A look at the wind asymmetries in the S-type symbiotic star EG Andromedae through the spectroscopy from Skalnaté Pleso Observatory

N. Shagatova¹

A. Skopal¹, E. Kundra¹, R. Komžík¹, S. Yu. Shugarov^{1,2}, T. Pribulla¹

¹ Astronomical Institute, Slovak Academy of Sciences, Tatranská Lomnica, Slovakia
 ² P.K. Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Russia

Supported by VEGA 2/0030/21 and APVV-20-0148 grants.

Symbiotic stars

- widest interacting binary stars (P≈few years)
- white dwarf + red giant
- neutral and ionized wind
- quiescent and active phases

S-type systems

S-type systems

D-type systems

– Mira-star 🛁

<u>radiative</u> acceleration of dust grains

Höfner 2015, ASP Conf. Ser. 497, 333

S-type systems

D-type systems

- Mira-star

O'Gorman et al. 2013, AJ 146, 98

radiative acceleration of dust grains

Höfner 2015, ASP Conf. Ser. 497, 333

The luminosity problem

- accretion heats up the white dwarf up to T \sim 100 000 K, L = 10 - 1000 $\rm L_{Sun}$

Required accretion rate : $10^{-8} - 10^{-7} M_{sun}$ / year

Measured mass-loss rate : $\sim 10^{\text{-7}}~\text{M}_{\text{sun}}$ / year

Bondi – Hoyle – Lyttleton accretion

- a point star moving through a gas cloud (uniform and free of self-gravity)
- material focused by gravity behind the star and accreted

• binary stars: mass accretion rate ~ few % of the mass loss rate

- canonical β -law $v(r) = v_{\infty} \left(1 - \frac{R}{r}\right)^{\beta}$

- **steeper** v(r) for cooler stars

Decin et al. 2015, A&A 574, A5

Crowley & Espey 2010, ASP Conf. Ser. 425, 191

EG Andromedae

- quiet symbiotic star (no recorded outburst)
- white dwarf (WD) + red giant (RG)
- *P* = 483 days, i ≈ 80°
- RG: $R = 75 \pm 10 R_{Sun}$, $L \approx (1 2) \times 10^{3} L_{Sun}$
- mass transfer via stellar wind
- RG wind terminal velocity of ~ 30 km/s

• many absorption lines of molecules and atoms originating in the cool giant's wind

- for EG And and SY Mus
- *IUE* and *HST* spectra
 - + adopted values from literature

- for EG And and SY Mus
- *IUE* and *HST* spectra
 - + adopted values from literature

- for EG And and SY Mus
- *IUE* and *HST* spectra
 - + adopted values from literature

- for EG And and SY Mus
- *IUE* and *HST* spectra
 - + adopted values from literature

•

٠

Velocity profile

Wind enhancement in the orbital-plane area

Object	i	$\dot{M}_{\rm sp} [M_{\odot} {\rm yr}^{-1}]$	model
EG And	70°	1.06×10^{-6}	Ι
	80°	9.00×10^{-7}	J
	90°	7.91×10^{-7}	Κ
SY Mus	80°	2.13×10^{-6}	L
	84°	1.65×10^{-6}	Μ
	90°	1.62×10^{-6}	Ν
	84°	6.51×10^{-7}	0

Shagatova et al. 2016, A&A 588, A83

Wind enhancement in the orbital-plane area

Object	i	$\dot{M}_{\rm sp} [M_{\odot} {\rm yr}^{-1}]$	model	:
EG And	70°	1.06×10^{-6}	Ι	•
	80°	9.00×10^{-7}	J	
	90°	7.91×10^{-7}	Κ	
SY Mus	80°	2.13×10^{-6}	L	
	84°	1.65×10^{-6}	Μ	
	90°	1.62×10^{-6}	Ν	
	84°	6.51×10^{-7}	Ο	

Shagatova et al. 2016, A&A 588, A83

<u>Mass-loss rate</u> for giants in S-type symbiotic systems from <u>line-of-sight</u> <u>independent</u> methods $\approx 10^{-7} M_{\odot}$ /year

> Seaquist et al. 1993, ApJ 410, 260 Mikołajewska et al. 2002, Adv. Space Res. 30, 2045 Skopal 2005, A&A 440, 995

Wind enhancement in the orbital-plane area

Shagatova et al. 2016, A&A 588, A83

<u>Mass-loss rate</u> for giants in S-type symbiotic systems from <u>line-of-sight</u> <u>independent</u> methods $\approx 10^{-7} M_{\odot}$ /year

> Seaquist et al. 1993, ApJ 410, 260 Mikołajewska et al. 2002, Adv. Space Res. 30, 2045 Skopal 2005, A&A 440, 995

Inconsistent with spherically symmetric wind.

Spectral analysis in the optical - observations

- optical spectra from years 2016 2023
- 1.3m telescope at Skalnaté Pleso, R = 30000, λ = 4200 7300 Å
- UBVR_c photometry for flux calibration (Sekeráš et al. 2019, G2, AAVSO)
- typical systematic error of radial velocity 0,2 0,6 km/s

Location of [OIII] λ 5007 line regions

Location of [OIII] λ 5007 line regions

Density in the [OIII] λ 5007 line regions

- [OIII] nebular lines are **weakened at higher densities** due to the presence of free electrons
- they originate in regions with n_e ~ 3 x 10⁷ cm⁻³, with upper limit of ~ 7 x 10⁷ cm⁻³
 (AX Per, Skopal et al. 2001)

 the <u>limiting mass-loss rate</u>: ~ 10⁻⁸ M_{sun} / year for the density ~ 10⁷ cm⁻³ in the vicinity of red giant (1-2 R_g from its surface)

a dense material occulting fraction of the polar wind below

Density in the [OIII] λ 5007 line regions

- [OIII] nebular lines are **weakened at higher densities** due to the presence of free electrons
- they originate in regions with n_e ~ 3 x 10⁷ cm⁻³, with upper limit of ~ 7 x 10⁷ cm⁻³
 (AX Per, Skopal et al. 2001)

 the <u>limiting mass-loss rate</u>: ~ 10⁻⁸ M_{sun} / year for the density ~ 10⁷ cm⁻³ in the vicinity of red giant (1-2 R_q from its surface)

--> diluted wind close to the red giant poles

a dense material occulting fraction of the polar wind below

H⁰ H⁺

[OIII] zone

Orbital variability of the FeI absorption lines

- slow outflow up to -5 km/s
- inflow values around $\phi = 0.1$

 $v_{r}^{G}(\phi)$ – radial velocity of the red giant

- $v_{svs} = -94.88 \text{ kms}^{-1}$ (Kenyon & Garcia 2016)
- Gaussian fits using Fityk (Wojdyr 2010)

• absorbed fluxes: maxima at $\phi \sim 0.6$

--→ asymmetry of the circumstellar matter distribution

Model atmosphere

- to model spectral profiles:
 - 10 Fe I absorption lines (5151 6469 Å)
 - 10 orbital phases
- <u>MARCS</u> model (1 1.1 R_q):
 - Gustafsson et al. 2008
 - spherical geometry, T_{eff} = 3700 K, M = 1.0 M_{sun}, [Fe/H] = 0
- simplified <u>extension</u> (1.1 150 R_a):
 - N_H and T at 150 R_g estimated from hydrodynamical simulation of M-giant wind (Wood et al. 2016)
 - asymmetric conical shape of the neutral zone taken into account

	<i>r</i> [<i>R</i> _g]	1 - 1.1	1.1 - 150	150
$N_{\rm H}(r) = \frac{n_1}{2\lambda_1 R_{\rm g}} \frac{1 + \xi r^{1-K}}{r^2}$	$\begin{array}{c} N_{\rm H} \\ T \\ P_e \end{array}$	MARCS MARCS MARCS	interpolation by function from Shagatova et al. $(2016)^{a}$ interpolation by exponential + linear function interpolation by exponential function	$\begin{array}{l} 10^{4}{\rm cm^{-3}}({\rm Wood}{\rm et}{\rm al},2016)\\ 30{\rm K}({\rm Wood}{\rm et}{\rm al},2016)\\ 10^{-17}{\rm dyne/cm^{2}}({\rm dense}{\rm ISM}{\rm clouds})^{b} \end{array}$

Line profile of FeI absorption lines

- atmosphere layer / distance from center and radial velocity as free parameters
- several broadening mechanisms included:
- natural, pressure, thermal and microturbulence
- Gray 2005, Halenka & Madej (2002), NIST and VALD databases
- pressure broadening was treated as originating from the collisions with neutral hydrogen

• to obtain lower and upper limits of $v_{rot} \sin(i)$ – two isotropic Gaussian macroturbulence models with $v_{mac} = 0$ and 3 km/s

• instrumental

- broadGaussFast function (PyAstronomy.pyasl library)
- at 5151 6469 Å, the spectral resolution of our spectra goes from \approx 39100 to 24000

Height in the atmosphere

- **r** = deepest layer of origin of the spectral line
- heights within ≈ 0.02 to ≈ 0.06 R_g above the RG photosphere

Radial and rotational velocities

Comparison with velocity profiles derived from measured near-orbital H^o column densities

Implications from measured radial velocities

Kravchenko et al. 2018, A&A 610, A29

Implications for wind focusing towards the orbital plane

• for $i = 80^{\circ} \pm 10^{\circ}$:

Implications for wind focusing towards the orbital plane

Implications for wind focusing towards the orbital plane

Wind focusing in S-type symbiotic stars

mass-loss rate from the nebular emission (independent of the line of sight):
 ~ 10⁻⁷ M_{sun} / year

<u>mass-loss rate from the densities near</u> orbital plane:
 ~ 10⁻⁶ M_{sup} / year

---> enhancement of the wind

- <u>mass-loss rate from the densities near RG poles</u>:
 ~ 10⁻⁸ M_{sun} / year
 - ---> dilution of the wind
- mechanism of the wind focusing towards the orbital plane:
 ---> support for both rotationally and gravitationally induced focusing of the wind as possible acting mechanism

Wind focusing in S-type symbiotic stars

mass-loss rate from the nebular emission (independent of the line of sight):
 ~ 10⁻⁷ M_{sun} / year

<u>mass-loss rate from the densities near</u> orbital plane:

~ 10⁻⁶ M_{sun} / year

---> enhancement of the wind

<u>mass-loss rate from the densities near RG poles</u>:
 ~ 10⁻⁸ M_{sun} / year

---> dilution of the wind

 mechanism of the wind focusing towards the orbital plane:
 ---> support for both rotationally and gravitationally induced focusing of the wind as possible acting mechanism

Wind focusing in S-type symbiotic stars

mass-loss rate from the nebular emission (independent of the line of sight):
 ~ 10⁻⁷ M_{sun} / year

<u>mass-loss rate from the densities near</u> orbital plane:

~ 10⁻⁶ M_{sun} / year

---> enhancement of the wind

<u>mass-loss rate from the densities near RG poles</u>:
 ~ 10⁻⁸ M_{sun} / year

---> dilution of the wind

 mechanism of the wind focusing towards the orbital plane:
 ---> support for both rotationally and gravitationally induced focusing of the wind as possible acting mechanism

Wind focusing in S-type symbiotic stars

mass-loss rate from the nebular emission (independent of the line of sight):
 ~ 10⁻⁷ M_{sun} / year

<u>mass-loss rate from the densities near</u> orbital plane:

~ 10⁻⁶ M_{sun} / year

---> enhancement of the wind

<u>mass-loss rate from the densities near RG poles</u>:
 ~ 10⁻⁸ M_{sun} / year

---> dilution of the wind

Wind focusing in S-type symbiotic stars

mass-loss rate from the nebular emission (independent of the line of sight):
 ~ 10⁻⁷ M_{sun} / year

<u>mass-loss rate from the densities near</u> orbital plane:

~ 10⁻⁶ M_{sun} / year

---> enhancement of the wind

<u>mass-loss rate from the densities near RG poles</u>:
 ~ 10⁻⁸ M_{sun} / year

---> dilution of the wind

mechanism of the wind focusing towards the orbital plane:
 ---> support for both rotationally and gravitationally induced
 focusing of the wind as possible acting mechanism

Thank you for your attention!