorov D.A., Tafeenko V.A., Zamilatskov I.A., **Zimarev V.S.**, Goulioukina N.S. TADDOL-based *P*,*S*-bidentate phosphoramidite ligands in palladium-catalyzed asymmetric allylic substitution // Organic and Biomolecular Chemistry. – 2024. – № 22. – Р. 538–549. IF = 3.2 (Web of Science). Объем 0.96 п.л. Личный вклад автора 60%.

7. Zimarev V.S., Chuchelkin I.V., Gavrilov K.N., Zamilatskov I.A., Tafeenko V.A., Lokshin B.V., Goulioukina N.S. Neutral dinuclear palladium(II) complex containing chiral *P*,*S*-bridging diamidophosphite-thioether ligands // Mendeleev Communications. – 2024. – V. 34. – № 2. – Р. 195–197. IF = 1.9 (Web of Science). Объем 0.46 п.л. Личный вклад автора 50%.