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Mathematical and Numerical Modeling of Slope 
Stability for the Mong Sen Landslide Event 
in the Trung Chai Commune, Sapa, Vietnam 

Binh Van Duong, Igor K. Fomenko, Lan Chau Nguyen, Kien Trung Nguyen, 
Tuan-Nghia Do, Denis N. Gorobtsov, Oleg V. Zerkal, and Hien The Dinh 

Abstract 

The northern mountainous region of Vietnam is particu-
larly susceptible to sediment-related disasters, such as 
landslides, during the rainy season. This paper presents 
slope stability modeling results for a landslide event trig-
gered by heavy rainfall in Trung Chai commune, Sapa, 
Vietnam. Stability simulations were conducted using 
input data, including 1-m DEM, the distribution and 
characteristics of slope materials, and the change of pore 
pressure ratio. The behavior of slopes under the impact of 
rainfall was analyzed using the limit equilibrium method 
and the finite element method, which are integrated into 
the programs of Rocscience Inc. In addition, since the 
Trung Chai commune is located in a seismically active 

region, single earthquakes or the combination of 
earthquakes and rainfall may trigger landslides. As a 
result, the study determined the relationship between seis-
mic loading and pore water pressure for the studied slope. 
The study results showed that both limit equilibrium and 
the finite element methods have high efficacy in modeling 
slope stability in this study. Therefore, this study 
recommended that these methods may be employed for 
slope stability studies in other regions of Vietnam or other 
regions of the world with similar geological conditions. 
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1 Introduction 

Loss of life and property may be caused by landslides in 
mountainous areas, particularly during or after prolonged 
periods of heavy rainfall. Understanding the factors that 
trigger and contribute to landslide occurrences and the 
subsequent debris transport distance is critical for landslide 
hazard assessment (Dai et al. 2003). Large residential 
communities are nevertheless frequently affected by the 
mass instability of soil slopes in regions of steep topography 
and experience prolonged hot and dry periods followed by 
extreme weather events (heavy rainfall, rainstorms). 
Although slope failures may originate because of human-
induced factors such as slope-top loading or the removal of 
the toe of a natural slope for construction activities, numerous 
natural slopes become unstable simply because of the impact 
of rainwater penetrating the slope material layers (Collins 
Brian and Znidarcic 2004). 

The interactions between landslide triggering and causa-
tive factors and the environment around them lead to the 
establishment and development of the landslide processes in

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39012-8_8&domain=pdf
mailto:duongvanbinh@humg.edu.vn
mailto:nguyenchaulan@utc.edu.vn
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the given area. Therefore, new insights into the prevention 
and mitigation of landslides may be gained through a better 
knowledge of the differences in landslide processes and the 
features of landslide movement (Yang et al. 2021). For this 
purpose, several studies on different landslide science aspects 
have been conducted, including case studies in numerous areas 
and their failure scenarios (Alimohammadlou et al. 2013). 
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This article presents the results of the slope stability anal-
ysis conducted in connection with a landslide event triggered 
by heavy rainfall in the Trung Chai commune, Sapa district, 
Vietnam. The stability of the analyzed slope was evaluated 
using finite element (FEM) and limit equilibrium (LEM) 
methods. By conducting deterministic and probabilistic 
analyses, this study determined the relationship between 
pore water pressure and the stability of the examined slope. 
In addition, the obtained relationship between the two pri-
mary landslide triggers (rainfall and seismic loading) is also a 
significant result of this study. 

2 Study Area 

Located in the northwest of Lao Cai Province, the Sapa 
district, which covers an area of 675.8 km2 and has an 
elevation of 150 m to more than 3000 m, is well-known as 
a famous tourist destination in Vietnam. In recent years, Sapa 
has experienced an increase in the frequency and magnitude 
of landslides due to rapid urbanization, construction, and agri-
culture. Most landslide incidents in the area were triggered by 
precipitation (Dang et al. 2018; Tien Bui et al. 2017). 

Trung Chai commune is located in the northeastern Sapa 
district, where the 4D national road connects Laocai city and 
the Sapa district. Trung Chai (14 landslides), Ta Van 
(16 landslides), and Ban Ho (27 landslides) are the three 
communes in Sapa that reported the highest number of 
landslides (Binh Van Duong et al. 2022). The combination 
of mountainous terrain and agricultural and construction 
activity has triggered numerous landslide events in this 
area. The sliding mass in this study (Fig. 1) was investigated 
during the construction of the Mong Sen Bridge, which 
connects the Sapa district and the Hanoi-Laocai expressway. 
This landslide event was triggered by a heavy rain event, 
which caused the displacement of slope materials and the 
formation of cracks on the surface of the sliding body. 

3 Evaluation of Slope Stability 
for the Mong Sen Landslide 

3.1 Methods 

Both the factor of safety (FS) and the probability of failure 
(PF) are significant factors to determine when assessing slope 
stability. The quality of topographic and geotechnical data 

plays a critical role in establishing a simulation model of 
slope behavior to achieve highly accurate analysis results 
(Azizi et al. 2020). It is widely accepted that the ratio between 
the available shear strength (s) and the equilibrium shear 
stress (τ) (shear stress along the sliding surface required to 
maintain the stability of the slope) is defined as the factor of 
safety value (Duncan et al. 2014): 

FS= 
s 
τ

ð1Þ 

Slope stability is frequently quantified in geotechnical engi-
neering using a factor of safety (FS) as the resulting value. 
Considered an indicator to define the likelihood of slope 
failures caused by a landslide, the FS value is used to predict 
the occurrence of landslide-related slope deformations 
(Fomenko et al. 2019; Fomenko and Zerkal 2017). By assum-
ing that the values of all model input parameters are accu-
rately known, the deterministic analysis produces a single 
value of FS. However, materials on slopes are frequently 
heterogeneous, with variations in spatial distribution and 
properties depending on the slope’s location and surrounding 
environment. Therefore, probabilistic analyses are especially 
helpful in slope stability studies because it allows the deter-
mination of the impact of uncertainty or variability in input 
parameters on the slope stability analysis results (Nagendran 
et al. 2019). Generally, statistical distributions can be 
assigned to the input parameters when conducting probabi-
listic analyses. Samples may be taken an unlimited number of 
times for each calculation, and combinations of these samples 
are used to determine the factor of safety (FS). The probabil-
ity of failure (PF) for the slope may be defined as follows 
(Cami et al. 2021), according to the Eq. (2): 

PF %ð  Þ= 
Number simulations with FS< 1 
Total number of simulations

ð2Þ 

In addition, a probabilistic analysis may also be conducted to 
determine the reliability index (RI), which is defined as the 
capacity of a system to perform necessary tasks under given 
circumstances for a predetermined amount of time (Wang 
and Constantino 2009). In a slope stability analysis, the 
safety of the slope is quantified by the reliability index 
based on the number of standard deviations that separate 
the best estimate of FS from the defined failure value of 1.0 
(Christian John et al. 1994). Along with the factor of safety 
value, the reliability index determined in probabilistic analy-
sis, which corresponds to the probability of failure, is also the 
indicator used to measure the stability of the slope. It has 
been determined that the greater the dependability index, the 
lower the probability of failure (Cheng and He 2020). Con-
sequently, the definition of an acceptable level of safety, i.e., 
the highest failure probability value without structural col-
lapse, is one of the most challenging aspects of reliability



analysis. However, there are currently different proposals on 
this issue (Douglas J. Kamien 1997; Withiam et al. 1998). In 
geotechnical design, it is frequently required to have a reli-
ability index value greater than 3.0 (i.e., PF equal to 0.001) to 
achieve performance that is better than “above average” 
(Abdulai and Sharifzadeh 2021). 
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Fig. 1 Location of landslide site 

3.2 Strength of Slope Materials 

When conducting a slope stability analysis, the slope 
materials and their strength properties must be well-defined 
to improve the performance of the slope behavior model. In 
stability analysis models, the strength of slope materials may 
be determined using various failure criteria. In limit equilib-
rium analyses, the Mohr-Coulomb Failure Criterion and the 
Infinite Strength Failure Criterion were employed to determine 
the strength parameters of the upper soil and intact rock layers, 
respectively. Meanwhile, the Mohr-Coulomb Failure Criterion 
was used in the analyses that utilized the finite element method. 

The soil samples were taken in the field survey during the 
dry and rainy seasons. Afterward, the physico-mechanical 
properties of the soil layer were determined using laboratory 
tests to provide input data for modeling. The direct shear test 
was conducted to determine the strength parameters of the 
Mohr-Coulomb criterion, including the friction angle and 
cohesion. The physico-mechanical properties of the soil 
layer are shown in Table 1. 

For modeling the behavior of slopes in stability studies, 
the pore water pressure ratio (ru) has been widely used to 
describe the pore water pressure condition. As a result of the 
absence of PWP data in this study, the pore water pressure at 
any position may be best described using the pore water 
pressure ratio proposed by Bishop and Morgenstern (1960): 

ru = 
u 
γh

ð3Þ 

where h denotes the depth of the point in the soil mass below 
the soil surface, and γ denotes the soil unit weight. 

The general solutions are based on the assumption of a 
constant pore water pressure ratio (ru) throughout the cross-
section, also known as a homogeneous pore water pressure 
distribution. However, the necessity for a single constant 
value is a significant drawback of the ru approach. The only 
circumstance in which the ru value is constant is when the 
piezometric line is at the ground surface, a scenario that 
occurs in nature relatively seldom. 

In this study, the SLIDE model (Liao et al. 2010) was used 
to evaluate the variation in pore water pressure ratio based on 
rainfall data gathered during a heavy rainfall event from 22: 
00 h on May 30 to 24:00 h on May 31, 2020. At 15:00 h on 
May 31, the maximum ru value was 0.286. The relationship 
between pore water pressure ratio and rainfall intensity is 
shown in Fig. 2.



Parameter Unit

) (
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Table 1 Parameters of soil layer Sampling season 

Dry season Rainy season 

Unit weight (γ) kN/m3 18.9 19.3 

Cohesion (c) kPa 22.0 20.0 

Friction angle (φ °) 16.3 15.1 

Fig. 2 Relationship between 
rainfall intensity and ru 

3.3 Model Calibration 

The models in this study were calibrated by comparing simu-
lation results with actual slope failure data. Until recently, 
slope stability and risk assessments based on deformation 
analysis had been conducted by various geotechnical 
engineers. With the introduction of 3D methods into 
computations for slope stability, it has become possible to 
solve these problems (Bar et al. 2021). However, while 
performing slope stability assessments, various challenges 
remain unsolved. They are primarily due to uncertainties in 
the calculation of slope stability, such as inaccuracies in 
determining the strength parameters of the slope materials, 
the selection of methods for solving the problem, algorithms 
for optimizing the sliding surface (using GLE limit equilib-
rium methods), and inaccuracies in the establishment of the 
geometric model (Fig. 3). 

Despite minor inconsistencies between the calculation 
result and the actual data on the position of the landslide 
body, the authors considered the results produced using the 
Yanbu simplified method to be the most acceptable for 
evaluating landslide stability (Figs. 4 and 5). 

3.4 Results of the Slope Stability Analysis 
Using LEM 

After configuring the Slide3 model’s input parameters, deter-
ministic and probabilistic analyses were performed to deter-
mine the slope stability associated with changes in the pore 
water pressure caused by actual rainfall. These simulations 

were performed in the dry season and during periods of heavy 
rain, which increased the pore water pressure in the soil layer. 

The analysis results indicated that the stability of the 
studied slope is maintained in the dry season. In simulations 
conducted during the dry season, the factor of safety 
(FS) value determined by probabilistic and deterministic 
analyses is 1.258 and 1.178, respectively. The probability 
of failure (PF) is 3.2%, which indicates that 3.2% of 1000 
samples evaluated had a factor of safety value of less than 
1 (Fig. 4). 

The penetration of rainwater into the soil layer led to an 
increase in the pore water pressure ratio, which in turn 
resulted in a reduction in the slope stability or factor-of-safety 
value. The pore water pressure ratio increased from 0 in the 
absence of rain to 0.286 at 15:00 h on May 31. In probabilis-
tic analysis, the FS value reduced from 1.258 to 0.901, 
whereas in deterministic analysis, it decreased from 1.178 
to 0.895 (Table 2). When the pore water pressure ratio 
reached its maximum value, the probability of failure 
increased from 3.2% to 80.6%. In addition, the analysis 
results revealed that the studied slope became unstable 
around 10:00 h on May 31 when the FS value was less than 
one (Fig. 5). 

Figures 6 and 7 show the relationship between the varia-
tion of the FS and PF values and the change in the pore water 
pressure ratio of the soil layer on the slope, as determined by 
the probabilistic analysis conducted in Slide3. Simulta-
neously, the analysis results performed by Slide3 also 
indicated a relationship between the probability of failure 
(PF) and the reliability index (RI) (Fig. 8).
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Fig. 3 Multimodal particle swarm optimization, Bishop’s method (a) and Spencer’s method (b) 

Fig. 4 The result of slope stability analysis using Slide3 in the dry season
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Fig. 5 The result of slope stability analysis using Slide3 at 10:00 h, May 31 

Table 2 Results of slope stability analysis using LEM 

Slide3 

Probabilistic analysis Deterministic analysis 

FS PF (%) RI FS 

1 0 1.258 3.2 1.85 1.178 1.164 

2 22 0.001 1.113 20.1 0.848 1.051 1.08 

3 23 0.001 1.113 20.1 0.848 1.051 1.08 

4 0 0.007 1.115 19.6 0.87 1.112 1.081 

5 1 0.008 1.098 23 0.754 1.076 1.073 

6 2 0.009 1.1 22.1 0.77 1.081 1.08 

7 3 0.008 1.098 23 0.754 1.076 1.073 

8 4 0.009 1.1 22.1 0.77 1.081 1.08 

9 5 0.011 1.069 28.6 0.555 1.082 1.075 

10 6 0.016 1.097 22.9 0.749 1.087 1.073 

11 7 0.027 1.103 22 0.784 1.057 1.062 

12 8 0.029 1.081 25.6 0.643 1.074 1.06 

13 9 0.091 1.054 32.7 0.431 1.038 1.025 

14 10 0.144 0.995 50.4 -0.014 0.954 0.986 

15 11 0.174 0.97 58.6 -0.225 0.946 0.972 

16 12 0.199 0.94 68.9 -0.504 0.941 0.929 

17 13 0.215 1.039 37.9 0.309 0.944 0.941 

18 14 0.269 0.983 55.6 -0.13 0.949 0.914 

19 15 0.286 0.901 80.6 -0.891 0.895 0.902
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Fig. 6 Relationship between FS 
and ru by probabilistic and 
deterministic analysis in Slide3 

Fig. 7 Relationship between PF 
and ru by probabilistic analysis in 
Slide3 

Meanwhile, a correlation between the factor of safety 
(FS) and the pore water pressure ratio was also determined 
using the deterministic analysis in Slide3 (Fig. 6). The higher 
the pore water pressure ratio in the soil layer, the lower the FS 
value and the higher the PF value. 

Using the “section creator” function in Slide3, a cross-
section was generated for stability analysis in Slide2 based on 
the three-dimensional slope analysis model in Slide3. After-
ward, slope stability assessments utilizing the same precipi-
tation scenario as in Slide3 were performed in Slide2. 

The outcomes of slope stability simulations during the dry 
season (a) and at the failure time of slope (b) are shown in 
Fig. 9. The position of the sliding surface is in the middle of 
the examined slope, which is relatively compatible with the 
sliding surface position determined by Slide3 and the actual 
sliding mass position. According to the 2D analysis results, 
the slope is stable throughout the dry season, as shown by the 
factor of safety (FS) value of 1.164. The pore water pressure 
ratio has increased because of rainwater penetration into the 
soil layer, resulting in a decrease in the factor of safety value. 

As the pore water pressure ratio increased from 0 to 0.286, 
the FS value reduced from 1.164 to 0.902 (Fig. 10). In 
addition, the analysis performed in Slide2 indicated that the 
slope became unstable on May 31, around 10:00 h, when the 
ru value reached 0.144, which is equivalent to the simulation 
result in Slide3. 

Table 2 summarizes the stability analysis results for the 
examined slope at each analysis step. As a result, we have 
determined that the factor of safety and probability of failure 
are the functions of the pore water pressure ratio. As seen in 
Table 2 and graphs, an increase in pore water pressure 
reduces the factor of safety value and increases the probabil-
ity of failure value. However, steps 17 and 18 of our research 
produced several unexpected results in Table 2. This issue 
can be explained as follows: 

1) The pore water pressure ratio is used to characterize pore-
water conditions in slope stability analyses. However, the 
necessity for a single constant value is a significant draw-
back of the ru method. It is well-known that the ru value is
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Fig. 8 Relationship between PF 
and RI by probabilistic analysis in 
Slide3 
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Fig. 9 The result of slope stability analysis using Slide2 in the dry season (a) and at 10:00 h, May 31 (b) 

a constant only when the piezometric line is at the ground 
surface, which rarely occurs in nature. Therefore, it is not 
an ideal method to simulate actual groundwater conditions 
in all circumstances because the presence of any negative 
pore-water pressures is omitted when conducting 
simulations. Although the factor-of-safety results are 
acceptable, the analysis is based on the imperfect predic-
tion of pore water pressure conditions. 

2) These unexpected results may be caused by the sampling 
technique, the number of samples, the type of analysis, or 
the parameters used to set the sliding surface search 
method when performing simulations. However, increas-
ing the number of analyzed samples and modifying the 

initial parameters will result in a considerable increase in 
analysis time and a significant increase in the demands on 
computational resources. Because the failure time of the 
slope has been determined, these anomalies have been 
accepted in this study. 

Along with the factor of safety and probability of failure, the 
reliability index (RI) is a critical outcome for evaluating slope 
stability. The relationship between the probability of failure 
and the reliability index is shown in Fig. 8. As indicated by 
the computed maximum reliability index of 1.85 < 3, it is 
necessary to implement protection measures to prevent this 
slope from becoming unstable. In addition, the analysis



results demonstrated that the analyzed slope becomes unsta-
ble rapidly under the impact of rainfall. 
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Fig. 10 Relationship between FS 
and ru using Slide2 

3.5 Results of the Slope Stability Analysis 
Using FEM 

Using the same input parameters as limit equilibrium 
analyses, two- and three-dimensional slope stability 
evaluations were conducted using the finite element method. 
As indicated by three-dimensional analysis using RS3, the 
slope is stable in the dry season with a critical strength 
reduction factor (SRF) of 1.32 (Fig. 11a). The penetration 
of rainwater into the soil caused an increase in pore water 
pressure in the sliding mass on the examined slope, resulting 
in a decrease in the critical strength reduction factor. The SRF 
value decreased from 1.32 to 0.96, corresponding to the pore 
pressure ratio increasing from 0 to 0.286 (Table 3). Addition-
ally, the analysis results indicated that the studied slope 
became unstable around 14:00 h on May 31, when the SRF 
reached 0.98 (Fig. 11b). 

An assessment result of the relationship between the criti-
cal strength reduction factor (SSR) as determined by the 
shear strength reduction method (SSR) integrated into RS3 
and the pore water pressure ratio in the soil layer on the 
examined slope is shown in Fig. 12. 

Generally, FS values determined by finite element analy-
sis are higher than those calculated by limit equilibrium 
analysis. The FS values determined by RS3 are, on average, 
1.06 times greater than those obtained by Slide3. The distri-
bution of the instability zone predicted by finite element 
analysis corresponds to the results of limit equilibrium 
analysis. 

For 2D slope stability analyses, the cross-section in RS2 
was built up in the same way as in Slide2. The computed 

cross-sections were then set up using a uniform finite element 
mesh consisting of three-noded triangular elements. Simulta-
neously, this study investigated the influence of element 
mesh selection on the outcomes of stability analyses using 
meshes with 5000 (Fig. 13), 10,000 (Fig. 14), and 20,000 
elements (Fig. 15). The SRF values obtained from the 5000 
and 10,000 element meshes are higher than the SRF values 
obtained from RS3, whereas the SRF values obtained from 
the 20,000-element mesh are lower than those obtained from 
RS3. For simulations with grids of 5000 and 10,000 
elements, the slope maintains a stable state with minimum 
strength reduction factors of 1.07 and 1.01, respectively. 
Meanwhile, the examined slope became unstable at about 
14:00 h on May 31 when the strength reduction factor was 
0.99, according to the stability analysis utilizing a 20,000-
element mesh. 

Similar to RS3, the results of slope stability analysis by 
RS2 revealed the relationship between the strength reduction 
factor (SRF) and the pore water pressure ratio. Figure 16 
shows the relationship between the strength reduction factor 
and the pore water pressure ratio using different element 
meshes. In addition, the relationship between the number of 
mesh elements and the strength reduction factor is shown in 
Fig. 17. As shown in the figures, the higher the number of 
mesh elements, the lower the calculated strength reduction 
factor. 

When the slope is affected by precipitation, the shear 
strength decreases, and the weight of the soil mass increases, 
causing a reduction in SRF. In addition, a quasi-linear rela-
tionship between these two variables was also determined. 
The study indicated that the appropriate selection of a finite 
element mesh is a crucial factor that directly influences the 
simulation results and slope stability assessment. The slope 
stability analysis results for each step are detailed in Table 3.
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Fig. 11 The result of the slope stability analysis using RS3 in the dry season (a) and at 14:00 h, May 31 (b) 

Table 3 Results of slope stability analysis using FEM 

RS2 

5000-element mesh 10,000-element mesh 20,000-element mesh 

SRF SRF SRF SRF 

1 0 1.43 1.35 1.3 1.32 

2 22 0.001 1.29 1.21 1.17 1.19 

3 23 0.001 1.29 1.21 1.17 1.19 

4 0 0.007 1.28 1.21 1.17 1.18 

5 1 0.008 1.28 1.21 1.17 1.18 

6 2 0.009 1.28 1.21 1.17 1.18 

7 3 0.008 1.28 1.21 1.17 1.18 

8 4 0.009 1.28 1.21 1.17 1.18 

9 5 0.011 1.28 1.21 1.17 1.18 

10 6 0.016 1.27 1.2 1.16 1.18 

11 7 0.027 1.27 1.2 1.15 1.17 

12 8 0.029 1.27 1.19 1.15 1.17 

13 9 0.091 1.22 1.15 1.11 1.12 

14 10 0.144 1.18 1.11 1.07 1.08 

15 11 0.174 1.16 1.09 1.05 1.05 

16 12 0.199 1.14 1.08 1.04 1.03 

17 13 0.215 1.13 1.06 1.02 1.02 

18 14 0.269 1.08 1.03 0.99 0.98 

19 15 0.286 1.07 1.01 0.98 0.96 

3.6 Comparison of the Slope Stability 
Analysis Results Using LEM and FEM 

All the results of calculating the change in FS values of the 
examined slope are shown in Fig. 18 to compare the 

difference in FS values between LEM and FEM stability 
analyses (Table 4). 

The study results revealed that the decreasing trend of the 
factor-of-safety graphs established by the two methods 
corresponds to the increase in the pore water pressure ratio.



b

b
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Fig. 12 Relationship between 
SRF and ru using RS3 
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Fig. 13 The result of the stability analysis using RS2 in the dry season (a) and at 14:00 h, May 31 (b) (5000-element mesh) 

Critical SRF : 1.03 

Total 
Displacement 
min (stage) : 0.00 m 

max (stage) : 0.05 m 

Total 
Displacement 
min (stage) : 0.00 m 

0.02 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 
max (stage) : 0.02 m 

0.05 

0.04 

0.04 

0.03 

0.03 

0.02 

0.02 

0.01 

0.01 

0.00 

0.00 

Critical SRF : 1.35a  

Fig. 14 The result of the stability analysis using RS2 in the dry season (a) and at 14:00 h, May 31 (b) (10,000-element mesh)



Nonetheless, analyses indicated that the finite element 
method yields greater FS values than those from the limit 
equilibrium method. In 3D simulations, the mean difference 

between the finite element method and the limit equilibrium 
method for calculating the FS values is only 6.03% (probabi-
listic) and 8.59% (deterministic). Meanwhile, in 2D analyses,
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Fig. 15 The result of the stability analysis using RS2 in the dry season (a) and at 14:00 h, May 31 (b) (20,000-element mesh) 

Fig. 16 Relationship between 
SRF and ru using RS2 

Fig. 17 Relationship between 
SRF and element mesh



the mean difference between the finite element method and 
the limit equilibrium method for the value of FS is 16.3 
(5000-element mesh), 11.28 (10,000-element mesh), and 
8.08% (20,000-element mesh), respectively. According to 
the simulation results, 3D analyses show a lower difference 
in FS values than 2D analyses. When comparing the 
outcomes of 2D and 3D finite element analyses, the mean 
difference in the FS values is 8.31 (5000-element mesh), 2.81 
(10,000-element mesh), and -0.69% (20,000-element 
mesh), respectively. The simulation results revealed that 2D 
analysis with the 20,000-element grid provides the most 
comparable results to 3D analysis. The mean difference in 
the FS values between the 2D and 3D simulations using the 
limit equilibrium method is 2.78% (probabilistic) and 0.09% 
(deterministic). The FS values obtained from the 3D limit 
equilibrium analyses compared to the 2D analyses are con-
sistent with the slope stability studies of numerous other 
authors.
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Fig. 18 Results of stability 
analysis using FEM and LEM 

Table 4 Difference between FS values 

Analysis method Mean difference between FS values (%) Min-max difference between FS values (%) 

FEM 3D and LEM 3D 6.03 -1.86 to 9.41 

8.59 3.16 to 11.68 

FEM 2D (5000-element mesh) and LEM 2D 16.3 15.37 to 18.6 

FEM 2D (10,000-element mesh) and LEM 2D 11.28 10.58 to 13.78 

FEM 2D (20,000-element mesh) and LEM 2D 8.08 7.43 to 10.67 

FEM 2D (5000-element mesh) and FEM 3D 8.31 7.09 to 10.28 

FEM 2D (10,000-element mesh) and FEM 3D 2.81 1.65 to 4.95 

FEM 2D (20,000-element mesh) and FEM 3D -0.69 -1.74 to 2.04 

LEM 3D and LEM 2D 2.78 -0.56 to 9.43 

0.09 -3.35 to 3.69 

3.7 Relationship Between Pore Water 
Pressure Ratio and Seismic Coefficient 

Landslides may be triggered by a single earthquake in the 
Sapa area since the district is located in a seismically active 

zone of Vietnam. In addition, earthquakes that occur during 
rainy periods may increase the probability and scale of 
landslides, therefore increasing the potential damage. As a 
result, a relationship between pore water pressure and earth-
quake loading has been established in this study for examined 
sliding mass (Fig. 19). The area above the trendline indicates 
instability, whereas the area under this trendline indicates 
slope stability. When the ru value is high, as shown in 
Fig. 19, even a minor earthquake might cause slope failures. 
Destabilization of the studied slope might occur because of 
individual earthquakes with a seismic coefficient of approxi-
mately 0.08 or rainfall with a ru value of more than 0.19. 
When considering the combined effects of the two triggers, 
the equation shown in Fig. 19 may be employed. This rela-
tionship may be established for any natural or artificial slope 
in the study area to provide the most comprehensive evalua-
tion of slope instability hazards. 

4 Conclusions 

The slope stability assessment has a critical role, especially 
given the increasing development of urban areas in Vietnam’s 
mountainous provinces. The assessment quality has a signifi-
cant impact on the selection of the worksite and the most



suitable solutions for preventing slope failures. Based on the 
above idea, a slope stability analysis has been conducted for a 
landslide in Trung Chai commune, Sapa district, Lao Cai 
province. 
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Fig. 19 Relationship between 
pore water pressure ratio and 
seismic coefficient 

The change in pore water pressure caused by rainfall was 
simulated using the pore water pressure ratio. Slope stability 
models may be established in two- and three-dimensions 
using input data obtained by field survey, including the 
digital elevation model of the sliding mass, the boundary 
between soil and rock layers, and their related physico-
mechanical parameters. The Slide2, Slide3, and RS2, RS3 
models were used to assess two-dimensional and three-
dimensional slope stability utilizing the limit equilibrium 
and finite element methods, two of the most frequently 
employed methods in slope stability analysis. The variation 
in slope stability was investigated using probabilistic and 
deterministic analyses simultaneously. The study outcomes 
were utilized to establish correlations between slope stability 
(i.e., the factor of safety and probability of failure) and the 
change in PWP condition and to identify the slope failure 
moment. Comparing the 2D and 3D analysis results, the 2D 
FEM analyses provide a higher FS value than the 3D FEM 
analyses, whereas the 2D LEM analyses yield a lower FS 
value than the 3D LEM analyses. A comparison of the results 
between the FEM simulations and the LEM simulations 
reveals that the 2D and 3D FEM simulations provide higher 
FS values. 

Despite some unexpected outcomes, the study 
investigated the behavior of slopes under the effect of precip-
itation and determined the moment of slope collapse. These 
results are consistent with the actual landslide occurrence, 
demonstrating the reliability of the simulation models. In 
Vietnam, the safety factor is currently the most significant 
parameter for evaluating slope stability. As a result, there is 
some subjective evaluation when studying slope stability, 
implying future risks. According to the research team, slope 
stability analysis reports should include additional values for 
the probability of failure and the reliability index. 

Additionally, it is necessary to establish a specific standard 
for the reliability index, which will be used to assess the 
probability of failure for various types of projects. 
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