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The peculiarities of collinear acoustooptical diffraction of Gaussian optical beams by
two successive acoustic pulses of finite dimensions with an arbitrary temporal
envelope is theoretically investigated. The system of two first-order equations that
bound Fourier-spectra of transmitted and diffracted light beams and of acoustic pulse
propagating in the same direction is deduced. The filter transmission curves during
the collinear diffraction by two acoustic pulses with temporal envelope described by
Gaussian and sinc (x) functions are The of ical cell
transmission bandwidth on interpulse distance, and on both pulse and crystal length
variation is studied. The possibility of the spectral analysis of optical radiation with
a help of acoustic pulses is discussed.
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1. INTRODUCTION

Acoustooptical tunable filters utilizing a collinear interaction are one of the most promising [1-3].
They are widely used in various fields of ics, optics, sp py, and laser
technology. The most important characteristic of a filter is the bandwidth which is often required to
be the narrowest possible. This bandwidth is in inverse proportion to the interaction length, and
because of that, filters are made as long as possible. Filters up to 8 inches in length are made with
bandwidths down to 1 A. The tuning of a collinear filter bandwidth can be accomplished by means of
finite dimension acoustic pulses. By varying the pulse duration, form, or using linear frequency
modulated pulse, one can alter the filter issil istics ially.

The utilization of an acoustic pulse for the purpose of optical radiation spectral analysis makes
it possible to improve the transmission function in comparison to a case of continuous acoustic signal;
however, this analysis is restricted by the time during which an acoustic pulse passes through an
acoustooptical cell. The collinear i ion, under some itil permits the performance of a
continuous spectral analysis of optical radiation with the help of successive acoustic pulses.

In the case of collinear interaction, the diffraction takes place the entire time unless an acoustic
pulse propagates inside a crystal. Therefore, if the interpulse distance S does not exceed the crystal
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length L, the diffracted light is generated continuously. In order to solve this problem, it is necessary
to investigate the simplest model of light diffraction by two successive pulses. In such situation, a
period of time can exist when simultaneous acoustooptical diffraction by each pulse occurs. This results
in a considerable distortion of the diffracted opucal pulse formed at the output of the cell.

An analysis of lif reveals some i to the di i of hghl by
acoustic pulses [4, 5]; even though all authors i only ical
In addition, this interaction is mathematically treated with the help of a planewave approximation,
whlch 1s the milestone of all acoustoopncal theories [6]. Due to the long length and small transverse

of ical cells, the pl ion is not valid for the description of

collinear diffraction. Hence, it is necessary to consxder divergent beams of finite dimensions. The
theory of the strong acoustooptical interaction of Gaussian beams was proposed in [7-9]. This paper
offers a theoretical investigation of the collinear diffraction of a bounded light beam by three-
dimensional successive acoustic pulses of finite length.

2. THEORY OF STRONG COLLINEAR ACOUSTOOPTICAL INTERACTION

One of the acoustic wave equation solutions in an anisotropic medium is the slightly divergent
Gaussian beam [10]. If this beam propagates in the x direction without an acoustic energy walk-off then
the deformations field can be described by the following function

1 y 422
G(z,y,2) = ]Dz P—{m}, 1)

where D = 2/(KR?) is the divergency of a pulse in the transverse y and z directions; R is the initial
transverse dimensions of a beam. The term (1 — jDx) describes the alterations of the beam’s phase and
radius as it propagates along the x coordinate.

Two equal pulses of acoustical deformations propagating along the x direction in a medium
without an acoustic energy walk-off may be written as

asa(z,9,2,1) = 0,6z, , )V (2, ) exp {j(Qt — K2)} + . ®

where V(x, 1) is the acoustic pulses temporal envelope: the function describing the form of two
propagating pulses; a, is an input acoustic wave amplitude; @ and K are the frequency and the wave
number of a pulse; c.c. is a complex conjugate of the previous term.

The acoustic pulses propagation in a medium is accompanied by a wave of elastic deformation
determined by the tensor S,a(x, y, z, f). The wave of elastic deformation alters the refractive index
of the medium; this is associated with the elastooptical effect which is described by the pyy, tensor [11,
12]. The permeability tensor variation under the influence of the acoustic field deformation has the
form Ag, = —M’N.’p)‘,ﬂsh, where N, and N, are the principal refractive indices of the medium, and
J» k, 1, m are the coordinate indices.

The optical field vector E in a medium disturbed by sound propagation should satisfy the
following equation

18, =

rotrotE+ Fat &E + 7at2AE(aE) 0, @
where &, is the permeability tensor without sound, Aé is the variation of tensor &, caused by sound
propagation. The value of A is proportional to a,. Taking into account beams of finite dimensions
means that rotrot E # —V2E because graddiv E 0 even in isotropic medium, and certainly in the
anisotropic one [9].
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As itis known [6], the polarization of transmitted light is orthogonal to the one of diffracted light
in the case of collinear diffraction. Hence, the optical flux in the i ion region may be
as a sum of two orthogonally polarized beams propagating along the same x direction as the acoustic
pulse Eq. (2)

= Ey(z,y, z,t)€ exp [j(kix — wit)] + Ea(z,y, z,t)€zexp [j(kaz — wat)], @)

where ?, and _q; are the unit polarization vectors, E(x, y, z, 1) and E(x, , z, 1) are the amplitudes of
the optical beams which are varying slowly with time and x-coordinate, w, n, and k = wn/c are the
frequency, refraction index and wave number of an optical wave; here and below index  refers to the
transmitted component, while index d means the distracted component.

Substituting the optical field taken in the form of Eq. (4) in a wave equation Eq. (3), one can
obtain a couple of scalar equations that bound the spectra of optical field amplitudes Uj(,, k,, x, 1) and
Ugky, k., x, 7). A detailed deduction of these equations is described in the Appendix. Finally we get

ov. K
]3_: = EUJ =
)
wrexp (=ina)V(a:) [ [ AUy Kea)Ulhy + Koyt Koy 2,04, dE,,
OU, k2
5 oz + 2_kzu
©)

q2exp (jnz)V(z, t)//A'(Ky, K.,z)Uu(ky — Ky, k. — K., z,t)dK,dK,.

Here AKX, K, x) = xR’exp{—(K,l +KZ2)R*(1 — jDx)/4} is the Fourier transform of Eq. (1) with
respect to y and z, 7 = k, + K — k, is the phase mismatch parameter, k,, k, and K,, K, are,

cor ingly, the transverse of the optical and acoustical wave-vectors.
We represent U, and U, as follows
Uu(kys by 7,t) = fu(w,t) exp {jzk2/2ke} exp {— (] + kD)ri(2)/4}, Q)
Ualkys kay2,t) = fa(w,t) exp {jzk/2ka} exp {~(k; + KD)ri(e)/4)- ®

where f(x, 1) and f {x, 1) are the axial amplitudes of the optical beams (measured at ky k =0), r,(x)
and r(x) are the radii of these beams In the case of collinear
of optical beams’ radii is negligibly small; , the radii of lhe i ryand l.he

r, are linked by the expression: 7, = r,/,/l +r2IR? .

After substitution of Egs. (7) and (8) into Egs. (5) and (6) we can integrate over K, K,
coordinates analytically. As a result, neglecting the dependence r(x), we obtain the system of two ﬁrsl-
order equations describing the collinear diffraction of slightly divergent light beam by two acoustic
pulses of an arbitrary form under the conditions of strong interaction

Ofa . exp {—jzn}
5 —]q;f,(r,t)V(z,t)m, )
ofe _ exp {jzn}
Pl (T EY B3] a0

where p = r/R. For further calculations we will assume that ¢ = g, = g,. The system of Egs. (9) and
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computations. If we consider two Gaussian acoustic pulses of 2/ length propagating along x-direction
at v speed, then the function V(x, ) may be determined as

v(z,t) = exp{ (et 1—2 1)2} +exp { (vt — ;_ S) } exp{je(5)}, a1

where ¢(S) = KS + g, is the phase difference between two pulses, ¢, is the initial phase of the second
pulse.

o JALf (L)

0.4 J

0+

4 Fa(L)fo(L)

Ty /L

Fig. 1. The dependence of diffracted pulse form f,(L)f; (L) on the
magnitude of phase difference between acoustic pulses.

SIL = 0.5; DL = 1; /L = 0.2 (a); UL = 0.1 (b); 9(S) = 0

(curve 1), ¢(S) = /2 (curve 2), ¢(S) = = (curve 3).
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3. CALCULATION OF DIFFRACTED LIGHT CHARACTERISTICS

The interaction region lies within 0 < x < L, so it is natural to introduce dimensionless co-
ordinate x/L and time tv/L. The variation of diffracted light axial amplitude f,(L) fi (L) at the
acoustoptic cell output with time 7v/L describes the diffracted pulse form. All calculations of this pulse
form were carried out at zero mismatch (7L = 0).

Figure 1 displays the dependence of diffracted pulse form on the magnitude of phase difference
between acoustic pulses. Here the crystal length exceeds the interpulse distance twice and the acoustic
pulses duration five times. The dashed curve denotes the diffracted pulse form in the case of a single
acoustic pulse. Curve 1 refers to a diffraction by two acoustic pulses with zero phase difference
between them. We can see more than double the growth in amplitude in comparison to the dashed
curve; furthermore, the diffracted pulse duration increases considerably, as the full duration of
diffracted pulse is defined by the length of two acoustic pulses and the distance between them.

The exaggeration of phase difference up to /2 (curve 2) reduces the diffraction effectivity and
deforms the curve form; however, the diffracted pulse duration remains constant. If two acoustic
pulses are out of phase by 7 (curve 3), the diffraction by one pulse is in antiphase to the diffraction
of the other pulse; this results in the disintegration of the diffracted signal into two separate pulses.
Figure 1(b) describes the same situation but for an acoustic pulse two times shorter. As seen, the
results practically repeat the previous curves, but the diffracted pulses have more pronounced flat top.

The dependence of diffraction effectivity which is proportional to the f{L) value on the phase
difference between acoustic pulses is depicted in Fig. 2 for the case of § = L. We can see that the
optimal diffraction efficiency can be acquired unless the phase difference does not exceed 0.477. As
soonas || = /2, asubstantial decay of efficiency takes place, and when two acoustic pulses are out
of phase by , this efficiency decreases more than three times.

Based on the results obtained, further computations were carried out at zero phase difference ¢
= 0. Figure 3(a) demonstrates the diffracted pulse form at the different interpulse distance S. The

Fa(L)f (L)
8
]
0.6 1
0.4 o
e 735 ) 5 T oe/m

Fig. 2. The dependence of diffraction effectivity on the
phase difference /7 between acoustic pulses.
S=L;DL=1; UL =0.1.
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variation of this alters the i ip between the i of two

diffractions: the diffraction by one and by two acoustic pulses. Curve 1 refers to the case of two
acoustic pulses with a small interpulse distance S < L; therefore, the diffraction effectivity is close to
maximum, whereas the diffracted pulse duration is close to minimum. In § = L/2 (curve 2) a period
of time appears when the diffraction by only one acoustic pulse occurs. As a result of this, the
calculated curve attains the twin-peaked form. The case of equality of interpulse distance and crystal
length § = L corresponds to a di ion of light by two ive single acoustic pulses.

o A A(L)

0.5 4
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Fig. 3. The dependence of diffracted pulse formf, (L) fi" (L)
on the interpulse distance S/L.

UL =0.2; DL = 1 (a); DL = 5 (b); S/L = 0.25 (curve 1),

SIL = 0.5 (curve 2). S/L = 1 (curve 3).
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If the divergency of acoustic pulses is large (DL = 5), and the input acoustic power is increased
ten times (see Fig. 3(b)), the diffracted pulse form deforms considerably in comparison to the
corresponding curves of Fig. 3(a); however, the full duration of diffracted pulse remains constant.
Whether the interpulse distance is of acoustic pulse length order § = L, the diffracted pulse is a single
whole (curves 1 and 2); otherwise, it is disintegrated into two separate pulses (curve 3).

Figure 4 shows the diffracted pulse form at a different length of feeding acoustic pulse in the case
of § = L. Curves 1-3 in Fig. 4 describe the situation when 2! < L; this means that the consecutive
acoustic pulses do not overlap. As seen, the diffracted pulse form in this case turns out to be constant,
i.e., it does not depend on an acoustic pulse length. The flat top of a diffracted pulse is observed for
all curves, since a diffraction by a single pulse took place most of the time. However, the diffracted
light intensity increases noticeably with the increment of acoustic pulse duration. It is obvious, that the
flat top of a diffracted pulse can be transformed into a continuous light of the same amplitude if we
continuously feed acoustic pulses at the distance of crystal length. In the case of overlapping acoustic
pulses 2/ > L the flat top of the diffraction pulse vanishes. It is illustrated by the dashed curve in Fig.
4(a) calculated for the situation of / = L = S. Here, the maximal effectivity is achieved at four times
lower the level of the input acoustic power.

Similar to Fig. 3(b) the growth of acoustic pulses divergency (DL = 5) results in a significant
distortion of the diffracted pulse. As noticed in Fig. 4(b), the flat top mentioned deteriorates because
of the acoustic amplitude decay along the crystal length. Unless / > 0.4L, the diffracted pulse remains
a single whole; otherwise, it is disintegrated into two successive pulses. Thus, the considerable
divergency of acoustic pulse eliminates the possibility of transforming a diffracted optical pulse into
a continuous light, even if we feed an infinite sequence of acoustic pulses at S=L.

4. CALCULATION OF COLLINEAR FILTER TRANSMISSION FUNCTIONS

It has already been noted that the bandwidth of a collinear filter is one of the most important
characteristics . For ic sound this idth is defined by crystal length and has a usual
dependence of signal on mismatch parameter: sinc (nL/27), i.e., contains the central maximum and
side lobes. The utilization of successive acoustic pulses of different duration can alter the bandwidth
considerably. To carry out a continuous spectrum analysis of optical radiation, according to the results
obtained (see Fig. 4(a)), the interpulse distance should match the crystal length, S = L.

The mathematical treatment of acollinear ptical diffraction allowing for finite di
beams makes it possible to define the diffraction effectivity not by the ratio of incident and diffracted
beams power densities but by the ratio of power fluxes of these beams, as it is always done
experimentally. The power flux in an optical beam can be calculated either proceeding from a
transversal optical field distribution or from its Fourier-spectrum and distribution over k,, k.
(Parceval’s theorem).

A power flux at the input of the acoustooptic cell is determined as follows
P, =0.5exp{—(k; +k})r/2} dk,dk,, because f(0) = 1; while at the output of a crystal it may be
regained as P = 0.5f(L)f; (L)exp(-—(k: +k2)r312} dk, dk,, where f{L) should be used in the form of
Eq. (9). The ratio P/P, characterizes an acoustooptical diffraction effectivity.

The character of a collinear filter ission function alters i ly with a di
time ¢v/L; this is the important peculiarity of a diffraction of light by successive acoustic pulses. If /L
= 0.5, an alignment of the first pulse and the crystal centers takes place. The moment tv/L = 1 refers
toa symmetrical case when the centers of both pulses are situated at crystal edges; that is the first pulse
half-left and the second pulse half-entered the crystal. All further calculations of the transmission
functions were carried out at a small divergency of an acoustic pulse (DL = 1) and the input acoustic
field amplitude gL was chosen so, that the maximal optical energy transfer between the transmitted and
diffracted light would take place at the acoustooptic cell output (x = L).
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3 Fo(L)f (L)

3 tu/L

Fig. 4. The dependence of diffracted pulse formf, (L) f;" (L)
on the acoustic pulse length I/L.

SIL = 1;DL = 1(a); DL = 5 (b); UL = 0.4 (curve 1),

UL = 0.2 (curve 2) /L = 0.1 (curve 3).

Fig. 5a shows the collinear filter issi ions during a di ion of light by two
Gaussian acoustic pulses with a duration equal to a crystal length: I = L/2. The dashed curve
corresponds to the moment tv/L = 0.5 when the first pulse accommodates the whole crystal
completely. As it can be seen, this curve defines an optimal transmission function of a filter: the
magnitude of side lobes amplitude does not exceed 4% at close to maximal diffraction effectivity. The
displacement of a pulse against the crystal center (solid and dotted curves) makes the sides lobes
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Fig. 5. Collinear filter transmission curves for the Gaussian acoustic pulse.
UL = 0.5; SIL = 1; ¢(S) = 0 (a); (S) =  (b); tv/IL = 0.5 (dashed
curve); tvIL = 0.75 (solid curve); tv/L = 1 (dotted curve).

increase substantially reaching the 20% level at the moment tv/L = 1. However, the bandwidth of a
collinear filter in this case remains constant at any moment of dimensionless time #v/L. Thus, the
utilization of Gaussian acoustic pulses of long duration permits the performance of a continuous
spectral analysis of optical radiation, unless the level of side lobes does not play a considerable role.
Otherwise, this analysis should be carried out periodically excluding the periods when the side lobes
exceed the permissible level.



Volume 5, Number 1 17

pulses are situated symmetrically (v/L = 1), a collinear filter does not transmit the central frequency
signal at all because of the subtraction of the diffraction results by two antiphase acoustic pulses. The
shift of a pulse position from tv/L = 0.5 to tv/L = 1 leads to an increase of side lobes up to the 50%
level. Thus, the application of antiphase acoustic pulses for the purpose of optical radiation spectral
analysis deteriorates collinear filter characteristics .

The transmission function can be modified not only by means of pulse-to-crystal ratio variation,
but by the acoustic pulse form rearrangement as well. Hence, a collinear filter transmission function
characteristics investigation may be interesting in the case of acoustic pulses of a non-Gaussian form.
As an example, we chose a pulse of finite duration with a temporal envelope described by function:

Viz={" > g
(@1) = { ginc{—(vt — 2)/1} + sinc{—(vt — = — )/Nexp{~je(S)}, lel <1

Fig. 6 presents the results of computer simulation using acoustic pulse defined by the W(x, 1) function
mentioned.

The maximal spectral resolution during the diffraction of light by successive acoustic pulses can
be obtained unless the length of the pulse and of the crystal is the same; this situation is displayed in
Fig. 6(a). The dashed, solid, and dotted curves of Fig. 6 refer to the same moments of dimensionless
time tv/L as in the corresponding curves of Fig. 5. In contrast to the transmission curves achieved for
a Gaussian acoustic pulse of the same duration (see Fig. 5(a)), here a collinear filter bandwidth is 1.5
times wider; although the displacement of a pulse does not result in the appearance of important side
lobes. Another peculiarity in the case of non-Gaussian pulse is the substantial decrease in the central
frequency transmission coefficient as the pulse shifts towards the edge of the crystal; at the moment
tv/L = 1 the transmission curve acquires two maxima.

The increase of interpulse distance twice corresponds to the situation when only one acoustic
pulse is ly or partially dated in the crystal at any moment. The graphs of Fig. 6(b)
are plotted under such an assumption. As seen from the results presented, the displacement of a pulse
relative to the central position leads to some dilation of issi dwidth ied with the
side lobes increment. Nevertheless, the decline of the central frequency transmission coefficient is less
significant in comparison to the previous case of two non-Gaussian pulses of the same duration shown
in Fig. 6(a).

The investigations carried out testify that the simultaneous diffraction of light by two acoustic
pulses is always accompanied by the considerable distortion of a collinear filter transmission curve The
utilization of pulses with the duration much less than the crystal length (broad transmission bandwidth)
makes it possible to perform the spectral analysis of optical radiation during the whole time, unless a
complete pulse is accommodated inside the crystal. To avoid the distortions it is necessary to
disconnect the instrumentation at the period of a transient process. Otherwise, whether the pulse
duration is close to the crystal length (narrow ission b idth), the can be
carried out only during the time when the shift of the pulse center relative to the crystal center is not
significant.

5. APPENDIX

Let us assume that vector ?, is directed along Oy, while vector —e; is directed along 0z.
Considering this condition and substituting the optical field taken in the form of Eq. (4) in a wave
equation Eq. (3) and neglecting the values of 3°E,/0x? and 9E,/dx* one can obtain the following
vectoral relation
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. (0E, ., OE . (9%E, ., OB, . [ 0E, ; _
|:Ez' (61_631 +Jk'6_y) - & ( 92 2]’“15;) +é: (_6y3z exp[j(kez — wit)] +

2 )2 )2
[e‘, (a Ba y ik aE‘) -& (—-6 4 2jkdaE‘) +§ (—g;;:)] expli(kaz — wat)] =

8z0z bz y? oz
= (w'—:;gﬁAéEgG(z, v,2)V(,8) E(z,y, 2, t) exp {j[(ke + K)z — (we + 0t} +
+@’.Aeaa-(z, 12 )V(@ O v,z e (il — K)o = @— D+,
+%A5‘&G(:, v, 2)V(,t)Ea(z,y, 2, t) exp {j[(ka + K)z — (wa + Q)t]} +

+(—““;—WAéada'(1, 4, 2)V (2, 1) Ba(z, y, 2, t) exp {j[(ka — K)z — (w2 — Q)t]}

where .e:,'e;, ?Z are the unit vectors along Ox, Oy and 0z axes. As seen from Eq. (A.1), if k, < k, (it
is equal to n, < n,) then the upshifted diffraction occurs. In this case w, = w, + Q and in the right side
of Eq. (A.1) only the first and the fourth item should be left. Whenever the situation of n, > n, takes
place, the downshifted diffraction occurs in which «; = w, — © and in the right side of Eq. (A.1) only
the second and the third item should be left.

As the relation Eq. (A.1) should be satisfied at any moment of time t we set equal to each other
the terms at exp {j(k,x — w,7)} and at exp { j(k,x — w,1)} on both sides of the equation. Hence, two
vectoral equations can be obtained from (A.1) in the ition of the i i i

L (O’E, , ., OE/ L (O*E, . %) = agEc)_
8”(313y+]k' 3y ~4\ o2 +2k dz e dydz)

5
= 288G (2,9, 2)V (2, ) Ealz, .2, t) exp {=jnzs L
L (0%Es ., 0B\ . (®Es . 0B\ - a’Ed)_
e’(ﬁzﬁz*’”’? _e‘(ay’ + 2jke 9z +é& 0:) =
2
= 2 8eaG(z,y,2)V (2, ) Edz,y, 1) exp {inz). ».3

Here = k, + K — K, is the phase mismatch. In order to transfer from vectoral to scalar equations
one should multiply the acquired vectoral expressions Eq. (A.2) by vector ¢ and Eq. (A.3) by vector ¢,
in a scalar form and obtain, as a result, the folowing system

., OE,  O'E, . "

2kt + o = 2hapexp {12} G7(2,4,2)V (2, ) B, 1,2, 1)s @9
., OE;  OE, .

2]"46—: + az: = 2kaq exp {—jnz}G(z, ¥, 2)V (2,1) Ex(2, ¥, 2, 1) (A.5)

Here g, =k,(—e;Aé—e:)/n}, q, =k1(-q.Aé'E:)/nf. To solve the system of Egs. (A.4) and (A.5), we
perform a two-dimensional Fourier transformation of functions E,, E,, and G in the yz plane. The
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relation between U, and E,, as well as between U, and E,, can be determined as

Uy, kzy2,t) = (27r)"'/ E(z,y,z,t)exp {—j(kyy + k.2)}dydz,

and between G and 4 as

Ay Koy2) = 20)7 [ [6(a02)exp =i + Kooy

After these transformations we finally get the system of Egs. (5) and (6).
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