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Abstract. The paper proposes some approach to the construction of families
of optimal methods for the recovery of linear operators from inaccurately given

information. The proposed construction method is used to recover derivatives
from inaccurately specified other derivatives in the multidimensional case and
to recover solutions of the heat equation from inaccurately specified tempera-

ture distributions at some instants of time.

1. Introduction

Let X be a linear space, Y, Z be normed linear spaces. The problem of optimal
recovery of the linear operator Λ: X → Z by inaccurately given values of the linear
operator I : X → Y on the set W ⊂ X is posed as a problem of finding the value

E(Λ,W, I, δ) = inf
φ : Y→Z

sup
x∈W, y∈Y
∥Ix−y∥Y ≤δ

∥Λx− φ(y)∥Z ,

called the error of optimal recovery, and the mapping φ on which the lower bound
is attained, called the optimal recovery method (here δ ≥ 0 is a parameter that
characterizes the error of setting the values of the operator I). Initially, this problem
was posed for the case when Λ is a linear functional, Y is a finite-dimensional space
and the information is known exactly (δ = 0), by S. A. Smolyak [1]. In fact,
this statement was a generalization of A. N. Kolmogorov’s problem about the best
quadrature formula on the class of functions [2], in which the integral and the
values of the functions are replaced by arbitrary linear functionals and there is no
condition for the linearity of the recovery method. Subsequently, much research has
been devoted to extensions of this problem (see [3]–[10], and the references given
therein).

One of the first papers in which the problem of constructing an optimal recovery
method for a linear operator was considered was the paper [4]. This topic was
further developed in the papers [11]–[19]. It turned out that in some cases it
is possible to construct a whole family of optimal recovery methods for a linear
operator. The study of such families began in [20] and continued in [21], [22], [14],
and [19].

The aim of this paper is to propose some approach to the construction of families
of optimal recovery methods for linear operators and demonstrate its application
to a number of particular problems.
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2. General setting and construction of families of optimal recovery
methods

We will consider the case when in the optimal recovery problem the set W
(a priori information about elements from X) is given in the form of constraints
associated with a certain set of linear operators. Let Y0, Y1, . . . , Yn be normed linear
spaces and Ij : X → Yj , j = 0, 1, . . . , n, be linear operators. Let, in addition, the
numbers δ1, . . . , δn ≥ 0 are given and the set of natural numbers J ⊂ {1, . . . , n} is
given. Put J = {1, . . . , n} \ J .

The problem is to optimally recover the operator I0 on the set

WJ = {x ∈ X : Ijx∥Yj ≤ δj , j ∈ J }

by the values of the operators Ij , given with errors δj , j ∈ J (when J = ∅ we
assume W = X). More precisely, we will assume that, for each x ∈ W , we know
the vector

y = {yj}j∈J ∈ YJ =
∏
j∈J

Yj

such that ∥Ijx− yj∥Yj ≤ δj , j ∈ J . As recovery methods we will consider arbitrary
mappings φ : YJ → Y0.

The error of a method φ(·) is defined as

eJ (I, δ, φ) = sup
x∈WJ , y∈YJ

∥Ijx−yj∥Yj
≤δj , j∈J

∥I0x− φ(y)∥Y0 ,

and the quantity

(1) EJ (I, δ) = inf
φ : YJ →Y0

eJ (I, δ, φ)

is known as the optimal recovery error (here I = (I0, I1 . . . , In), δ = (δ1, . . . , δn)).
The methods on which the lower bound in (1) is attained (if any exist) are called
optimal.

Theorem 1. Let 1 ≤ p < +∞. Assume that there exist λ̂j ≥ 0, j = 1, . . . , n, such
that

sup
x∈X

∥Ijx∥Yj
≤δj , j=1,...,n

∥I0x∥pY0
≥

n∑
j=1

λ̂jδ
p
j .

Moreover, let the set of linear operators Sj : Yj → Y0, j = 1, . . . , n, be such that

(2) I0 =

n∑
j=1

SjIj

and

(3)

∥∥∥∥ n∑
j=1

Sjzj

∥∥∥∥p
Y0

≤
n∑

j=1

λ̂j∥zj∥pYj

for all zj ∈ Yj, j = 1, . . . , n. Then for any J ∈ {1, . . . , n} methods

(4) φ̂(y) =
∑
j∈J

Sjyj
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are optimal for the corresponding optimal recovery problem, and for the error of
optimal recovery the equality

(5) EJ (I, δ) =

( n∑
j=1

λ̂jδ
p
j

)1/p

holds.

Proof. Let φ : YJ → Y0 be an arbitrary method of recovery and x ∈ X such that
∥Ijx∥Yj ≤ δj , j = 1, . . . , n. Then

2∥I0x∥Y0 = ∥I0x− φ(0)− (I0(−x)− φ(0))∥Y0

≤ ∥I0x− φ(0)∥Y0 + ∥I0(−x)− φ(0)∥Y0 ≤ 2eJ(I, δ, φ).

Hence

epJ(I, δ, φ) ≥ sup
x∈X

∥Ijx∥Yj
≤δj , j=1,...,n

∥I0x∥pY0
≥

n∑
j=1

λ̂jδ
p
j .

Since φ(·) is arbitrary, we obtain

(6) Ep
J (I, δ) ≥

n∑
j=1

λ̂jδ
p
j .

To estimate the p-th power of error of method φ̂(·), it is necessary to estimate
the value of the following extremal problem∥∥∥∥I0x−

∑
j∈J

Sjyj

∥∥∥∥p
Y0

→ max, ∥Ijx∥Yj ≤ δj , j ∈ J,

∥Ijx− yj∥Yj ≤ δj , j ∈ J, x ∈ X.

Put zj = Ijx− yj , j ∈ J . Then this problem is rewritten as follows

(7)

∥∥∥∥(I0 −∑
j∈J

SjIj

)
x+

∑
j∈J

Sjzj

∥∥∥∥p
Y0

→ max, ∥Ijx∥Yj ≤ δj , j ∈ J,

∥zj∥Yj ≤ δj , j ∈ J, x ∈ X.

In view of (2) and condition (3) we obtain∥∥∥∥(I0 −∑
j∈J

SjIj

)
x+

∑
j∈J

Sjzj

∥∥∥∥p
Y0

=

∥∥∥∥∑
j∈J

SjIjx+
∑
j∈J

Sjzj

∥∥∥∥p
Y0

≤
∑
j∈J

λ̂j∥Ijx∥pYj
+

∑
j∈J

λ̂j∥zj∥pYj
≤

n∑
j=1

λ̂jδ
p
j .

Thus,

Ep
J (I, δ) ≤ epJ (I, δ, φ̂) ≤

n∑
j=1

λ̂jδ
p
j ,

which together with (6) proves the theorem. �
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Note that the dual extremal problem

∥I0x∥Y0 → max, ∥Ijx∥Yj ≤ δj , j = 1, . . . , n,

“does not distinguish” which of the operators Ij are informational, and which of
them define the class on which the recovery problem is being considered. In other
words, the dual extremal problem does not distinguish a priori information from
a posteriori information. Because of this, it follows from Theorem 1 that if the
operators Sj : Yj → Y0, j = 1, . . . , n, are found such that they satisfy the conditions
(2) and (3), then 2n recovery problems are immediately solved. Moreover, to obtain
the appropriate optimal method, it is sufficient to put yj = 0, j ∈ J , in the method

φ̂(y) = S1y1 + . . .+ Snyn.

3. Recovery in Lp(Rd)

Denote by Lp(Rd), 1 ≤ p < ∞, the set of all measurable functions x(·) for which

∥x(·)∥Lp(Rd) =

(∫
Rd

|x(ξ)|p dξ
)1/p

< ∞.

Let α = (α1, . . . , αd) ∈ Rd
+. For ξ = (ξ1, . . . , ξd) ∈ Rd we set (iξ)α =

(iξ1)
α1 . . . (iξd)

αd , |ξ|α = |ξ1|α1 . . . |ξd|αd . For α0, α1, . . . , αn ∈ Rd
+ put

Ijx(ξ) = (iξ)α
j

x(ξ), j = 0, 1, . . . , n.

We denote by X the set of all measurable functions x(·) for which ∥Ijx(·)∥Lp(Rd) <

∞, j = 1, . . . , n. Consider problem (1) for Y0 = Y1 = . . . = Yn = Lp(Rd).
Put

Q = co{(α1, ln 1/δ1), . . . , (α
n, ln 1/δn)},

where coM denotes the convex hull of the set M , and define the function S(·) on
Rd by the formula

(8) S(α) = max{ z ∈ R : (α, z) ∈ Q },

assuming that S(α) = −∞ if the set in curly brackets is empty.
Let α0 ∈ co{α1, . . . , αn}. Then the point (α0, S(α0)) belongs to the boundary

of the convex polyhedron Q. We draw a hyperplane of support to the convex
polyhedron Q at the point (α0, S(α0)). It can be written as z = ⟨α, η̂⟩+ â for some
η̂ = (η̂1, . . . , η̂d) ∈ Rd and â ∈ R (⟨α, η̂⟩ denotes the scalar product of the vectors α
and η̂). According to the Caratheodory theorem, there exist points (αjk , ln 1/δjk),
k = 1, . . . , s, s ≤ d+ 1, from this hyperplane such that

(9) α0 =
s∑

k=1

θjkα
jk , θjk > 0, k = 1, . . . , s,

s∑
k=1

θjk = 1.

Put J0 = {j1, . . . , js} and

λ̂j =
θj
δpj

e−pS(α0), j ∈ J0.

Theorem 2. Let α0 ∈ co{α1, . . . , αn}. Then for any J ∈ {1, . . . , n}

EJ (I, δ) = e−S(α0).
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Moreover, all methods

φ̂(y) =
∑

j∈J∩J0

aj(ξ)yj ,

where measurable functions aj(·), j ∈ J0, satisfy the conditions∑
j∈J0

(iξ)α
j

aj(ξ) = (iξ)α
0

,(10)

∑
j∈J0

|aj(ξ)|p
′

λ̂
p′/p
j

≤ 1, 1/p+ 1/p′ = 1, if 1 < p < ∞,(11)

max
j∈J0

|aj(ξ)|
λ̂j

≤ 1, if p = 1,(12)

for almost all ξ ∈ Rd, are optimal for the corresponding optimal recovery problem.

Proof. We estimate the value of the extremal problem

(13)

∫
Rd

|(iξ)α
0

x(ξ)|p dξ → max,

∫
Rd

|(iξ)α
j

x(ξ)|p dξ ≤ δpj , j = 1, . . . , n.

Put Â = e−pâ, ξ̂j = e−η̂j , j = 1, . . . , d, ξ̂ = (ξ̂1, . . . , ξ̂d). For sufficiently small ε > 0
consider the cube

Bε = { ξ = (ξ1, . . . , ξd) ∈ Rd : ξ̂j − ε ≤ ξj ≤ ξ̂j , j = 1, . . . , d }
and the function

xε(ξ) =


(
Â/|Bε|

)1/p

, ξ ∈ Bε,

0, ξ /∈ Bε

(|Bε| denotes the volume of the cube Bε). Then∫
Rd

|(iξ)α
j

xε(ξ)|p dξ ≤ Â|ξ̂|pα
j

= e−p(⟨αj ,η̂⟩+â).

In view of the fact that z = ⟨α, η̂⟩+ â is the hyperplane of support to Q, we have

⟨αj , η̂⟩+ â ≥ ln 1/δj .

It follows that ∫
Rd

|(iξ)α
j

xε(ξ)|p dξ ≤ δpj , j = 1, . . . , n.

Thus, xε(·) is an admissible function for problem (13). Consequently,

sup
x∈X

∥Ijx∥Yj
≤δj , j=1,...,n

∥I0x∥pY0
≥

∫
Rd

|(iξ)α
0

xε(ξ)|p dξ ≥ Â|ξ̂ε|pα
0

,

where
ξ̂ε = (ξ̂1 − ε, . . . , ξ̂d − ε).

Making ε tends to zero, we have

sup
x∈X

∥Ijx∥Yj
≤δj , j=1,...,n

∥I0x∥pY0
≥ e−pa|ξ̂|pα

0

= e−p(⟨α0,η̂⟩+â) = e−pS(α0).

Thus,

sup
x∈X

∥Ijx∥Yj
≤δj , j=1,...,n

∥I0x∥pY0
≥

∑
j∈J0

λ̂jδ
p
j .
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We define operators Sj : Lp(Rd) → Lp(Rd), j = 1, . . . , n, as follows

Sjz(ξ) =

{
aj(ξ)z(ξ), j ∈ J0,

0, j /∈ J0,

where aj(·), j ∈ J0, satisfy conditions (10)–(12). We have

(14)

∥∥∥∥ n∑
j=1

Sjzj(·)
∥∥∥∥p
Lp(Rd)

=

∫
Rd

∣∣∣∣∑
j∈J0

aj(ξ)zj(ξ)

∣∣∣∣p dξ.
By Hölder’s inequality for 1 < p < ∞∣∣∣∣∑

j∈J0

aj(ξ)zj(ξ)

∣∣∣∣ = ∣∣∣∣∑
j∈J0

aj(ξ)

λ̂
1/p
j

λ̂
1/p
j zj(ξ)

∣∣∣∣ ≤ Ω(ξ)

(∑
j∈J0

λ̂j |zj(ξ)|p
)1/p

,

where

Ω(ξ) =

(∑
j∈J0

|aj(ξ)|p
′

λ̂
p′/p
j

)1/p′

, 1/p+ 1/p′ = 1.

For p = 1 we obtain the inequality∣∣∣∣∑
j∈J0

aj(ξ)zj(ξ)

∣∣∣∣ ≤ Ω(ξ)

(∑
j∈J0

λ̂j |zj(ξ)|
)
,

in which

Ω(ξ) = max
j∈J0

|aj(ξ)|
λ̂j

.

Using the obtained inequalities, it follows from (14) that∥∥∥∥ n∑
j=1

Sjzj(·)
∥∥∥∥p
Lp(Rd)

≤
∫
Rd

Ωp(ξ)

(∑
j∈J0

λ̂j |zj(ξ)|p
)
dξ.

In view of conditions (11)–(12) we get∥∥∥∥ n∑
j=1

Sjzj(·)
∥∥∥∥p
Lp(Rd)

≤
∑
j∈J0

λ̂j∥zj(·)∥pLp(Rd)
.

It remains to show that the set of functions aj(·), j ∈ J0, satisfying conditions
(10)–(12) is nonempty. Consider the function

f(η) = −1 +
∑
j∈J0

λ̂je
−p⟨αj−α0,η⟩

on Rd. This is obviously a convex function, and it is easy to verify that f(η̂) = 0 and
the derivative of this function at the point η̂ is also zero. It follows that f(η) ≥ 0
for all η ∈ Rd. Consequently,

−e−p⟨α0,η⟩ +
∑
j∈J0

λ̂je
−p⟨αj ,η⟩ ≥ 0.

Putting e−ηj = |ξj |, j = 1, . . . , d, we obtain that

(15) −|ξ|pα
0

+
∑
j∈J0

λ̂j |ξ|pα
j

≥ 0
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for all ξ ∈ Rd. Set

aj(ξ) = (iξ)α
0 λ̂j(−iξ)α

j |ξ|(p−2)αj∑
j∈J0

λ̂j |ξ|pα
j , j ∈ J0.

It is easy to check that condition (10) is valid. For p = 1, taking into account (15),
we obtain

|aj(ξ)|
λ̂j

=
|ξ|α0∑

j∈J0

λ̂j |ξ|α
j ≤ 1.

If p > 1, then

∑
j∈J0

|aj(ξ)|p
′

λ̂
p′/p
j

=
∑
j∈J0

|ξ|p′α0

λ̂p′

j |ξ|(p−1)p′αj

λ̂
p′/p
j

(∑
j∈J0

λ̂j |ξ|pα
j

)p′ =

|ξ|p′α0
∑
j∈J0

λ̂j |ξ|pα
j

(∑
j∈J0

λ̂j |ξ|pα
j

)p′

=

 |ξ|pα0∑
j∈J0

λ̂j |ξ|pα
j


p′−1

.

Now it follows from (15) that ∑
j∈J0

|aj(ξ)|p
′

λ̂
p′/p
j

≤ 1.

�

Let α = (α1, . . . , αd) ∈ Rd
+. For x(·) ∈ L2(Rd) denote by Dαx(·) the Weyl

derivative of order α, which is defined as follows

Dαx(t) =
1

(2π)d

∫
Rd

(iξ)αFx(ξ)ei⟨ξ,t⟩ dξ,

where Fx(·) is the Fourier transform of x(·).
Let α0, α1, . . . , αn ∈ Rd

+. Put

Ij = Dαj

j = 0, 1, . . . , n.

Denote by X the set of measurable functions x(·), for which ∥Dαj

x(·)∥L2(Rd) < ∞,

j = 1, . . . , n. Consider problem (1) for Y0 = Y1 = . . . = Yn = L2(Rd). Using the
previously introduced notation for p = 2, we get

Theorem 3. Let α0 ∈ co{α1, . . . , αn}. Then for any J ∈ {1, . . . , n}

EJ (I, δ) = e−S(α0).

Moreover, all methods

φ̂(y) =
∑

j∈J∩J0

Λjyj ,
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where Λj : L2(Rd) → L2(Rd), j ∈ J0, are linear continuous operators whose actions
in Fourier images have the form: FΛjyj(·) = aj(·)Fyj(·), and measurable functions
aj(·), j ∈ J0, satisfy conditions∑

j∈J0

(iξ)α
j

aj(ξ) = (iξ)α
0

,

∑
j∈J0

|aj(ξ)|2

λ̂j

≤ 1,

for almost all ξ ∈ Rd, are optimal for the corresponding optimal recovery problem.

Proof. Passing to the Fourier images and using the Parseval equality, conditions

∥Dαj

x(·)∥2L2(Rd) ≤ δ2j ,

∥Dαj

x(·)− yj(·)∥2L2(Rd) ≤ δ2j ,

may be rewritten in the form ∫
Rd

|ξ|2α
j

|f(ξ)|2 dξ ≤ δ2j ,∫
Rd

|(iξ)α
j

f(ξ)− Yj(ξ)|2 ≤ δ2j ,

where

f(·) = 1

(2π)d/2
Fx(·), Yj(·) =

1

(2π)d/2
Fyj(·).

For any recovery method φ : (L2(Rd))m → L2(Rd), m = cardJ ,

∥Dα0

x(·)− φ(y)(·)∥2L2(Rd) =

∫
Rd

|(iξ)α
0

f(ξ)− Φ(y)(ξ)|2 dξ,

where

Φ(y)(·) = 1

(2π)d/2
Fφ(y)(·).

Thus the problem under consideration is equivalent to the problem, the solution of
which is given in Theorem 2 (for p = 2). �

Note that Theorems 1 and 2 imply the equality

(16) sup
∥Dαj

x(·)∥
L2(Rd)

≤δj , j=1,...,n

∥Dα0

x(·)∥L2(Rd) = e−S(α0) =
∏
j∈J0

δ
θj
j .

The extremal problem in the left-hand side of (16) is closely related to finding the
exact constant in the generalized Hardy–Littlewood–Polya inequality, which in the
case under consideration has the form

∥Dα0

x(·)∥L2(Rd) ≤
∏
j∈J0

∥Dαj

x(·)∥θj
L2(Rd)

(for more information, see [23]).
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4. Generalized heat equation on a sphere

Set

Sd−1 = {x ∈ Rd : |x| = 1 }, d ≥ 2,

where |x| =
√
x2
1 + . . .+ x2

d. The Laplace–Beltrami operator ∆S is defined for

functions defined on the unit sphere Sd−1 as follows

∆SY (x′) = ∆Y

(
x

|x|

)∣∣x=x′
,

where ∆ is the Laplace operator. Denote by Hk the set of spherical harmonics of
order k. It is known (see [24]) that L2(Sd−1) =

∑∞
k=0 Hk, while dimH0 = a0 = 1,

dimHk = ak = (d+ 2k − 2)
(d+ k − 3)!

(d− 2)!k!
, k = 1, 2, . . . .

Choose in Hk the orthonormal basis Y
(k)
j (·), j = 1, . . . , ak. For α > 0 the

operator (−∆S)
α/2 is defined by the equality

(−∆S)
α/2Y (·) =

∞∑
k=1

Λ
α/2
k

ak∑
j=1

ckjY
(k)
j (·),

where

Y (·) =
∞∑
k=0

ak∑
j=1

ckjY
(k)
j (·),

and Λk = k(k + d− 2) are the eigenvalues of the operator −∆S .
Consider the problem of finding a solution of the equation

(17) ut + (−∆S)
α/2u = 0,

with initial condition

u(·, 0) = f(·),
where f(·) ∈ L2(Sd−1). If

(18) f(·) =
∞∑
k=0

ak∑
j=1

ckjY
(k)
j (·),

then, using the Fourier method, it is not difficult to obtain a solution of this problem

u(x′, t) =
∞∑
k=0

e−Λ
α/2
k t

ak∑
j=1

ckjY
(k)
j (x′).

Assume that the solutions of the problem under consideration are approximately
known at t = 0, T . It is required to recover the solution at the instant of time
τ , 0 < τ < T . For functions f(·) ∈ L2(Sd−1), having expansion (18), we put
I1f(·) = f(·),

I0f(·) =
∞∑
k=0

e−Λ
α/2
k τ

ak∑
j=1

ckjY
(k)
j (·),

I2f(·) =
∞∑
k=0

e−Λ
α/2
k T

ak∑
j=1

ckjY
(k)
j (·).
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Thus we come to the problem (1) for X = Y0 = Y1 = Y2 = L2(Sd−1), p = 2 and
J = ∅.

Theorem 4. If δ1/δ2 ∈
[
eΛ

α/2
m T , eΛ

α/2
m+1T

]
for some m ∈ Z+, then for all αkj,

k = 0, 1, . . ., j = 1, . . . , ak, satisfying the condition

(19)

(
eΛ

α/2
k (T−τ) − αkj

)2

λ1e2Λ
α/2
k T

+
α2
kj

λ2
≤ 1,

where

λ1 =
e2Λ

α/2
m+1(T−τ) − e2Λ

α/2
m (T−τ)

e2Λ
α/2
m+1T − e2Λ

α/2
m T

,

λ2 =
e−2Λα/2

m τ − e−2Λ
α/2
m+1τ

e−2Λ
α/2
m T − e−2Λ

α/2
m+1T

,

methods

φ̂(y1, y2)(·) =
∞∑
k=0

ak∑
j=1

(
e−Λ

α/2
k T

(
eΛ

α/2
k (T−τ) − αkj

)
y
(1)
kj + αkjy

(2)
kj

)
Y

(k)
j (·),

where

ys(·) =
∞∑
k=0

ak∑
j=1

y
(s)
kj Y

(k)
j (·), s = 1, 2,

are optimal and

E∅(I, δ) =
√
λ1δ21 + λ2δ22 .

If δ1/δ2 ∈ (0, 1], then the method

φ̂(y1, y2)(·) =
∞∑
k=0

e−Λ
α/2
k τ

ak∑
j=1

y
(1)
kj Y

(k)
j (·)

is optimal and E∅(I, δ) = δ1.

Proof. Consider the extremal problem

∥I0f(·)∥2L2(Sd−1) → max, ∥Ijf(·)∥2L2(Sd−1) ≤ δ2j , j = 1, 2.

This problem may be written in the form

(20)
∞∑
k=0

e−2Λ
α/2
k τf2

k → max,
∞∑
k=0

f2
k ≤ δ21 ,

∞∑
k=0

e−2Λ
α/2
k T f2

k ≤ δ22 ,

where

f2
k =

ak∑
j=1

c2jk, k = 0, 1, . . . .

Let δ1/δ2 ∈
[
eΛ

α/2
m T , eΛ

α/2
m+1T

]
. Define fm and fm+1 from the conditions

f2
m + f2

m+1 = δ21 ,

e−2Λα/2
m T f2

m + e−2Λ
α/2
m+1T f2

m+1 = δ22 .
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We have

f2
m =

δ22 − δ21e
−2Λ

α/2
m+1T

e−2Λ
α/2
m T − e−2Λ

α/2
m+1T

,

f2
m+1 =

δ21e
−2Λα/2

m T − δ22

e−2Λ
α/2
m T − e−2Λ

α/2
m+1T

.

The sequence {fk}, in which fk = 0 for k ̸= m,m+1, is admissible in the extremal
problem (20). Therefore,

sup
f(·)∈L2(Sd−1)

∥Ijf(·)∥L2(Sd−1)
≤δj , j=1,2

∥I0f(·)∥2L2(Sd−1) ≥ e−2Λα/2
m τf2

m + e−2Λ
α/2
m+1τf2

m+1

= λ1δ
2
1 + λ2δ

2
2 .

If δ1/δ2 ∈ (0, 1], then the sequence {fk}, in which f0 = δ21 , and fk = 0 for k ≥ 1, is
admissible in the extremal problem (20). Therefore, in this case

sup
f(·)∈L2(Sd−1)

∥Ijf(·)∥L2(Sd−1)
≤δj , j=1,2

∥I0f(·)∥2L2(Sd−1) ≥ f2
0 = δ21 .

Let again δ1/δ2 ∈
[
eΛ

α/2
m T , eΛ

α/2
m+1T

]
. For functions f(·) ∈ L2(Sd−1), having

expansion (18), define operators Sj : L2(Sd−1) → L2(Sd−1), j = 1, 2, by equalities

S1f(·) =
∞∑
k=0

ak∑
j=1

e−Λ
α/2
k T

(
eΛ

α/2
k (T−τ) − αkj

)
ckjY

(k)
j (·),

S2f(·) =
∞∑
k=0

ak∑
j=1

αkjckjY
(k)
j (·),

where αkj satisfy condition (19). It is easy to see that I0 = S1I1 + S2I2. For
f1(·), f2(·) ∈ L2(Sd−1) we have

∥S1f1(·) + S2f2(·)∥2L2(Sd−1)

=
∞∑
k=0

ak∑
j=1

(
e−Λ

α/2
k T

(
eΛ

α/2
k (T−τ) − αkj

)
f
(1)
kj + αkjf

(2)
kj

)2

,

where f
(1)
kj , f

(2)
kj are the Fourier coefficients of f1(·), f2(·). From the Cauchy–

Schwartz–Bunyakovskii inequality, taking into account (19), we get(
e−Λ

α/2
k T

(
eΛ

α/2
k (T−τ) − αkj

)
f
(1)
kj + αkjf

(2)
kj

)2

≤


(
eΛ

α/2
k (T−τ) − αkj

)2

λ1e2Λ
α/2
k T

+
α2
kj

λ2

(
λ1(f

(1)
kj )2 + λ2(f

(2)
kj )2

)
≤ λ1(f

(1)
kj )2 + λ2(f

(2)
kj )2.
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Thus,

∥S1f1(·) + S2f2(·)∥2L2(Sd−1) ≤
∞∑
k=0

ak∑
j=1

(
λ1(f

(1)
kj )2 + λ2(f

(2)
kj )2

)
= λ1∥f1(·)∥2L2(Sd−1) + λ2∥f2(·)∥2L2(Sd−1).

We show that there are αkj , k = 0, 1, . . ., j = 1, . . . , ak, satisfying condition (19).
Consider on the plane (x, y) a set of points with coordinates

xk = e−2Λ
α/2
k T ,

yk = e−2Λ
α/2
k τ , k = 0, 1, . . . .

This set of points lies on a concave curve y = xτ/T . Draw a straight line through
the points (xm+1, ym+1) and (xm, ym). It is easy to verify that the equation of this
line is written as y = λ1 + λ2x. Due to the concavity of the curve on which the
points under consideration lie, we have

yk ≤ λ1 + λ2xk, k = 0, 1, . . . .

Consequently, for all k = 0, 1, . . .

e−2Λ
α/2
k τ

λ1 + λ2e−2Λ
α/2
k T

≤ 1.

Put

α̂kj =
λ2e

Λ
α/2
k (T−τ)

λ1e2Λ
α/2
k T + λ2

.

Then (
eΛ

α/2
k (T−τ) − α̂kj

)2

λ1e2Λ
α/2
k T

+
α̂2
kj

λ2
=

e2Λ
α/2
k (T−τ)

λ1e2Λ
α/2
k T + λ2

=
e−2Λ

α/2
k τ

λ1 + λ2e−2Λ
α/2
k T

≤ 1.

If δ1/δ2 ∈ (0, 1], then we set S1 = I0 and S2 = 0. Then

∥S1f1(·) + S2f2(·)∥2L2(Sd−1) = ∥I0f1(·)∥2L2(Sd−1) =
∞∑
k=0

e−2Λ
α/2
k τ

ak∑
j=1

(f
(1)
kj )2

≤
∞∑
k=0

ak∑
j=1

(f
(1)
kj )2 = ∥f1(·)∥2L2(Sd−1).

Now the statement of the theorem being proved follows from Theorem 1. �

Condition (19) can be written in the equivalent form

(αkj − α̂kj)
2 ≤ λ1λ2e

4Λ
α/2
k T −e−2Λ

α/2
k τ + λ1 + λ2e

−2Λ
α/2
k T(

λ1 + λ2e−2Λ
α/2
k T

)2 .

Thus, all αkj satisfying condition (19) have the form

αkj = α̂kj + θkje
2Λ

α/2
k T

√
λ1λ2

√
−e−2Λ

α/2
k τ + λ1 + λ2e−2Λ

α/2
k T

λ1 + λ2e−2Λ
α/2
k T

,

where |θkj | ≤ 1.
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If we consider the problem of optimal recovery of the solution at the instant of
time τ by an inaccurately given solution at the instant of time T > τ on the class

W = { f(·) ∈ L2(Sd−1) : ∥f(·)∥L2(Sd−1) ≤ δ1 },

then from the same Theorem 1 (for J = {1}) will follow that the methods φ̂(0, y2)(·)
will be optimal. It turns out that among this family of optimal methods there is a
subfamily of optimal methods that have some advantage over the rest.

In order to specify this subfamily, we first formulate an extended version of the
problem under consideration. Let some class of functions F ⊂ L2(Sd−1) be given.
Set

e(F , δ, φ) = sup
f(·)∈Ω, y(·)∈L2(Sd−1)

∥u(·,T )−y(·)∥
L2(Sd−1)

≤δ

∥u(·, τ)− φ(y)(·)∥L2(Sd−1),

E(F , δ) = inf
φ : L2(Sd−1)→L2(Sd−1)

e(F , δ, φ).

The problem of finding the error of optimal recovery E(F , δ) and the corresponding
optimal method differs from the one considered earlier only by an arbitrary class
F .

We will say that the method φ(y)(·) is exact on the set L ⊂ L2(Sd−1) if
φ(u(·, T ))(·) = u(·, τ) for all f(·) ∈ L.

Proposition 1. If φ̂(y)(·) is an optimal method for the class F , which is linear
and exact on the set L ⊂ L2(Sd−1) containing zero, then it is optimal on the class
F + L. Moreover,

(21) E(F , δ) = E(F + L, δ).

Proof. Let f(·) ∈ F + L, f(·) = f1(·) + f2(·), where f1(·) ∈ F , f2(·) ∈ L. Denote
by uj(·, ·) the solution of equation (17) with the initial function fj(·), j = 1, 2. Let
y(·) ∈ L2(Sd−1) such that ∥u(·, T ) − y(·)∥L2(Sd−1) ≤ δ. Put y1(·) = y(·) − u2(·, T ).
It is clear that y1(·) ∈ L2(Sd−1). Since u1(·, T )− y1(·) = u(·, T )− y(·) we have

(22) ∥u1(·, T )− y1(·)∥L2(Sd−1) ≤ δ.

From linearity and exactness φ̂(y)(·) on L follows the equality

(23) ∥u(·, τ)− φ̂(y)(·)∥L2(Sd−1) = ∥u1(·, τ)− φ̂(y1)(·)∥L2(Sd−1).

The expression in the the right-hand side in (23) by virtue of (22) does not exceed
the value e(F , δ, φ̂), which is equal to E(F , δ), since the method φ̂(y)(·) is optimal.
Taking into account this fact and going to the upper bound by f(·) ∈ F + L and
the corresponding y(·) we get that

e(F + L, δ, φ̂) ≤ E(F , δ).

Hence and from the fact that F ⊂ F+ L, we have

E(F , δ) ≤ E(F + L, δ) ≤ e(F + L, δ, φ̂) ≤ E(F , δ).

Consequently, φ̂(y)(·) is an optimal method for the class F+L and (21) is valid. �

Assume that δ1/δ2 ∈
[
eΛ

α/2
m T , eΛ

α/2
m+1T

]
. It is easy to show that for sufficiently

large m the inequality λ2 ≥ 1 holds. Thus, if δ1 is fixed, then for sufficiently small
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δ2 the inequality λ2 ≥ 1 is satisfied. In this case we put

k̂ = max

{
k ∈ Z+ : Λk ≤

(
lnλ2

2(T − τ)

)2/α
}
.

It is easy to check that

k̂ =

√ (d− 2)2

4
+

(
lnλ2

2(T − τ)

)2/α

− d− 2

2


([a] is the integer part of a).

Consider the methods

φ̂0(y)(·) =
k̂∑

k=0

ak∑
j=1

eΛ
α/2
k (T−τ)Y

(k)
j (·) +

∞∑
k=k̂+1

ak∑
j=1

αkjykjY
(k)
j (·),

where αkj , k = k̂ + 1, k̂ + 2, . . ., j = 1, . . . , ak, are satisfied condition (19). In view
of the fact that for

αkj = eΛ
α/2
k (T−τ), k = 0, 1, . . . k̂, j = 1, . . . , ak,

condition (19) is valid, methods φ̂0(y)(·) are optimal on the class W .
Moreover, methods φ̂0(y)(·) are exact on the subspace

Lk̂ =
k̂∑

k=0

Hk.

Indeed, let f(·) ∈ Lk̂. Then

f(·) =
k̂∑

k=0

ak∑
j=1

ckjY
(k)
j (·).

Therefore,

u(x′, T ) =
k̂∑

k=0

e−Λ
α/2
k T

ak∑
j=1

ckjY
(k)
j (x′).

Consequently,

φ̂0(u(·, T ))(·) =
k̂∑

k=0

e−Λ
α/2
k τ

ak∑
j=1

ckjY
(k)
j (·) = u(·, τ).

Thus, it follows from Proposition 1 that methods φ̂0(y)(·) are not only optimal on
the class W , but they remain optimal on the wider class W + Lk̂.

5. Optimal recovery of solutions of difference equations

Let us consider the process of heat propagation in an infinite rod described by a
discrete model, namely, by an implicit difference scheme

(24)
us+1,j − usj

τ
=

us+1,j+1 − 2us+1,j + us+1,j−1

h2
.

Here τ and h are positive numbers, (s, j) ∈ Z+ × Z, us,j is the temperature of the
rod at the instant of time sτ at the point jh.
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Denote by l2,h the set of vectors x = {xj}j∈Z for which

∥x∥l2,h =

(
h
∑
j∈Z

|xj |2
)1/2

< ∞, h > 0.

Suppose that the temperature of the rod is approximately measured at the instant of
time zero and at the instant of time nτ , i.e. the vectors u0 = {u0,j} and un = {un,j}
are approximately known, or, more precisely, we know the vectors y1, y2 ∈ l2,h such
that

∥u0 − y1∥l2,h ≤ δ1, ∥un − y2∥l2,h ≤ δ2,

where δj > 0, j = 1, 2. According to this information, it is required to recover the
vector um = {um,j}, where 0 < m < n, i.e. recover the value of the rod temperature
at the instant of time mτ .

Thus we come again to problem (1), in which X = Y0 = Y1 = Y2 = l2, p = 2,
J = ∅, and the operators Ij : l2,h → l2,h, j = 0, 1, 2, are defined by the equalities

I0u0 = um, I1u0 = u0, I2u0 = un.

By the Fourier transform of the sequence x = {xj}j∈Z ∈ l2,h we mean the
function

Fx(ξ) = h
∑
j∈Z

xje
−ijhξ.

It is easy to verify that Fx(·) ∈ L2([−π/h, π/h]) and

(25) ∥Fx(·)∥2L2([−π/h,π/h]) = 2π∥x∥2l2,h .

Let us apply the Fourier transform to the both parts of the equality (24)

h
∑
j∈Z

us+1,j − usj

τ
e−ijhξ = h

∑
j∈Z

us+1,j+1 − 2us+1,j + us+1,j−1

h2
e−ijhξ.

Hence

Us+1(ξ)− Us(ξ)

τ
=

eihξ − 2 + e−ihξ

h2
Us+1(ξ),

where

Us(ξ) = h
∑
j∈Z

us,je
−ijhξ.

Thus,

Us+1(ξ) =

(
1 +

4τ

h2
sin2

hξ

2

)−1

Us(ξ).

Consequently,

Us(ξ) = Λs(ξ)U0(ξ), Λ(ξ) =

(
1 +

4τ

h2
sin2

hξ

2

)−1

.
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Put a = (1 + 4τ/h2)−1,

λ1 =


0, δ2/δ1 ∈ (0, an],(
1− m

n

)(
δ2
δ1

)2m/n

, δ2/δ1 ∈ (an, 1),

1, δ2/δ1 ∈ [1,+∞),

λ2 =


a2(m−n), δ2/δ1 ∈ (0, an],

m

n

(
δ2
δ1

)2(m/n−1)

, δ2/δ1 ∈ (an, 1),

0, δ2/δ1 ∈ [1,+∞).

.

Theorem 5. The following equality holds:

E∅(I, δ) =
√
λ1δ21 + λ2δ22 .

For all α(·) satisfying for δ2/δ1 ∈ (an, 1) the condition

(26) Λ2m(ξ)

(
|1− α(ξ)|2

λ1
+ Λ−2n(ξ)

|α(ξ)|2

λ2

)
≤ 1,

and in other cases, equality

α(ξ) =

{
1, δ2/δ1 ∈ (0, an],

0, δ2/δ1 ∈ [1,+∞),

methods

φ̂(y1, y2) = F−1(Λm(·)(1− α(·))Fy1(·) + Λm−n(·)α(·)Fy2(·))
are optimal.

Proof. Consider the extremal problem

∥um∥2l2,h → max, ∥u0∥2l2,h ≤ δ21 , ∥un∥2l2,h ≤ δ22 .

Passing to the Fourier images, we obtain the following problem

(27)
1

2π
∥Λm(·)U0(·)∥2L2([−π/h,π/h]) → max,

1

2π
∥U0(·)∥2L2([−π/h,π/h]) ≤ δ21 ,

1

2π
∥Λn(·)U0(·)∥2L2([−π/h,π/h]) ≤ δ22 .

Assume that δ2/δ1 ∈ (an, 1). For ξ ∈ [0, π/h] the function Λ(ξ) monotonically

decreases from 1 to a. Therefore, there will be ξ̂ ∈ (0, π/h) such that Λn(ξ) = δ2/δ1.
For sufficiently small ε > 0 put

Û0(ξ) =


√

2π

ε
δ1, ξ ∈ (ξ̂, ξ̂ + ε),

0, ξ /∈ (ξ̂, ξ̂ + ε).

We have
1

2π
∥Û0(·)∥2L2([−π/h,π/h]) = δ21

and

1

2π
∥Λn(·)Û0(·)∥2L2([−π/h,π/h]) =

δ21
ε

∫ ξ̂+ε

ξ̂

Λ2n(ξ) dξ ≤ δ21Λ
2n(ξ̂) = δ22 .
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Thus Û0(·) is admissible in problem (27). Consequently,

sup
u0∈l2,h

∥u0∥2
l2,h

≤δ21

∥un∥2
l2,h

≤δ22

∥um∥2l2,h ≥ 1

2π
∥Λm(·)Û0(·)∥2L2([−π/h,π/h]) =

δ21
ε

∫ ξ̂+ε

ξ̂

Λ2m(ξ) dξ

= δ21Λ
2m(c),

where c ∈ [ξ̂, ξ̂ + ε]. Passing to the limit as ε → 0, we obtain

sup
u0∈l2,h

∥u0∥2
l2,h

≤δ21

∥un∥2
l2,h

≤δ22

∥um∥2l2,h ≥ δ21Λ
2m(ξ̂) = δ

2(1−m/n)
1 δ

2m/n
2 = λ1δ

2
1 + λ2δ

2
2 .

Assume that δ2/δ1 ∈ (0, an]. For sufficiently small ε > 0 put

Û0(ξ) =


√

2π

ε

δ2
Λn(ξ)

, ξ ∈ (π/h− ε, π/h],

0, ξ /∈ (π/h− ε, π/h].

Then
1

2π
∥Λn(·)Û0(·)∥2L2([−π/h,π/h]) = δ22

and
1

2π
∥Û0(·)∥2L2([−π/h,π/h]) =

δ22
ε

∫ π/h

π/h−ε

Λ−2n(ξ) dξ ≤ δ22a
−2n ≤ δ21 .

Thus Û0(·) is admissible in problem (27). Consequently,

sup
u0∈l2,h

∥u0∥2
l2,h

≤δ21

∥un∥2
l2,h

≤δ22

∥um∥2l2,h ≥ 1

2π
∥Λm(·)Û0(·)∥2L2([−π/h,π/h]) =

δ22
ε

∫ π/h

π/h−ε

Λ2(m−n)(ξ) dξ

= δ22Λ
2(m−n)(c),

where c ∈ [π/h− ε, π/h]. Passing to the limit as ε → 0, we obtain

sup
u0∈l2,h

∥u0∥2
l2,h

≤δ21

∥un∥2
l2,h

≤δ22

∥um∥2l2,h ≥ δ22a
2(m−n) = λ2δ

2
2 .

If, finally, δ2/δ1 ∈ [1,+∞) for sufficiently small ε > 0 we put

Û0(ξ) =


√

2π

ε
δ1, ξ ∈ (0, ε),

0, ξ /∈ (0, ε).

Then
1

2π
∥Û0(·)∥2L2([−π/h,π/h]) = δ21

and
1

2π
∥Λn(·)Û0(·)∥2L2([−π/h,π/h]) =

δ21
ε

∫ ε

0

Λ2n(ξ) dξ ≤ δ21 ≤ δ22 .
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Thus Û0(·) is admissible in problem (27). Consequently,

sup
u0∈l2,h

∥u0∥2
l2,h

≤δ21

∥un∥2
l2,h

≤δ22

∥um∥2l2,h ≥ 1

2π
∥Λm(·)Û0(·)∥2L2([−π/h,π/h]) =

δ21
ε

∫ ε

0

Λ2m(ξ) dξ

= δ21Λ
2m(c),

where c ∈ [0, ε]. Passing to the limit as ε → 0, we obtain

sup
u0∈l2,h

∥u0∥2
l2,h

≤δ21

∥un∥2
l2,h

≤δ22

∥um∥2l2,h ≥ δ21 .

Now we concerned with estimate (3). Let δ2/δ1 ∈ (an, 1). Define the operators
Sj : l2,h → l2,h, j = 1, 2, so that

F (S1u)(·) = Λm(·)(1− α(·))Fu(·),
F (S2u)(·) = Λm−n(·)α(·)Fu(·).

It is easy to verify that for all u0 ∈ l2,h

F ((I0 − S1I1 − S2I2)u)(·) ≡ 0.

Therefore, I0 = S1I1 + S2I2. In view of (25) we get

∥S1z1 + S2z2∥2l2,h =
1

2π

∫ π/h

−π/h

Λ2m(ξ)
∣∣(1− α(ξ)Fz1(ξ) + Λ−n(ξ)α(ξ)Fz2(ξ)

∣∣2 dξ.

It follows from the Cauchy–Schwartz–Bunyakovskii inequality that

Λ2m(ξ)
∣∣(1− α(ξ)Fz1(ξ) + Λ−nα(ξ)Fz2(ξ)

∣∣2 ≤ Ω(ξ)(λ1|Fz1(ξ)|2 + λ2|Fz2(ξ)|2),

where

Ω(ξ) = Λ2m(ξ)

(
|1− α(ξ)|2

λ1
+ Λ−2n(ξ)

|α(ξ)|2

λ2

)
.

In view of (26) we obtain

∥S1z1 + S2z2∥2l2,h ≤ 1

2π

∫ π/h

−π/h

(λ1|Fz1(ξ)|2 + λ2|Fz2(ξ)|2) dξ

= λ1∥z1∥2l2,h + λ2∥z2∥2l2,h .

It follows from Theorem 1 that in the case under consideration, the methods

φ̂(y1, y2) = S1y1 + S2y2

are optimal and

E∅(I, δ) =
√
λ1δ21 + λ2δ22 .

Now consider the case when δ2/δ1 ∈ (0, an]. Define the operator S2 : l2,h → l2,h
so that

F (S2u)(·) = Λm−n(·)Fu(·).
Since

F ((I0 − S2I2)u0)(ξ) ≡ 0,
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then I0 = S2I2. Moreover,

∥S2z2∥2l2,h =
1

2π

∫ π/h

−π/h

Λ2(m−n)(ξ)|Fz2(ξ)|2 dξ ≤ a2(m−n)∥z2∥2l2,h .

It follows from Theorem 1 that in the case under consideration, the method

φ̂(y1, y2) = S2y2

is optimal and
E∅(I, δ) = am−nδ2.

Finally, if δ2 ≥ δ1 we define the operator S1 : l2,h → l2,h so that

F (S1u)(·) = Λm(·)Fu(·).
Then I0 = S1I1 and

∥S1z1∥2l2,h =
1

2π

∫ π/h

−π/h

Λ2m(ξ)|Fz1(ξ)|2 dξ ≤ ∥z1∥2l2,h .

It follows from Theorem 1 that the method

φ̂(y1, y2) = S1y1

is optimal and
E∅(I, δ) = δ1.

We prove that for δ2/δ1 ∈ (an, 1) the set of functions α(·), satisfying condition
(26) is nonempty. Consider the concave function

(28) y = xm/n, x ≥ 0.

Draw a tangent to the graph of this function at the point x0 > 0. It is easy to

verify that the tangent will have the form y = λ̂1 + λ̂2x, where

λ̂1 =
(
1− m

n

)
x
m/n
0 , λ̂2 =

m

n
x
m/n−1
0 .

Due to the concavity of the curve (28), for all x ≥ 0 the inequality

xm/n ≤ λ̂1 + λ̂2x

will hold.
Put

x = Λ2n(ξ), x0 =

(
δ2
δ1

)2

.

Then λ̂j = λj , j = 1, 2, and for all ξ ∈ [−π/h, π/h] the inequality

Λ2m(ξ) ≤ λ1 + λ2Λ
2n(ξ)

holds. It follows that
Λ2m(ξ)

λ1 + λ2Λ2n(ξ)
≤ 1.

Putting

α(ξ) =
λ2Λ

2n(ξ)

λ1 + λ2Λ2n(ξ)
,

we obtain

Λ2m(ξ)

(
|1− α(ξ)|2

λ1
+ Λ−2n(ξ)

|α(ξ)|2

λ2

)
=

Λ2m(ξ)

λ1 + λ2Λ2n(ξ)
≤ 1.

�
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If we consider the problem of optimal recovery of the solution at the instant of
time mτ by an inaccurately given solution at the instant of time nτ on the class

W = {u0 ∈ l2,h : ∥u0∥l2,h ≤ δ1 },

then from the same Theorem 1 it will follow that the methods φ̂(0, y2)(·) will be
optimal.

Note that for a continuous model of heat propagation, the result obtained in [25]
for t1 = 0, t2 = T (n = 2) and the intermediate point τ0, in which it is required
to recover the temperature distribution, in the one-dimensional case will coincide
with the limiting error of recovery and one of the methods constructed in Theorem
5 for h → 0 and τ → 0 (in this case, we must put a = 0).

We also note that a problem similar to the one considered when the process of
heat propagation occurs on a circle was considered in [22].
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