

- Металлогения наука о генезисе и регионально-глобальном распределении (металлических и неметаллических) месторождений и их взаимоотношениях в пространстве и времени в отношении тектонических и петрологических характеристик земной коры
- Термин **métallogénie** предложен профессором Луи де Лонэ, Ecole des Mines de Paris (1892 или 1913 гг)

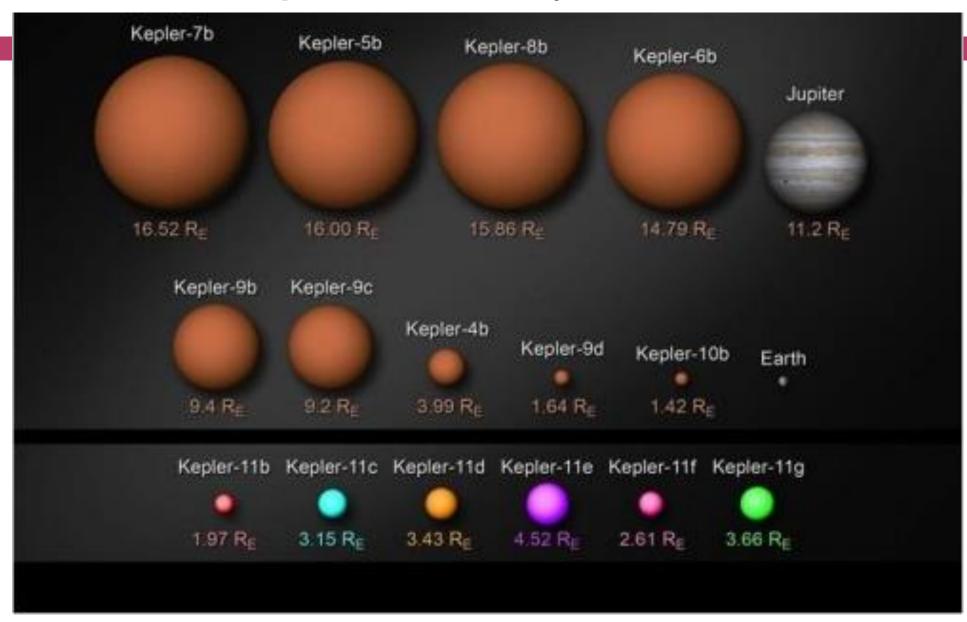
За 100 лет металлогению развивали:

- во Франции Л. де Лонэ, П. Рутье, П. Лаффит;
- в США Л. Бэйтс, Ю. Джексон, В. Файф, Р. Голдфарб;
- в Канаде Р. Керрич, Дж. Ричардс;
- в Австралии Ч. Мейер, Д. Гровс;
- в Великобритании Ф. Соукинс, А. Митчелл, А. Гарсон, Р. Силлитое;
- в СССР и России Ю.А. Билибин, Н.М. Страхов, В.И. Смирнов, А.Д. Щеглов, Д.В. Рундквист, Н.П. Лаверов, Ф.А. Летников

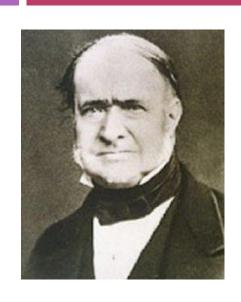
В настоящее время в структуре металлогении выделяют следующие крупные разделы: общая, эволюционная (историческая), региональная, специальная и прикладная.

Общая металлогения позволяет выявить природу рудообразующих процессов, их связи и соотношения с другими геологическими явлениями.

Эволюционная (историческая) металлогения анализирует эволюцию металлогенических процессов во времени, позволяя выделять периоды, этапы и стадии. Это стержневая линия новой науки развивается с начала ее зарождения до наших дней.

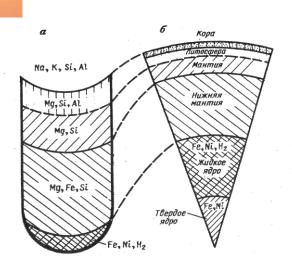

Региональная металлогения исследует закономерности пространственного размещения рудоносных площадей разного ранга, в том числе и рудных районов. В СССР, а сейчас в России работы в данном направлении более полувека интенсивно проводят ВСЕГЕИ, а в других странах мира – геологические службы.

Специальная металлогения подробно анализирует закономерности возникновения и размещение в пространстве и времени отдельных видов минерального сырья, важных в промышленном отношении генетических типов месторождений отдельных металлов или их групп.


Прикладная металлогения на основе выявленных закономерностей с помощью приемов и методов, изложенных в предыдущих разделах металлогении, обеспечивает прогнозно-металлогеническую оценку территорий и определяет выбор наиболее эффективных направлений поисково-разведочных работ.

Общая металлогения

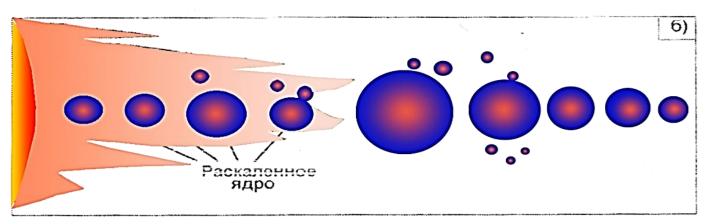
Планеты (по греч. – блуждающие)


Происхождение и развитие Земли (горячая аккреция)

- Первую научно обоснованную гипотезу высказал Эли де Бомон в 1830-е гг. Она получила название контракционной и исходила из представлений П.-С. Лапласа (1796) о «горячем» происхождении Земли, возникшей из сжимающегося сгустка разогретой газообразной материи.
- Делался вывод, что по мере остывания размеры Земли существенно уменьшались, а внешняя оболочка (земная кора) со временем остывала, сокращалась и подвергалась сжатию с возникновением горных сооружений и складчатых поясов осадочного чехла.

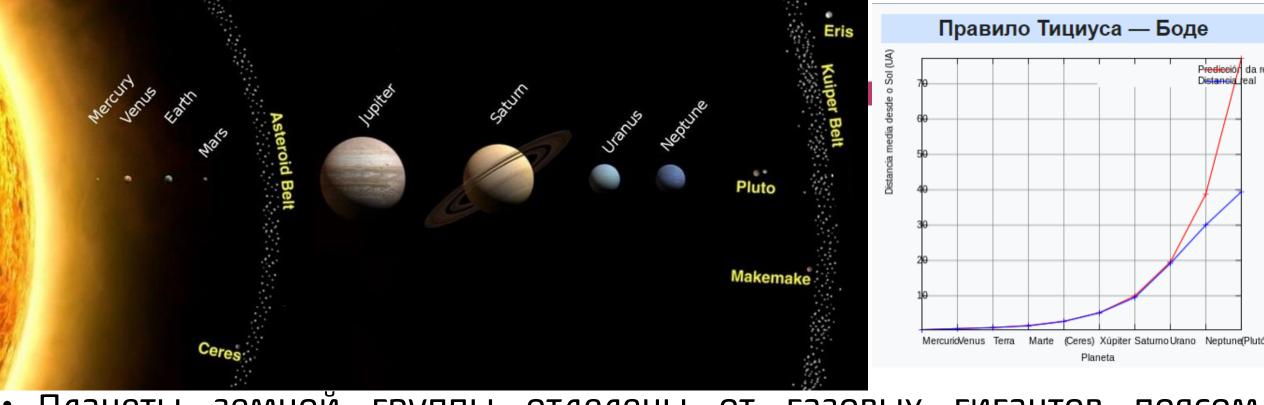
Кометная гипотеза происхождения планет и хондритовая модель образования Земли (холодная аккреция)

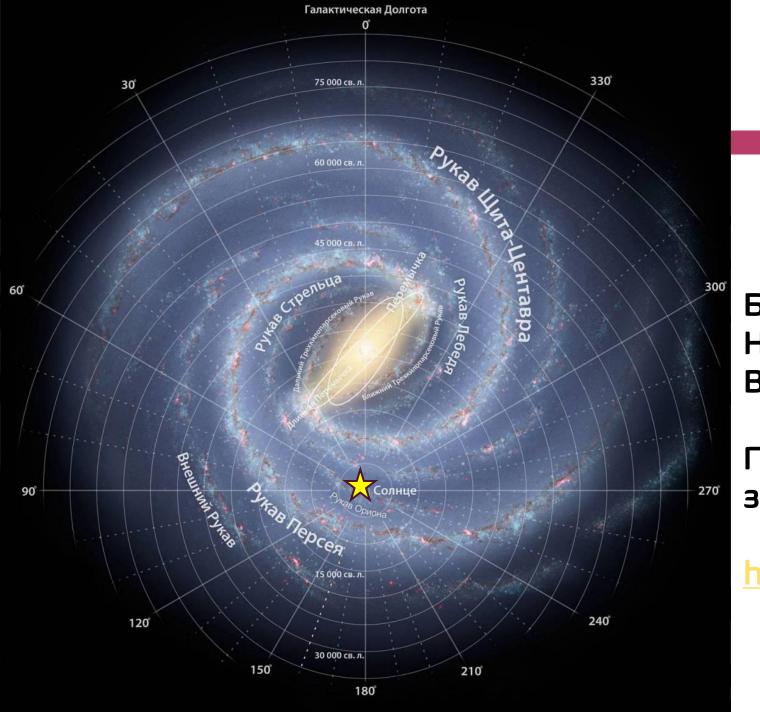
- Небулярная гипотеза с последующим разогревом предложена И. Кантом (1755) в отношении планет Солнечной системы, но не их внутреннего строения.
- Маракушев (1999) считал, что первичное расслоение нашей планеты произошло на протопланетной стадии ее развития благодаря высокому флюидному давлению, обеспечившему концентрацию в жидком земном ядре водорода (в металлическом состоянии) и др. флюидных компонентов (углеродных (карбиды MeC), азотных (нитриды MeN), сероводородных, хлоридных, фторидных).
- Расплавление первичного хондритового (=каменные метеориты) вещества в ампулах под водно-водородным давлением (А.А. Маракушев и Н.И. Безмен, 1992) показало аналогию с теоретической моделью строения Земли с расслоением на зоны:
- железо-никелево-водородную (Fe, Ni, H2)
- железо-ультраосновную (Mg, Fe, Si)
- ультраосновную (Mg, Si)
- переходную (Mg, Si, Al)
- основную (Na, K, Si, Al)


Эволюция планет Солнечной системы в связи с прохождением Солнцем 4,5 млрд лет назад стадии Т-Тельца



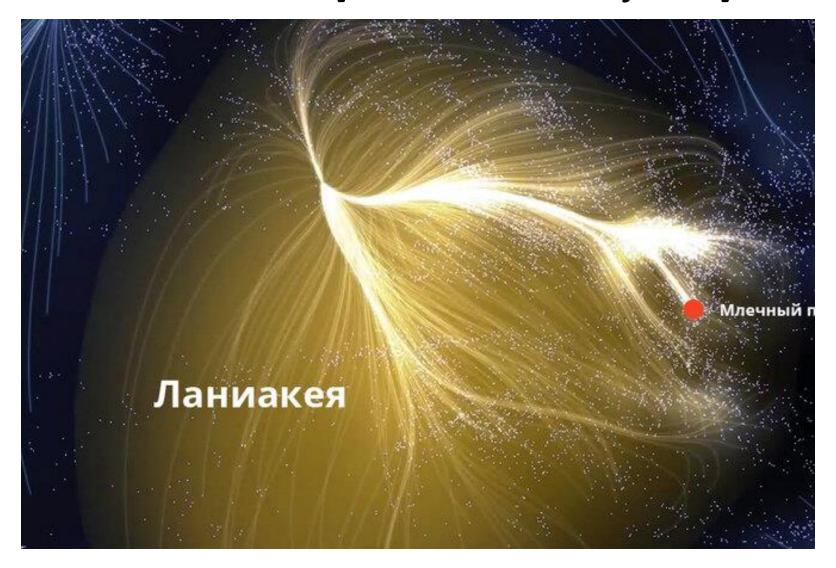
а) Обьединение планетозималей в планеты, состоящие из внешней Не-Н раскаленной оболочки и внутреннего расплавленного ядра


б) Стадия Т-Тельца Солнца, сопровождавшаяся выбросом мощного светового потока (солнечного ветра), вызвала срыв первичных оболочек с ближайших к Солнцу планет (Меркурия, Венеры, Земли и Марса)

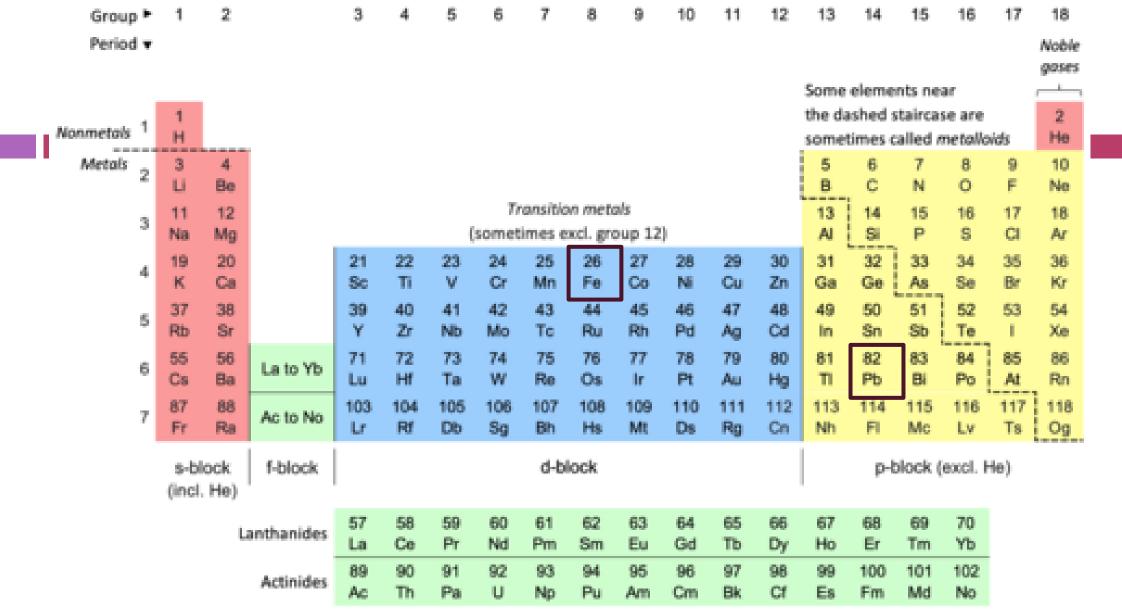

Современное строение Солнечной системы

- Планеты земной группы отделены от газовых гигантов поясом астероидов (крупнейший объект – Церера, карликовая планета с 2006 г (d=950 км, т.е. меньше Луны)
- Кроме «сдувания» с внутренних планет, пояс астероидов считается несформировавшимся в планету за счет гравитационного воздействия газовых гигантов, а также предлагался взрыв планеты Фаэтон
- Другие карликовые планеты, в т.ч. Плутон (всего 390) и пояс Койпера

Млечный Путь и движение планет Солнечной системы


Наша спиральная Галактика

Большой взрыв: 13.8 млрд лет Наша Галактика: 13.6 млрд лет Возраст Солнца: 4.6 млрд лет


Полный оборот вокруг центра за 230 млн лет

https://www.youtube.com/watch

Ланиакея - наш родной суперкластер

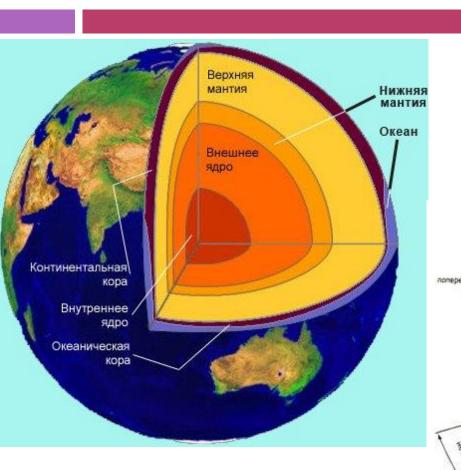
https://www.youtube.com/watch?v=whFUa_xmMK0&ab_channel=%D0%90%D0%BB%D0%B5

Конечным продуктом радиоактивного распада урана (самого тяжелого элемента на Земле) является свинец

Химические элементы

- Все можно «сделать» из водорода
- Считается, что такая звезда как Солнце за счет «выгорания» водорода и гелия (=термоядерная реакция) генерирует тяжелые элементы вплоть до железа
- Более тяжелые элементы (в т.ч. золото) возникают при взрывах сверхновых и нейтронных звезд. Есть точка зрения, что все элементы образовались при Большом взрыве
- Как бы то ни было, эти элементы в дальнейшем попадают в планеты при их аккреции и далее перераспределяются геологическими процессами

Геологическая активность есть и на планетах и на их спутниках

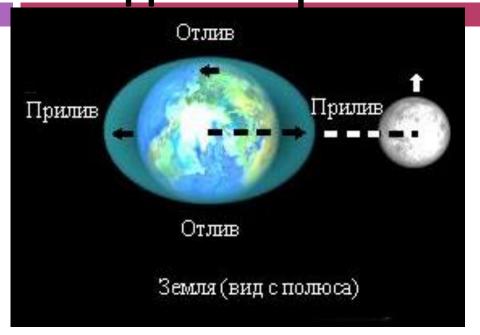


Модели формирования Земли

МЕТЕОРИТЫ 4.5-4.6 млрд лет – самое древнее вещество Солнечной системы Пресолярная пыль – 5-7.5 млрд лет

Оболочки Земли – физико-химическая стратификация

Ядро: 85,5% Fe, 6% Si, 5,2% Ni, 1,9% S и C,H (McDonough, 2003)


Средняя плотность Земли -5.5 т/m^3 Однако: континентальная кора -2.8 т/m^3 мантия -4.5 т/m^3 внешнее ядро -11 т/m^3 эпицентр землетрясе ВНУТРЕННЕЕ ЯДРО -15 т/m^3

Fe-Ni метеориты = ядро

Концепция образования Земли Шмидта (1948) — Сафронова (1969) — Сорохтина (2002) за счет аккреции холодного протопланетного газопылевого облака

- На раннепланетарном этапе молодая Земля разогревалась благодаря распаду радиоактивных элементов и приливным взаимодействиям с Луной, которая тогда находилась на близком расстоянии от Земли, обращалась и деформировала ее в экваториальной плоскости.
- Тектономагматическая активность Земли впервые проявилась через 600 млн лет после ее образования (4,0 млрд. лет) после того, как температура земных недр на глубинах (200-400) км поднялась до уровня плавления силикатов и металлического железа.

Этапы выделения земного ядра

Первичное земное вещество

Расплавы железа и его окислов

Архейская деплетированная мантия, обеднённая железом, его окислами и сидерофильными элементами

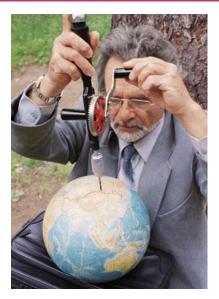
Нормальная мантия в протерозое и фанерозое

Континенты

а – молодая Земля

б, в -зонная дифференциации земного вещества (AR₁₋₂)

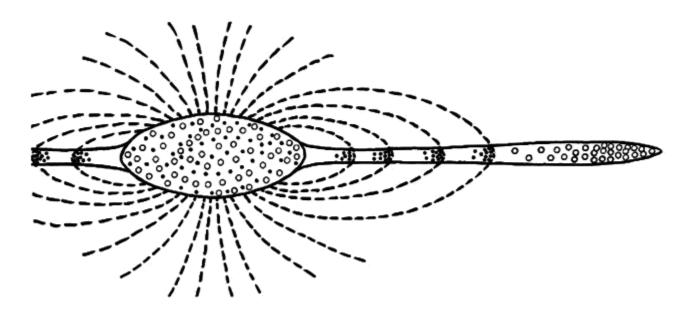
г, д – формирование плотного ядра Земли в AR₃

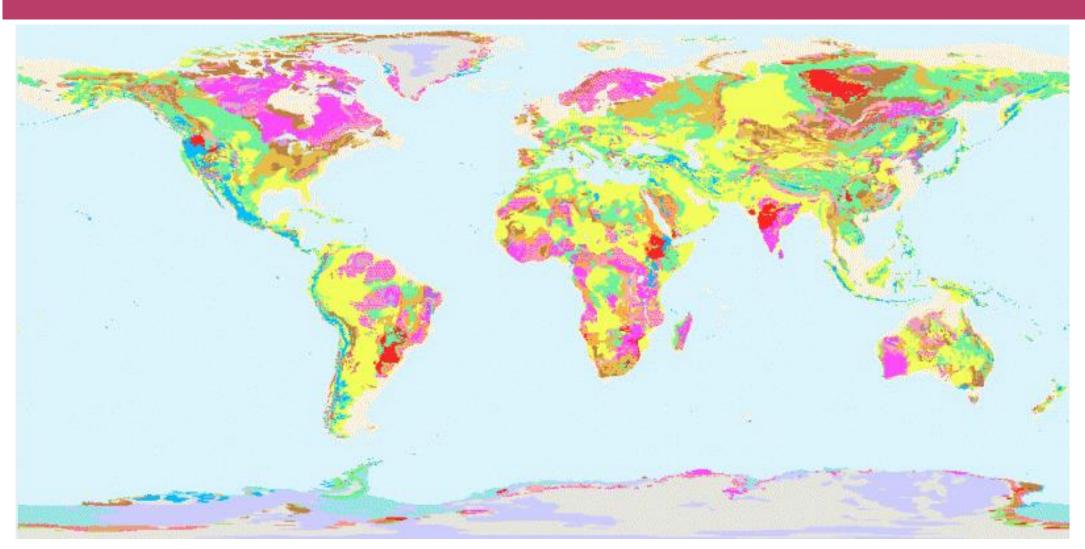

е, ж – развитие земного ядра в PR и фанерозое

Гидридная Земля - 1968

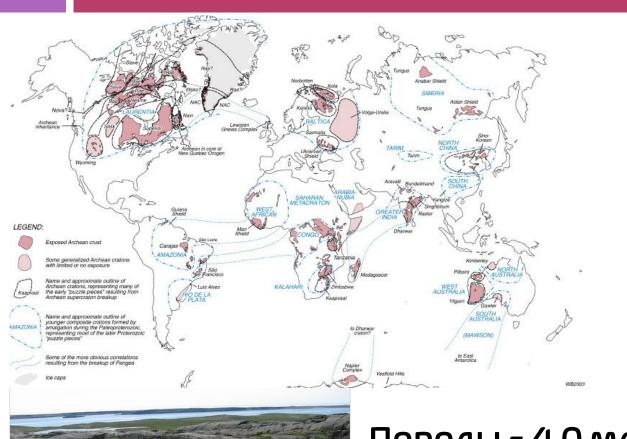
• В.Н. Ларин предложил новую геохимическую модель современной Земли:

- Сфера Глубины, км.
- Литосфера -- 0-150 Силикаты и оксиды
- <u>Металлосфер</u>а -- 150-2900 Сплавы и соединения Si, Mg, Fe.
- <u>Ядро внешнее</u> -- 2900-5000 Металлы с растворенным водородом, гидриды металлов
- Ядро внутреннее 5000-6371 Гидриды металлов


Гипотеза гидридной Земли


В качестве физической основы происхождения Солнечной системы В.Н. Ларин использовал представления Фреда Хойла (впоследствии – Нобелевского лауреата) о том, что во время формирования протопланетного диска вещество было частично ионизировано, и что центральное сгущение на этой стадии обладало мощным дипольным магнитным полем. При формировании диска вещество, сброшенное с протосолнечной небулы, перемещалось поперек магнитных силовых линий.

 Ионизированные частицы не могут пересекать магнитные силовые линии, захватываются магнитным полем и останавливаются в нем, тогда как нейтральные атомы проходят через магнитное поле. Химические элементы различаются по склонности к ионизации.

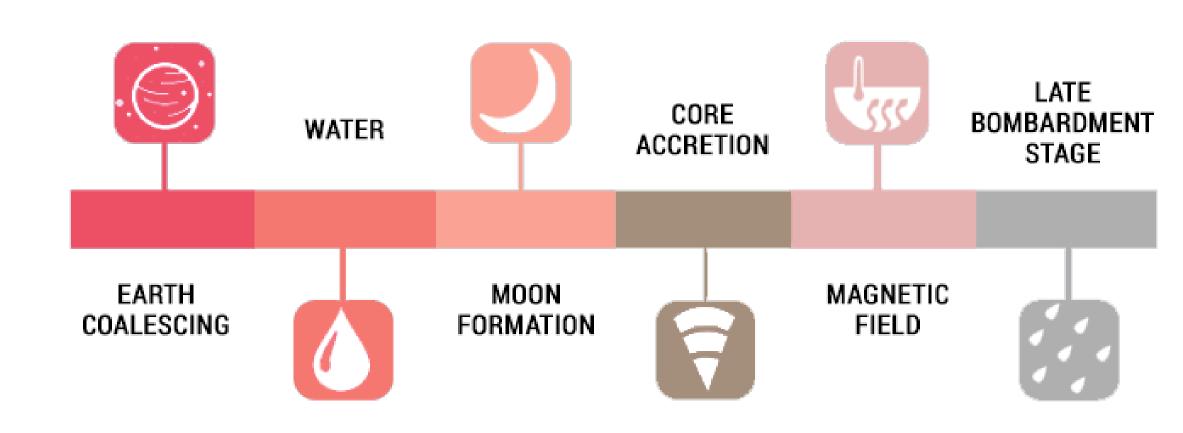

 При формировании протопланетного диска в магнитном поле небулы происходило разделение элементов в зависимости от их потенциалов ионизации, что позволило предположить – изначальная Земля была сложена преимущественно гидридами.

Когда произошло расслоение на оболочки?

Можем судить по горным породам

Древнейшие породы – 4.0 млрд лет Древнейшие минералы – 4.4 млрд лет Лунный грунт – 4.5-3.16 (1.2) млрд лет

Породы - 4.0 млрд лет Северная Канада



Минералы – 4.4 млрд лет Западная Австралия

Циркон – 3 кристалла

4.6 - 4.0 млрд лет – Хадей

Геохимические и петрологические основы общей металлогении

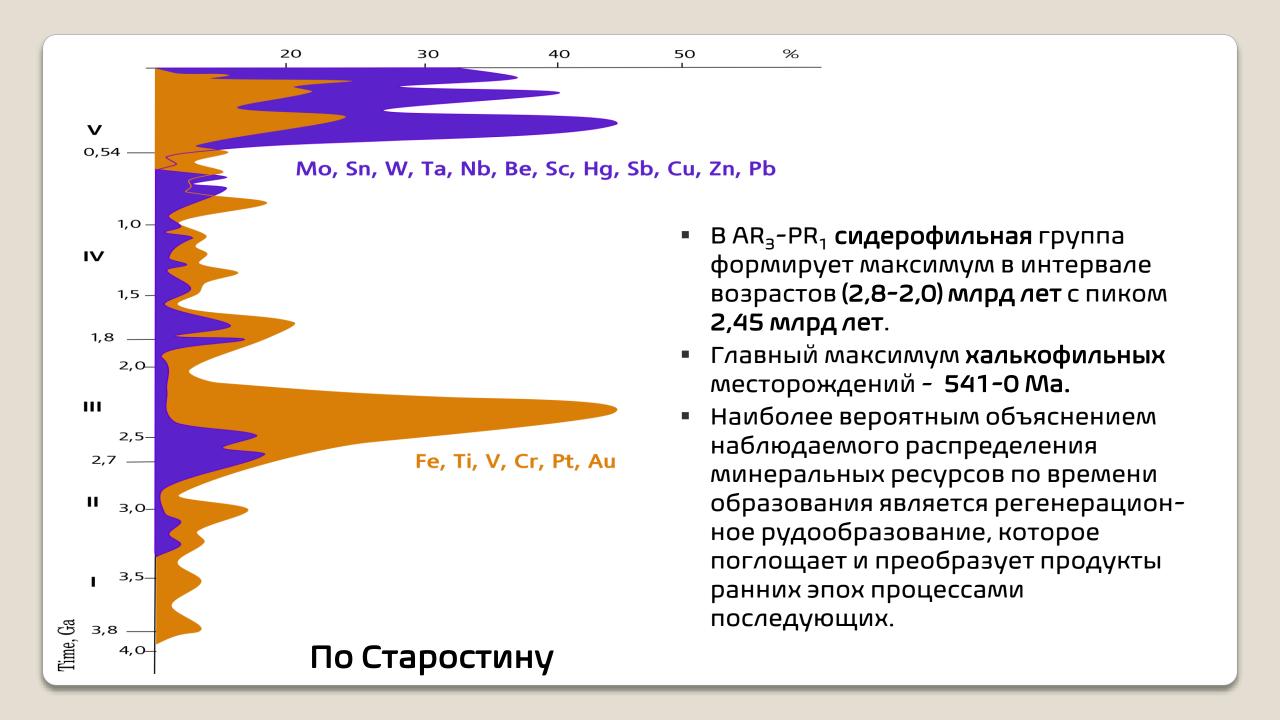
Современные представления связаны с основополагающими трудами В.И. Вернадского и В. Гольдшмидта, а также А.А. Маракушева, Д.В. Рунд-квиста, И. Костова и др.

В.И. Вернадский (1863-1945)

В.И. Вернадский (1934) развил идею Д. Марри (1910) о концентрически-зональном строении земной коры. Особая роль отводилась земной коре, которая «...обладает в известной мере автаркией, представляет замкнутую, автономную систему».

V.M. Goldschmidt (1888-1947)

• Все металлы были разделены на пять групп - **литофильные**, халькофильные, сидерофильные, атмофильные и биофильные



- **Литофильные** включают щелочные и щелочно-земельные металлы; кремний, алюминий, бор. Они обладают высоким химическим сродством к кислороду и низкой плотностью; входят в состав силикатов. Область распространения верхняя оболочка Земли.
- Халькофильные: железо, медь, цинк, свинец, кадмий, мышьяк, сурьма, висмут и др., более плотные, чем литофильные и обладают повышенным химическим сродством к сере; широко развиты в сульфидной форме; распространены в промежуточных геосферах.
- Сидерофильные: железо, никель, кобальт, молибден, платиноиды и др. развиты в глубинных геосферах и ядре. Это наиболее плотные элементы, часто находящиеся в самородном состоянии; отмечаются во внешних и промежуточных геосферах, но в рассеянном состоянии.

сидерофильные	халькофильные		литофильные	атмофильные	биофильные
	в метеоритах	в земной коре			
Fe, Co, Ni, Ru,	Fe, S, Se,	Fe, S, Se,	Fe, O, (P), (C),	H, C, H, O,	C, H, O, N, P,
Rh, Pd, Os, Ir,	Te, (P), As,	Te, As, Sb,	(H), F, Cl, Br, J,	Cl, Br, J, He,	S, Cl, Br, J, B,
Pt, (Cu), Au,	Sb, Bi, Zn,	Bi, (Ge),	Li, Na, K, Rb,	Ne, Ar, Kr,	Na, K, Mg,
Re, (Mo), (W),	Cd, Cu, Ag,	(Sn), Pb, Ga,	Cs, Be, Mg, Ca,	Xe	Ca, V, Mn, F,
N, P, (As), C,	(Mn), (Cr),	In, TI, Zn, Cd.	Sr, Ba, B, At,		Co, Cu, Zn,
Ge, Sn, (Ga),	(V), (Ti),	Hg, Cu, Ag,	Sc, Y, La, Ce,		Mo MAP.
(Hg)	(Ca), (Mg),	(Mn), Mo	Pr, Nd, Sm, Eu,		
	(Na), (K)		Gd, Tb, Dy, Ho,		
			Er, Tm, Yb, Lu,		
			Th, U, Si, Ti, Zr,		
			Hf, V, Nb, Ta,		
			Cr, W, Mn,		
			(Ga), (Sn)		

Примечание. В скобках указаны элементы с промежуточными свойствами, для которых проявление сидерофильных, халькофильных или литофильных свойств является второстепенной, но геохимически важной чертой поведения.

Табл. 1 Геохимическая классификация элементов. По В. М. Гольдшмидту.

Раннепротерозойский и фанерозойский максимумы

<u>Ранний протерозой</u> заканчивает раннегеологический мегапериод образованием уникальных, но географически разнообразных провинций железистых кварцитов, элементов платиновой группы и редкоземельных элементов. Накопление руд было связано с процессами, протекавшими в результате приповерхностной дифференциации вещества в зонах спрединга, субдукции и тектоно-магматической активизации.

фанерозой - беспрецедентные по разнообразию и интенсивности рудные провинции молибдена, олова, вольфрама, ртути, тантал-ниобия, алмазов. Также активно формировались, но в меньших масштабах, месторождения, характерные и для раннепротерозойского максимума (железо, хром, платиноиды, золото, серебро и др. элементы). На фоне формирование современной континентальной земной коры при циклическом функционировании механизма тектоники литосферных плит и плюмтектоники.

Д.В. Рундквист (1930-2022)

- Обосновал выделение глобальной рудосферы Земли, которая представлена верхней частью земной коры, в пределах которой происходит рудообразование.
- Мощность рудосферы в геологической истории колебалась в пределах 3-30 км в зависимости от теплового режима и контролировалась изотермой 600-700°С.

И. Костов (1913–2004) – мантийное фракционирование элементов

- <u>Протоматерия</u> из элементов, слагающих перидотиты и эклогиты (главные минералы: оливин, пироксен и гранат).
- При кристаллизации в их структурную решетку входят совместимые элементы с близкими ионными радиусами и электроотрицатель-ностью (Mg, Fe, Al и др.).
- Все остальные элементы отнесены к категории несовместимых.