__ ИССЛЕДОВАНИЕ __ ПЛАЗМЫ

УЛК 535.243.538.915

СПЕКТРЫ, ИНТЕНСИВНОСТИ ЛИНИЙ ПЕРЕХОДОВ $C^1\Sigma_g^+ \Rightarrow A^1\Sigma_u^+$ И $c^3\Sigma_g^+ \Rightarrow a^3\Sigma_u^+$ В ЖИДКОМ НОРМАЛЬНОМ Не И ЗАСЕЛЕННОСТЬ ВРАЩАТЕЛЬНЫХ УРОВНЕЙ ТЕРМОВ $C^1\Sigma_u^+$ И $c^3\Sigma_u^+$

© 2017 г. В. М. Атражев^{1, *}, В. А. Шахатов², Р. Е. Болтнев^{1, 3}, N. Bonifaci⁴, F. Aitken⁴, J. Eloranta⁵

¹Объединенный институт высоких температур РАН, Москва, Россия
²Институт нефтехимического синтеза им. Топчиева РАН, Москва, Россия
³Филиал Института энергетических проблем химической физики им. В.Л. Тальрозе РАН, Черноголовка, Россия
⁴Laboratoire G2Elab CNRS & Grenoble University, Grenoble, France
⁵Department of Chemistry and Biochemistry, University of Northridge, USA
*E-mail: atrazhev@yandex.ru
Поступила в редакцию 07.04.2015 г.

Вращательные спектральные линии эксимера He_2^* в диапазоне 910-930 нм наблюдались в коронном разряде в нормальном жидком He при температуре 4.2 К и давлении 1 атм. Спектральный диапазон заполнен вращательными линиями синглета $C^1\Sigma_g^+ \Rightarrow A^1\Sigma_u^+$ и триплета $c^3\Sigma_g^+ \Rightarrow a^3\Sigma_u^+$. Эти переходы заканчиваются на вращательных уровнях самых низких метастабильных термов $A^1\Sigma_u^+$ и $a^3\Sigma_u^+$ эксимера He_2^* . При этом заселенность вращательных уровней с номером K' верхних термах $C^1\Sigma_u^+$ и $c^3\Sigma_u^+$ (количество молекул с вращательным моментом K' в ансамбле возбужденных молекул в разряде) пропорциональна интенсивности вращательных линий с обозначением K' синглета $C^1\Sigma_g^+ \Rightarrow A^1\Sigma_u^+$ и триплета $c^3\Sigma_g^+ \Rightarrow a^3\Sigma_u^+$. Заселенности могут быть вычислены по экспериментальным интенсивностям вращательных спектральных линий. Излучающая плазма короны в жидком K' неравновесная, и заселенности вращательных уровней не соответствуют больцмановскому распределению. Эффективная вращательная температура превышает температуру 4.2 К жидкого K'

DOI: 10.7868/S0040364417010021

ВВЕДЕНИЕ

Впервые спектры люминесценции жидкого гелия наблюдались в [1], где ионизация гелия создавалась быстрыми частицами, излучаемыми крупицами радиоактивного вещества. Эти спектры были квалифицированы как виброротацион-

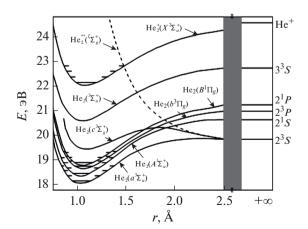
ные полосы излучения эксимерных молекул He_2^* . Затем аналогичные спектры наблюдались в жидком гелии, облученном пучком быстрых электронов [2, 3]. Впоследствии спектральные исследования сместились в область, где жидкий гелий пребывал в виде микрокапелек и облучался синхротронным излучением фиксированной частоты [4].

В исследованиях [5, 6] основное внимание уделено атомарным и молекулярным спектрам жидкого гелия. Проведен анализ молекулярных полос, испускаемых коронным разрядом в жидком нормальном Не при температуре 4.2 К. Люминесценция жидкого Не вызвана коронным разрядом около острого электрода радиуса 2 мкм под напряжением в несколько кВ. Проанализирован

спектр излучения в диапазоне длин волн 910-930 нм, который заполнен вращательными линиями верхних термов $C^1\Sigma_g^+$ и $c^3\Sigma_g^+$. Излучательные переходы с этих термов заканчиваются на вращательных уровнях самых низких метастабильных термов $A^1\Sigma_u^+$ и $a^3\Sigma_u^+$ эксимера He_2^* . Заселенность вращательных уровней с номером K, принадлежащих верхним термам $C^1\Sigma_g^+$ и $c^3\Sigma_g^+$ (количество молекул с вращательным моментом K в ансамбле возбужденных молекул в разряде), пропорциональна интенсивности вращательных линий с номером K. Эта заселенность может быть вычислена из экспериментальных значений интенсивности. Произведенный анализ показывает, что излучение плазмы короны в жидком гелии неравновесное и распределение заселенностей вращательных уровней с номером K' не является распределением Больцмана. При этом эффективная вращательная температура полученного неравновесного распределения превышает температуру 4.2 K жидкого He.

ЭКСПЕРИМЕНТ

Создана уникальная установка для исследования спектров люминесценции жидкого гелия при различных давлениях до 50 атм. В данной статье представлены результаты экспериментов в жидком гелии при температуре 4.2 К и давлении 1 атм. Основное внимание уделено спектрам, наблюдаемым в диапазоне длин волн около 920 нм, соответствующем радиационным переходам $C^1\Sigma_g^+ \Rightarrow A^1\Sigma_u^+$ и $c^3\Sigma_g^+ \Rightarrow a^3\Sigma_u^+$ в жидком гелии.


Гелий при температуре 4.2 К и давлении 1— 50 атм. был возбужден коронным разрядом отрицательной и положительной полярностей [5, 6]. Интенсивность видимого света, излучаемого из зоны вблизи острийного электрода, была достаточна для его спектроскопического анализа. Свет, излучаемый из этой области, собирался на входной щели спектрографа (SpectraPro-300i, 300-миллиметровое фокусное расстояние, апертура f/4.0), оборудованного тремя интерференционными линейками (150 шт./мм и две 1200 шт./мм были использованы в 750- и 300-нанометровых диапазонах соответственно). Датчик 2D-CCDTKB-UV/AR расположен непосредственно на выходной плоскости спектрографа. Его размеры составляют 12.3×12.3 мм с 512×512 пикселями, каждый пиксель — 24×24 мкм.

Чтобы уменьшить паразитный ток, датчик охлаждался до температуры 153 К (паразитный ток менее 1е/пиксель/час при 153 К). Инструментальное уширение спектральных линий было измерено при наблюдении профиля линий аргона, излучаемых разрядом низкого давления, и составило $\Delta \lambda = 0.098$ нм для линейки 1200 шт./мм. Свет, излучаемый короной, собирался, и его спектр исследовался в различных участках диапазона 500-1080 нм. Были идентифицированы атомные линии, соответствующие радиационным переходам между возбужденными состояниями атома Не*, и молекулярные спектры эксимера Не^{*}. При низком давлении линии тонкие, и их положение соответствует атомным линиям и молекулярным спектрам в разреженном газообразном гелии. Сильный спектральный континуум во всем исследуемом диапазоне длин волн появляется в спектрах при давлениях выше P = 50 атм. Кроме того, ширина линий увеличивается с ростом давления, и их интенсивность уменьшается. Никакие атомарные линии и радиационные переходы эксимера Не наблюдались в спектре при давлении выше 60 атм. Атомные спектральные линии демонстрируют фиолетовый сдвиг и уширение, возрастающие с увеличением давления.

На данной установке получен ряд результатов. Для длин волн 660 и 640 нм, соответствующих переходам между термами $d^{3}\Sigma_{u}^{+}$, $D^{1}\Sigma_{u}^{+}$ и $b^{3}\Pi_{g}$, $B^{1}\Pi_{g}$, прослеживается метаморфоза формы спектров (сдвига и ширины линий) при увеличении давления [6]. При использовании решетки 1200 шт./мм получены спектры с разрешением вращательных линий этих молекулярных переходов. Врашательная структура разрешена при давлениях 1–2 атм. Неразрешенная электронно-колебательно-вращательная структура, зарегистрированная при 6 атм., напоминает спектр, полученный в [2], где сверхтекучий гелий НеП был возбужден пучком электронов. Измеренный сдвиг вращательных линий хорошо согласуется с экспериментальными данными [3], полученными в сверхтекучем HeII при 1.7 К. Отметим, что вращательная структура полос синглета $D^1\Sigma_u^+ \Rightarrow B^1\Pi_g$ и триплета $d^3\Sigma_u^+ \Rightarrow b^3\Pi_g$, разрешенная для давлений менее 2 атм. [6], подобна спектру, наблюдаемому при люминесценции жидких капель Не, возбужденных синхротронным излучением [4]. Коротковолновое смешение атомной линии 706.5 нм достигает 8 нм при высоких давлениях и его величина сравнима с уширением линии.

СТРУКТУРА ВРАЩАТЕЛЬНЫХ УРОВНЕЙ СИНГЛЕТНЫХ C И A И ТРИПЛЕТНЫХ c И a ТЕРМОВ

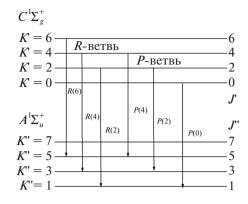
Напомним обозначения возбужденных состояний молекулы (эксимера) He_2^* . Электронное состояние соответствует какому-либо терму. Терм — энергия молекулы, как функция расстояния между атомами R. Примеры обозначения термов представлены на рис. 1. В данной работе речь

Рис. 1. Термы возбужденных состояний эксимера He_2^* : верхние термы $C^1\Sigma_u^+,\ c^1\Sigma_u^+$ и нижние термы $A^1\Sigma_u^+,\ a^1\Sigma_u^+$ указаны стрелками.

пойдет о термах $C^1\Sigma_u^+$ и $c^3\Sigma_u^+$ (верхние термы с большей энергией) и термах $A^1\Sigma_u^+$, $a^3\Sigma_u^+$ (нижние термы с меньшей энергией). Каждый из них имеет минимум при $R\approx 1$ Å, около которого атомы молекулы совершают колебания, различающиеся квантовым числом $\mathbf{v}=0$, 1, 2 и т.д. Здесь имеем дело с переходами между колебательными состояниями $\mathbf{v}'=0$ верхних термов и $\mathbf{v}''=0$ нижних термов. Кроме того, молекула совершает вращения, каждое из которых характеризуется квантовыми числами K и J, о которых речь пойдет ниже.

Волновая функция колебательно-вращательного состояния терма Σ симметрична относительно перестановки ядер, если терм четный и имеет положительный знак или терм нечетный и имеет отрицательный знак [7]. Верхние термы $C^1\Sigma_g^+$, $c^3\Sigma_g^+$ — четные (индекс g), и для их симметричного состояния у них должен быть положительный знак. Знак вращательного состояния терма Σ_g^+ есть $(-1)^K$, где квантовое число вращательного состояния $K = \Lambda$ (электронный орбитальный момент) + N (вращательный момент ядер) является полным вращательным моментом молекулы без спина. Итак, квантовые числа K^* уровней терма $C^1\Sigma_g^+$ (случай Хунда b) четны и $K^* = \Lambda$, $\Lambda + 2$, $\Lambda + 4 = 0$, 2, 4...

Нижние термы $A^1\Sigma_u^+$ и $a^3\Sigma_u^+$ являются нечетными (индекс u) и их вращательные состояния должны иметь отрицательный знак. Таким образом, квантовые числа K" вращательных уровней термов $A^1\Sigma_u^+$ и $a^3\Sigma_u^+$ (случай Хунда b) нечетные и имеют K" = Λ + 1, Λ + 3, ... = 1, 3...


ПЕРЕХОДЫ МЕЖДУ ВРАЩАТЕЛЬНЫМИ УРОВНЯМИ ТЕРМОВ $C^1\Sigma_{\mathfrak{g}}^+, A^1\Sigma_{\mathfrak{u}}^+$ И $c^3\Sigma_{\mathfrak{g}}^+, a^3\Sigma_{\mathfrak{u}}^+$

Каждая спектральная линия соответствует радиационному переходу между вращательными уровнями верхнего и нижнего термов. Уровни характеризуются квантовыми числами K вращательного момента молекулы.

Изменение квантового числа K радиационного перехода между вращательными уровнями соответствует $\Delta K = K' - K''$, где K' и K'' - вращательные числа верхнего и нижнего уровней [7]. Эти уровни и переходы между ними показаны на рис. 2. Они объединены в группы (ветви), такие как

$$P$$
-ветвь: $\Delta K = K' - K'' = -1$ и $K'' = K' + 1$, R -ветвь: $\Delta K = K' - K'' = +1$ и $K'' = K' - 1$.

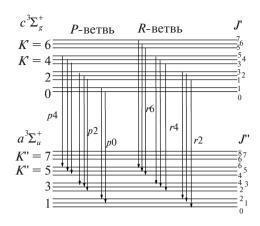

Обычно переходы между вращательными уровнями обозначаются числом K" — номером нижнего уровня перехода. Для вычисления заселенности верхнего уровня с номером K нужны интенсивность линий и факторы Хенля—Лондо-

Рис. 2. Вращательные уровни синглетных термов $C^1\Sigma_g^+$ и $A^1\Sigma_u^+$ и переходы между ними.

на как функции номера K верхнего уровня. Обычно эти параметры даны как функции полного вращательного момента $J^{"}$ нижнего уровня перехода. Связь K' с J'' различается для разных ветвей, и вычисления этой связи должны быть сделаны для каждой из ветвей отдельно. Переходы между вращательными уровнями синглетных термов $C^1\Sigma_u^+$ и $A^1\Sigma_u^+$ представлены схематично на рис. 2. В действительности уровни не эквидистанты и длины волн переходов между уровнями различны. В дальнейшем будем говорить о линиях определенной ветви P или R с номером K. 3десь K — вращательный момент молекулы без спина. Числа K для уровней верхнего терма $C^1\Sigma_g^+$ четные, а числа K'' для уровней нижнего терма $A^{1}\Sigma_{u}^{+}$ — нечетные. Квантовые числа вращательных моментов K верхних уровней выбраны в качестве обозначения переходов.

Структура вращательных уровней триплетных верхнего $c^3\Sigma_g^+$ и нижнего $a^3\Sigma_u^+$ термов более сложная. Триплетные термы имеют равный единице спин. Верхний триплетный терм $c^3\Sigma_g^+$ имеет равный нулю электронный орбитальный момент и спин, равный единице: $\Lambda = 0$, S = 1 ($^{3}\Sigma$ -состояние); величина 2S + 1 = 3 является мультиплетностью терма. Собственная функция состояния молекулы Не^{*} должна быть "симметричной" относительно перестановки ядер [7]. Согласно изложенному выше правилу, терм "симметричен", если он четный и имеет положительный знак или он нечетный и имеет отрицательный знак. Терм $c^3\Sigma_g^+$ является четным (индекс g) и его состояние симметрично при положительном знаке. Знак терма Σ^+ равен $(-1)^K$, где K является полным моментом молекулы без спина. Квантовые числа K' вращательных уровней терма $c^3\Sigma_g^+$ (слу-

Рис. 3. Схема вращательных уровней и переходы между триплетными термами $c^3\Sigma_g^+$ и $a^3\Sigma_u^+$: главные переходы указаны вертикальными стрелками; индикация переходов (спектральных линий) дана для P- и R-ветвей; номер перехода (спектральной линии) — номер K верхнего уровня перехода.

чай Хунда b) четные и составляют $K = \Lambda$, $\Lambda + 2$, $\Lambda + 4 = 0, 2, 4...$

Нижний терм $a^3\Sigma_u^+$ отличается от верхнего терма $c^3\Sigma_g^+$ четностью (индекс u вместо индекса g). Терм $a^3\Sigma_u^+$ нечетный, и его состояние симметрично, если знак отрицательный. Знак вращательных состояний терма Σ^+ равен $(-1)^K$, поэтому квантовые числа K'' уровней терма $a^3\Sigma_u^+$ (случай Хунда b) нечетные: $K'' = \Lambda + 1$, $\Lambda + 3$, 5...

Каждый K-уровень триплетного терма вырожден и содержит три уровня с различным числом J: J = K - 1, J = K, J = K + 1, где J - квантовое число полного момента молекулы с учетом спина. Энергия, разделяющая эти три уровня, пренебрежимо мала, и эти уровни объединяются в один уровень с номером K. Поэтому спектральная линия с номером K состоит из трех линий с различными числами J (рис. 3).

Переходы между вращательными уровнями триплетных термов $c^3\Sigma_g^+$ и $a^3\Sigma_u^+$ представлены на рис. 3. За изменение полного момента J молекулы примем $\Delta J = J' - J''$, где J' и J'' - полные моменты верхнего и нижнего уровней [8]. По правилам отбора для радиационных переходов $\Delta J = +1$ для R-ветви и $\Delta J = -1$ для P-ветви.

Правила отбора по квантовым числам K аналогичны: для R-ветви $\Delta K = +1$, для P-ветви $\Delta K = -1$. Переходы — главные, если $\Delta K = \Delta J$. Есть шесть главных переходов: P1, P2, P3, R1, R2, R3. Переход, обозначенный K, состоит из трех переходов (мультиплета) с различными числами J. Цифра 1 (например, P1) обозначает переход P-ветви от уровня с максимальным числом J в мультиплете,

обозначение 3 (например, P3) — переход от уровня с минимальным числом J в мультиплете. Каждая из таких линий соответствует переходу от уровня J мультиплета K верхнего терма к уровню J" мультиплета терма K". Для переходов R-ветви J" = J — 1; главные переходы R-ветви: K \Rightarrow K" = K — 1 и J" = J — 1. Переходы D-ветви — D" = D + 1 (рис. 3).

РАСЧЕТ ДЛИН ВОЛН ВРАШАТЕЛЬНЫХ ЛИНИЙ

Для расчета длины волны линий переходов между синглетными термами $C^1\Sigma$ и $A^1\Sigma$ взяты спектральные константы B_e , α , и D_v из [8–11]. Будем рассматривать вращательную структуру переходов между колебательными уровнями (v'=0, v''=0). Энергия перехода между этими уровнями $E_0=10.945.5~{\rm cm}^{-1}$ [8] — это "начало" полосы с длиной волны 913.62 нм. Уровень K=0 является уровнем "нулевой энергии" для верхнего терма $C^1\Sigma$, уровень K''=1 — уровень "нулевой энергии" нижнего терма $A^1\Sigma$.

Спектральные параметры:

$$B_{\rm v}(C^1\Sigma) = B_e - \alpha({\rm v} + 1/2) = 6.945 \text{ cm}^{-1},$$

 $B_{\rm v}(A^1\Sigma) = 7.672 \text{ cm}^{-1},$
 $D_{\rm v}(^1\Sigma) = 5.24 \times 10^{-4} \text{ cm}^{-1}.$

Энергия перехода $K \Rightarrow K''$ между вращательными уровнями термов $C^1\Sigma$ и $A^1\Sigma$:

$$E_{K'}(C^{1}\Sigma) - E_{K''}(A^{1}\Sigma) =$$

$$= B_{v}(C^{1}\Sigma)K'(K'+1) - D_{v}(C^{1}\Sigma) \times$$

$$\times [K'(K'+1)]^{2} - B_{v}(A^{1}\Sigma)K''(K''+1) +$$

$$+ D_{v}(A^{1}\Sigma)[K''(K''+1)]^{2} + E_{0},$$

где $D_{\rm v}$ — параметр, характеризующий ангармонизм терма.

P-ветвь: K'' = K' + 1. Энергия $E_{K'K''}$ между вращательными уровнями K' и K'' как функция номера K' верхнего уровня P-перехода составляет

$$E_{K'K''} = 6.945 \left[\text{cm}^{-1} \right] K'(K'+1) - D_{v} \left[K'(K'+1) \right]^{2} -$$

$$- 7.672 \left[\text{cm}^{-1} \right] (K'+1)(K'+2) +$$

$$+ D_{v} \left[(K'+1)(K'+2) \right]^{2}.$$

Длины волн для линий P-ветви с различными K рассчитываются как

$$\lambda_{P}(K') = \frac{913.62 \text{ [HM]}}{\left(1 + \frac{E_{K'K'+1}}{E_{0}}\right)} = \frac{913.62 \text{ [HM]}}{\left(1 + \frac{6.945K'(K'+1) - 7.672(K'+1)(K'+2) + 21 \times 10^{-4}(K'+1)^{3}}{10945.5}\right)}$$

Поскольку величина E_{KK} отрицательна для P-ветви, линии P-ветви находятся с красной стороны относительно центра полосы 913.62 нм, и для K=0, 2, 4, 6... их длины волн: $\lambda_p(0)=914.9$ нм, $\lambda_p(2)=917.8$ нм, $\lambda_p(4)=921.28$ нм, $\lambda_p(6)=925.22$ нм и т.л.

R-ветвь: K'' = K' - 1. Энергия между вращательными линиями K' и K'' уровней синглетных тер-

мов $C^1\Sigma$ и $A^1\Sigma$ как функция номера K' верхнего уровня соответствует

$$E_{KK''} = 6.945 \left[\text{cm}^{-1} \right] K'(K'+1) - D_{v} \left[K'(K'+1) \right]^{2} - 7.672 \left[\text{cm}^{-1} \right] (K'-1) K' + D_{v} \left[(K'-1) K' \right]^{2}.$$

Длина волны линий R-ветви с различными номерами K определяется как

$$\lambda_P(K') = \frac{913.62 \text{ [hm]}}{\left(1 + \frac{E_{K'K'-1}}{E_0}\right)} = \frac{913.62 \text{ [hm]}}{\left(1 + \frac{6.945K'(K'+1) - 7.672(K'-1)K' - 21 \times 10^{-4}K'^3}{10945.5}\right)}.$$

Линии R-ветви находятся на фиолетовой стороне относительно центра полосы 913.62 нм, так как $E_{K'K''}$ положительна для R-ветви. Длины волн линий с различными K' составляют: $\lambda_{K'=2} = 911.4$ нм, $\lambda_{K'=4} = 909.7$ нм, $\lambda_{K'=6} = 908.6$ нм, $\lambda_{K'=8} = 907.9$ нм.

Длины волн линий, вычисленные для P- и R-ветвей переходов синглета $C^1\Sigma \Rightarrow A^1\Sigma$, совпадают с данными [9].

Аналогичным методом вычисляются длины волн вращательных линий переходов между триплетными термами $c^3\Sigma$ и $a^3\Sigma$. Спектральные константы для расчета линий триплетных переходов отличны от констант синглетных переходов и взяты из [4, 7, 8]:

$$B_{\rm v}(c^3\Sigma) = B_e - \alpha({\rm v} + 1/2) = 6.855 \text{ cm}^{-1},$$

 $B_{\rm v}(a^3\Sigma) = 7.586 \text{ cm}^{-1},$
 $D_{\rm v}(a^3\Sigma) = 5.62 \times 10^{-4} \text{ cm}^{-1},$
 $D_{\rm v}(c^3\Sigma) = 5.58 \times 10^{-4} \text{ cm}^{-1}.$

Уровень K = 0 является уровнем "нулевой энергии" для верхнего терма $c^3\Sigma$, а уровень K'' = 1

уровнем "нулевой энергии" для нижнего терма $a^3\Sigma$. Энергия между этими уровнями $E_0=10889.48~{\rm cm}^{-1}$ [7] — "центр" полосы с длиной волны 918.32 нм. Энергия перехода $K'\Rightarrow K''$ составляет

$$E_{K'} - E_{K''} = 6.855 [\text{cm}^{-1}] K'(K'+1) -$$

$$-7.586 [\text{cm}^{-1}] K''(K''+1) + D_{v}[K''(K''+1)]^{3} -$$

$$-D_{v}[K'(K'+1)]^{3} + E_{0}.$$

Используя соотношения между *К*' и *К*" для различных ветвей, получаем длины волн различных линий этих ветвей.

P-ветвь K'' = K' + 1. Энергия между вращательными линиями перехода уровней K' и K'' составляет

$$E_{K'K''} = 6.855[\text{cm}^{-1}]K'(K'+1) - D_{v}[K'(K'+1)]^{2} -$$

$$- 7.586[\text{cm}]^{-1}(K'+1)(K'+2) +$$

$$+ D_{v}[(K'+1)(K'+2)]^{2}.$$

Длина волны линий P(K)-ветви с номером K вычисляется по формуле

$$\lambda_P(K') = \frac{918.32 \text{ [HM]}}{\left(1 + \frac{E_{K'K'+1}}{E_0}\right)} = \frac{918.32 \text{ [HM]}}{\left(1 + \frac{6.855K'(K'+1) - 7.586(K'+1)(K'+2) + 22.4 \times 10^{-4}(K'+1)^3}{10889.48}\right)}.$$

Линии P-ветви находятся в красной стороне относительно центра группы 918.32 нм, так как $E_{K'K''}$ отрицательна для P-ветви. Их положения для различных K' соответствуют $\lambda_P(0) = 919.6$ нм, $\lambda_P(2) = 922.54$ нм, $\lambda_P(4) = 926$ нм, $\lambda_P(6) = 930$ нм и т.д.

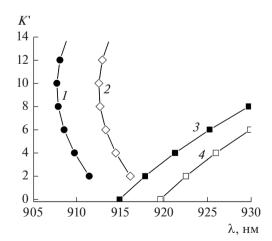
R-ветвь: K'' = K' - 1. Энергия между вращательными линиями перехода уровней K' и K'' определяется как

$$E_{K'K''} = 6.945 \left[\text{cm}^{-1} \right] K' (K'+1) - 7.672 \left[\text{cm}^{-1} \right] \times (K'-1) K' - D_{v} \left[K' (K'+1) \right]^{2} + D_{v} \left[(K'-1) K' \right]^{2}.$$

Длина волны линии R-ветви с номером K вычисляется по формуле

$$\lambda_R(K') = \frac{918.32 \text{ [HM]}}{\left(1 + \frac{E_{K'K'-1}}{E_0}\right)} = \frac{918.32 \text{ [HM]}}{\left(1 + \frac{6.855K'(K'+1) - 7.586(K'-1)K' - 22.4 \times 10^{-4}K'^3}{10889.48}\right)}$$

 $E_{K'K'}$ положительна для R-ветви и длины волн линий с различными K составляют $\lambda_R(2)=916$ нм, $\lambda_R(4)=914.5$ нм, $\lambda_R(6)=913.3$ нм, $\lambda_R(8)=912.7$ нм и т.л.


Длины волн для линий P- и R-ветвей синглетных и триплетных переходов совпадают с данными [9].

Значения длин волн λ_K и номера K линий P- и R-ветвей приведены на рис. 4. Каждый символ означает длину волны линии (абсцисса) и номер K верхнего уровня перехода (ордината). Много линий R-синглета и R-триплета сконцентрировано около длины волны 910 нм.

У линий P-ветви как синглета, так и триплета с ростом номера линии K растет и длина волны. У линий R-ветви эта зависимость неоднозначна. Интервал длин волн от 908 до 915 нм заполнен множеством R-линий обеих ветвей.

ФАКТОРЫ ХЕНЛЯ–ЛОНДОНА СИНГЛЕТНЫХ И ТРИПЛЕТНЫХ ПЕРЕХОДОВ

Интенсивность вращательной спектральной линии равна произведению заселенности верхнего вращательного уровня p(K') на фактор Хенля—Лондона S(K') перехода $K' \Rightarrow K''$. Факторы Хенля—Лондона S(K') переходов между вращательными уровнями синглетов $C^1\Sigma_g^+$ и $A^1\Sigma_u^+$ представлены в

Рис. 4. Длины волн λ и номера K верхних уровней линий P- и R-ветвей триплетных $c \Rightarrow a$ и синглетных $C \Rightarrow A$ переходов: I — синглет R, 2 — триплет R, 3 — синглет P, 4 — триплет P.

табл. 1 [8]. Эти факторы различны для разных ветвей.

Рассмотрим факторы Хенля—Лондона триплетных переходов [8]. Каждый переход $K' \Rightarrow K''$ состоит из трех переходов между уровнями мультиплета. Факторы Хенля—Лондона для переходов Q-ветви равны нулю, так как нет Q-переходов между вращательными уровнями термов $c^3\Sigma_g^+ \Rightarrow a^3\Sigma_u^+$. Факторы Хенля—Лондона для переходов P- и R-ветвей приведены в табл. 2 как функции полного момента J'' нижнего уровня (вторая и шестая колонки).

Для вычисления интенсивности вращательных линий необходимы факторы Хенля—Лондона как функции номера верхнего уровня K. Соотношения между числами J" и K различаются для ветвей P и R, они приведены в табл. 2 (четвертая и восьмая колонки).

Интенсивность P-линии с номером K равна сумме интенсивностей трех линий триплета, и фактор Хенля—Лондона мультиплета K составляет

$$S_P(K') = \frac{(K'+1)(2K'+5)}{(2K'+3)} + \frac{(K'+2)K'}{(K'+1)} + \frac{(K'+1)(2K'-1)}{(2K'+1)} \approx 3.115K' + 1.667.$$

Для факторов Хенля—Лондона R-переходов как функции номера верхнего уровня K на основании тех же рассуждений с поправкой на другую связь чисел J" и K (табл. 2, седьмая колонка) получаем

$$S_R(K') = \frac{(2K'+3)K'}{(2K'+1)} + \frac{(K'+1)(K'-1)}{K'} + \frac{(2K'-3)K'}{(2K'-1)} \approx 3.125K' - 1.25.$$

Факторы Хенля—Лондона для P- и R-ветвей и их аппроксимации используются в последующих вычислениях.

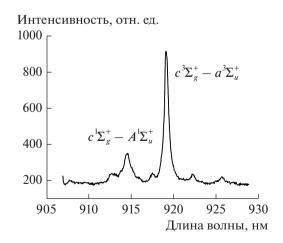
Таблица 1. Факторы Хенля—Лондона для синглетных переходов как функция номера K верхнего вращательного уровня

Факторы Хенля—Лондона $S(K)$	Ветвь
$S_P(K=0, 2, 4) = K+1$	P
$S_R(K=2, 4, 6) = K$	R

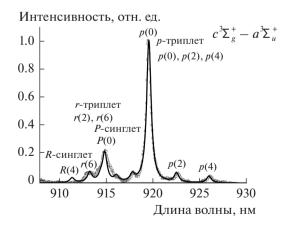
$P_1(J'')$	$\frac{(2J''+1)(J''-1)}{(2J''-1)}$	J"=K'+2	$\frac{(K'+1)(2K'+5)}{(2K'+3)}$	$R_1(J")$	$\frac{(2J'' + 3)J''}{(2J'' + 1)}$	J'' = K'	$\frac{(2K'+3)K'}{(2K'+1)}$
$P_2(J'')$	$\frac{(J''+1)(J''-1)}{J''}$	J"=K+1	$\frac{(K'+2)K'}{(K'+1)}$	$R_2(J")$	$\frac{(J^{"}+2)J^{"}}{(J^{"}+1)}$	J"=K-1	$\frac{(K'+1)(K'-1)}{K'}$
$P_3(J'')$	$\frac{(2J''-1)(J''+1)}{(2J''+1)}$	J" = K	$\frac{(K'+1)(2K'-1)}{(2K'+1)}$	$R_3(J")$	$\frac{(2J''+1)(J''+2)}{(2J''+3)}$	J"=K-2	$\frac{(2K-3)K'}{(2K'-1)}$

Таблица 2. Факторы Хенля—Лондона как функции квантового числа J" нижнего уровня [8] и номера K верхнего уровня

АНАЛИЗ ЛИНИЙ СИНГЛЕТА C-A И ТРИПЛЕТА c-a ЭКСПЕРИМЕНТАЛЬНЫХ СПЕКТРОВ В ЖИДКОМ ГЕЛИИ ПРИ 4.2 К


Анализ основан на экспериментальных данных, представленных на рис. 5, с учетом длин волн, рассчитанных по формулам, приведенным выше. Каждый максимум интенсивности имеет длину волны, близкую к длине волны спектральной линии в вакууме [8]. Большой пик интенсивности при $\lambda \approx 919$ нм принадлежит линии p(K=0) перехода P-ветви триплета $c^3\Sigma_g^+ \Rightarrow a^3\Sigma_u^+$ (рис. 5, 6). Две линии со стороны больших длин волн от максимума при 919 нм — триплетные линии p(2) и p(4).

Интерпретация спектральных линий со стороны более коротких длин волн от максимума труднее. Линии R-ветви триплета $c^3\Sigma_g^+ \Rightarrow a^3\Sigma_u^+$ занимают диапазон более коротких длин волн, чем 915 нм (рис. 6). Линия P(0) синглета $C^1\Sigma_g^+ \Rightarrow A^1\Sigma_u^+$ дает очевидный пик интенсивности слева от главного максимума p(0) (рис. 6).


Моделирование экспериментального спектра на рис. 6 выполнено как суперпозиция вращательных линий с профилем Лоренца. Ширина линий выбрана 0.58 нм, линии были сдвинуты на

0.45 нм в синюю сторону спектра. Таким образом, было установлено, что экспериментальные линии сдвинуты на 0.45 нм в синюю сторону от вакуумного положения. Сдвиг 0.45 нм и ширина линий 0.58 нм являются функциями давления в жидкости [12]. Это — главный аргумент в пользу модели, по которой возбужденный атом Не* в жидкости окружен пустым пузырьком. Пузырек — следствие дальнодействующего отталкивания возбужденного атома Не* и атома Не в основном состоянии.

У трех линий P-ветви перехода триплета p(0), p(2), p(4) (рис. 6) длины волн в диапазоне 920—927 нм и их интенсивность достаточна для дальнейшего вычисления заселенности верхних вращательных уровней. У линий r(2) и r(4) из R-ветви триплетных переходов длины волн в диапазоне 914—916 нм. Их интенсивность мала и не разрешена. Линия R(0) из R-ветви синглетного перехода отчетливо видна в спектральном диапазоне 912—914 нм. Расположенная рядом линия синглетной P-ветви P(0) увеличивает ее интенсивность и не позволяет использовать для расчета заселенности синглетного уровня K = 0.

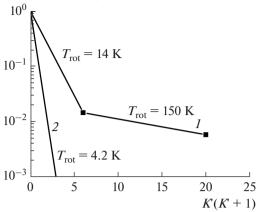


Рис. 5. Экспериментальный спектр в диапазоне 907—928 нм, измеренный в коронном разряде в жидком гелии при температуре 4.2 K и давлении 0.1 МПа.

Рис. 6. Моделирование спектра, наблюдаемого в коронном разряде в жидком гелии в диапазоне длин волн 910—930 нм: около максимумов указаны ветвь и номера линий.

Заселенность уровней, отн. ед.

Рис. 7. Распределение заселенности вращательных уровней верхнего триплетного терма $c^3\Sigma$, вычисленное по экспериментальным данным, полученным в коронном разряде в жидком гелии при температуре 4.2 К и давлении 0.1 МПа (*I*) и соответствующее распределение Больцмана (*2*).

ЗАСЕЛЕННОСТИ ВРАЩАТЕЛЬНЫХ УРОВНЕЙ ТЕРМОВ $C^1\Sigma_g^+$ И $c^3\Sigma_g^+$, ВЫЧИСЛЕННЫЕ ПО ИНТЕНСИВНОСТИ ВРАЩАТЕЛЬНЫХ ЛИНИЙ

Интенсивность вращательной линии с номером K равна произведению заселенности верхнего уровня p(K') и фактора Хенля—Лондона S(K') перехода. Факторы Хенля—Лондона различны для синглетных и триплетных переходов и для линий различных ветвей. Интенсивность I(K') и заселенность p(K') верхнего уровня термов связаны соотношениями

$$I_P(K') \propto (3.12K' + 1.67) p(K'), \quad K' = 0, 2, 4...;$$

 $I_R(K') \propto (3.13K' - 1.27) p(K'), \quad K' = 2, 4...$

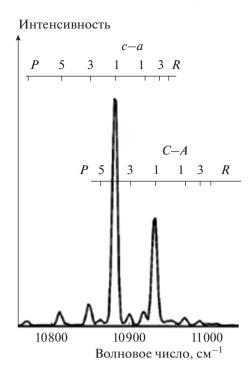
для триплетных вращательных линий и соотно-шениями

$$I_P(K') \propto (K'+1) p(K'), \quad K' = 0, 2, 4 ...;$$

 $I_R(K) \propto K' p(K'), \quad K = 2, 4 ...$

для синглетных линий. Эти выражения использованы для расчета заселенностей вращательных уровней верхних термов как функции номера уровня K. Для равновесных условий заселенности соответствуют распределению Больцмана $p(K) \sim \exp(-B_e(K+1)K/T_r)$, где T_r — вращательная температура. При этом зависимость $\ln[p(K)]$ от (K+1)K выражается на графике прямой линией. Ее наклон тем больше, чем меньше T_r

Экспериментальный спектр был использован для расчета заселенности вращательных уровней верхних термов $C^1\Sigma_g^+$ и $c^3\Sigma_g^+$. Предварительный анализ показал, что область спектра 910—920 нм


(рис. 6) мало пригодна для такой цели. Этот спектральный интервал заполнен синглетными и триплетными линиями различных ветвей, расположенных близко друг от друга, так, что их профили перекрываются. Поэтому в максимумы интенсивности вносят вклад несколько близких линий. Надежные результаты были получены при использовании интенсивностей трех неперекрывающихся P-линий триплета p(0), p(2), p(4), расположенных в интервале длин волн 920-930 нм.

Результаты расчетов представлены на рис. 7, из которого видно, что полученное распределение отлично от распределения Больцмана с температурой 4.2 К. Основным недостатком метода, предложенного для вычисления распределения заселенности верхних вращательных уровней, является малое число спектральных линий, пригодных для дальнейшего анализа. Причина — наложение соседних сильно уширенных линий. Известно, что уширение линий увеличивается при росте плотности среды, поэтому далее проведен анализ спектра, полученного в разреженном криогенном газе [13].

АНАЛИЗ ПЕРЕХОДОВ c—a И C—A, НАБЛЮДАЕМЫХ В КРИОГЕННОМ, ГАЗООБРАЗНОМ ГЕЛИИ ПРИ 4.2 К

В экспериментах [13] люминесценция инициировалась пучком протонов, пересекающих газообразный гелий при 4.2 К и давлении насыщенного пара 150 Тор. Это термодинамическое состояние находится на газовой ветви кривой насыщения, где газ имеет малую плотность. Спектр переходов c-a и C-A, наблюдаемых в [13], представлен на рис. 8. В данной работе проведены идентификация линий и моделирование этого спектра. Результаты представлены на рис. 9. Они показали следующее. Длина волны вращательных линий синглета A-C и триплета a-c совпадает с длиной волны линий изолированной молекулы. Сдвиг линий равен нулю. Уширение линий составляет $\Delta k = 9$ см⁻¹, что соответствует $\Delta \lambda = 0.75$ нм. Профиль Гаусса лучше соответствует экспериментальной форме линий, чем профиль Лоренца, который дает большее перекрытие линий, чем в наблюдаемом спектре. Искажение формы спектральных линий происходит вследствие "ударного" взаимодействия эксимера He_2^* с окружающими атомами, поэтому отношение сдвиг/ширина мало. Это отношение равно 0.15 для "ударного" взаимодействия и дает сдвиг $9 \times 0.15 = 1.35$ см⁻¹, который на рис. 8 незначителен.

В эксперименте [13] наблюдалось и было идентифицировано гораздо большее число линий. Интенсивности линий, полученные при моделировании спектра, использовались для расчета заселенностей вращательных уровней синглетного

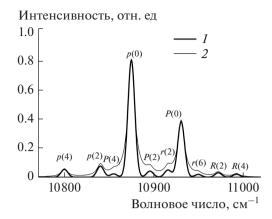
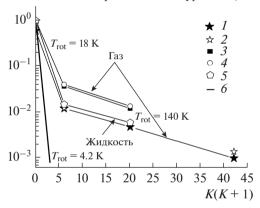


Рис. 8. Спектральные линии переходов $C^1\Sigma_g^+ \Rightarrow A^1\Sigma_u^+$ и $c^3\Sigma_g^+ \Rightarrow a^3\Sigma_u^+$ в Не при давлении 150 Тор и температуре 4.2 К (криогенный газ на линии насыщения) [13]: линии обозначены номером нижнего уровня перехода.

и триплетного термов. Результат расчета представлен на рис. 10. В газе наблюдались линии с одинаковыми номерами K, принадлежащие одному терму, но разным ветвям P и R. Поскольку эти линии принадлежат переходам с одного и того же уровня K, заселенности, полученные из интенсивностей P- и R-линий, должны быть равны, что следует из рис. 10. Заселенность уровней синглета больше, чем уровней триплета, т.е. в ансамбле возбужденных молекул в синглетном состоянии со спином, равным нулю, больше, чем молекул в состояниях со спином, равным единице. Этот факт может дать информацию о механизмах образования молекул в том или ином состоянии.


Заселенность уровней в криогенном газе равна заселенности, полученной из анализа спектра в жидком гелии. Это — странный результат, поскольку в разреженном газе излучающие молекулы или атомы подвержены ударам окружающих атомов, а в жидкости они окружены пустыми пузырьками. В последнем случае трудно представить механизм образования возбужденных состояний и радиационные переходы между ними. Однако результаты первого моделирования атомных спектров [14] удовлетворительно согласуются с экспериментом.

Анализ данных, полученных в криогенном газе [13], дает те же результаты, что и анализ насто-

Рис. 9. Моделирование спектра, наблюдаемого в облученном протонами газе He при 4.2 K на линии насыщения (150 Тор, 3.6×10^{20} см $^{-3}$): ширина линий $\Delta k = 9$ см $^{-1}$ при профиле Лоренца (*1*) или Гаусса (*2*); ветви синглета *P*, *R* и триплета *p*, *r*.

Заселенности вращательных уровней, отн. ед.

Рис. 10. Заселенности вращательных K-уровней верхних термов триплета $c^3\Sigma_g^+$ (I, 2) и синглета $C^1\Sigma_g^+$ (3, 4), вычисленные по экспериментальным интенсивностям линий в газе [13], и спектра, наблюдаемого в жидком гелии в настоящих экспериментах (5) при 4.2 K: ветви триплета I, 5-p и 2-r; синглета 3-P и 4-R; 6- распределение Больцмана.

ящих экспериментов в жидкости. Распределение заселенностей неравновесное, на рис. 10 представлено ломаной линией. Для нескольких вращательных уровней K=2, 4, 6 наклон линии соответствует вращательной температуре 140 K, что выше температуры среды 4.2 K. Заселенности вращательных уровней с большим K значительно превышает больцмановские заселенности [15].

ЗАКЛЮЧЕНИЕ

Возбужденные молекулы образуются в зоне ионизации коронного разряда из-за взаимодействия возбужденных атомов в состояниях $2^1 S$ и

2³*S* с атомами Не в основном состоянии. Это взаимодействие на малых расстояниях является притяжением. В жидкости возбужденные атомы Не* окружены пустыми пузырьками. Такие пузырьки окружают и возбужденные молекулы Не²₂. Поэтому кинетика процессов образования возбужденных молекул сложна. Излучение при переходах с уровней верхнего терма на уровни нижнего терма зафиксировано в настоящих экспериментах. Форма спектральных линий этого излучения определяется распределением плотности окружающей среды вокруг излучающего атома [13, 14, 16].

СПИСОК ЛИТЕРАТУРЫ

- Surko C.M., Packard R.E., Dick G.J., Reif F. Spectroscopic Study of the Luminescence of Liquid Helium in the Vacuum Ultraviolet // Phys. Rev. Lett. 1970. V. 24. P. 657.
- 2. Dennis W.S., Durbin E., Fitzsimmons W.A., Heybey O., Walters G.K. Spectroscopic Identification of Excited Atomic and Molecular States in Electron-Bombarded Liquid Helium // Phys. Rev. Lett. 1969. V. 23. № 19. P. 1083
- 3. Soley F.J., Fitzsimmons W.A. Pressure Shift and Quenching of Atomic and Molecular States Produced in Electron-Bombarded Liquid Helium // Phys. Rev. Lett. 1974. V. 32. P. 988.
- Von Haeften K., Laarmann T., Wabnitz H., Moller T. Bubble Formation and Decay in ³He and ⁴He Clusters // Phys. Rev. Lett. 2002. V. 88. P. 233401.
- Li Z., Bonifaci N., Denat A., Atrazhev V. Negative Corona Discharge in Liquid Helium // IEEE Trans. Dielectr. Electr. Insulation. 2006. V. 13. P. 624.

- Li Z., Bonifaci N., Denat A., Aitken F., von Haeften K., Atrazhev V.M., Shakhatov V.A. Luminescence of Corona Discharge in Liquid Helium // IEEE Trans. Dielectr. Electr. Insulation. 2009. V. 16. P. 742.
- 7. *Ландау Л.Д., Лифшиц Е.М.* Квантовая механика. М.: Наука, 1989. С. 390.
- Kovacs I. Rotational Structure in the Spectra of Diatomic Molecules. London: Adam Hilger LTD, 1962. P. 118.
- 9. *Ginter M.L., Eden J.G.* Rydberg States of the Rare Gas Dimmers // J. Chem. Phys. 1965. V. 42. P. 561.
- 10. *Herzberg G.* Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules. N.J. Princeton: Van Nostrand Reinhold, 1950.
- 11. Focsa C., Bernath P.F., Colin R.J. The Low-Lying States of He₂ // Molec. Spectroscopy. 1998. V. 191. P. 209.
- 12. Atrazhev V.M., Eloranta J., Bonifaci N., Hai van Nguyen, Aitken F., von Haeften K., Vermeulen G. Excited Atoms in Cavities of Liquid He I: Long-Range inter-Atomic Repulsion and Broadening of Atomic Line // Eur. Phys. J. Appl. Phys. 2013. V. 61. P. 24302.
- Tokaryk D.V., Wagner G.R., Brooks R.L., Hunt J.L. Infrared Emission Spectra from Cryogenic Proton-Irradiated Helium Gas // J. Chem. Phys. 1995. V. 103. P. 10439.
- 14. Bonifaci N., Aitken F., Atrazhev V.M., Fiedler S.L., Eloranta J. Experimental and Theoretical Characterization of the Long-Range Interaction between He*(3s) and He(1s) // Phys. Rev. A. 2012. V. 85. P. 042706.
- 15. *Шахатов В.А., Лебедев Ю.А.* Метод эмиссионной спектроскопии в исследовании влияния состава смеси гелия с азотом на характеристики тлеющего разряда постоянного тока и СВЧ-разряда // ТВТ. 2012. Т. 50. № 5. С. 705.
- 16. *Дьячков Л.Г.* Плавный переход от спектральных линий к континууму в плотной плазме водорода // ТВТ. 2016. Т. 54. № 1. С. 7.