

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  SEPTEMBER 26 2023

Electron density-based protocol to recover the interacting
quantum atoms components of intermolecular binding
energy 
Aleksei A. Anisimov   ; Ivan V. Ananyev 

J. Chem. Phys. 159, 124113 (2023)
https://doi.org/10.1063/5.0167874

 15 D
ecem

ber 2023 08:26:33

https://pubs.aip.org/aip/jcp/article/159/12/124113/2912681/Electron-density-based-protocol-to-recover-the
https://pubs.aip.org/aip/jcp/article/159/12/124113/2912681/Electron-density-based-protocol-to-recover-the?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jcp/article/159/12/124113/2912681/Electron-density-based-protocol-to-recover-the?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0001-5097-5584
javascript:;
https://orcid.org/0000-0001-6867-7534
javascript:;
https://doi.org/10.1063/5.0167874
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2219938&setID=592934&channelID=0&CID=814978&banID=521401185&PID=0&textadID=0&tc=1&scheduleID=2141444&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3Ajcp%22%5D&mt=1702628793155114&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0167874%2F18138838%2F124113_1_5.0167874.pdf&hc=e66222c8d44e0800d393df73813313cb972a2632&location=


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Electron density-based protocol to recover
the interacting quantum atoms components
of intermolecular binding energy

Cite as: J. Chem. Phys. 159, 124113 (2023); doi: 10.1063/5.0167874
Submitted: 15 July 2023 • Accepted: 11 September 2023 •
Published Online: 26 September 2023

Aleksei A. Anisimov1 ,2,a) and Ivan V. Ananyev3

AFFILIATIONS
1 A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, GSP-1,
Moscow 119334, Russian Federation

2National Research University Higher School of Economics, Myasnitskaya Str. 20, Moscow 101000, Russian Federation
3N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prospect 31,
Moscow 119991, Russian Federation

a)Author to whom correspondence should be addressed: anisimov.alex.a@gmail.com

ABSTRACT
A new approach for obtaining interacting quantum atoms-defined components of binding energy of intermolecular interactions, which
bypasses the use of standard six-dimensional integrals and two-particle reduced density matrix (2-RDM) reconstruction, is proposed. To
examine this approach, three datasets calculated within the density functional theory framework using the def2-TZVP basis have been
explored. The first two, containing 53 weakly bound bimolecular associates and 13 molecular clusters taken from the crystal, were used in
protocol refinement, and the third one containing other 20 bimolecular and three cluster systems served as a validation reference. In addition,
to verify the performance of the proposed approach on an exact 2-RDM, calculations within the coupled cluster formalism were performed
for part of the first set systems using the cc-pVTZ basis set. The process of optimization of the proposed parametric model is considered, and
the role of various energy contributions in the formation of non-covalent interactions is discussed with regard to the obtained trends.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0167874

I. INTRODUCTION

Owing to the significant impact on the stability and properties
of macromolecules and condensed phases, intermolecular interac-
tions are fruitful objects of numerous studies.1–6 In this respect,
the role of theoretical modeling of such systems cannot be overes-
timated; at the present time, the solution of almost every problem
in the corresponding areas of scientific research is based on either
the preliminary prediction of system’s behavior or a posteriori anal-
ysis of experimental data. However, the full-scale modeling of large
chemical entities stabilized by intermolecular forces still remains a
challenging task if the ab initio footing of quantum chemistry is uti-
lized. This enables a root for the simplified theoretical models to
be used in practical purposes of the description of intermolecular
interactions.

The role of theoretical chemistry in this respect is to pro-
vide information on the transferability of an interaction between

different systems regarding its influence on their stability and prop-
erties. The transferability concept implies a decomposition of the
whole intermolecular interaction into chemically relevant, binding
contributions known as non-covalent interactions. Analyzing the
strength and nature of these contributions is the ultimate goal of
countless approaches that differ in both the definition of the binding
interaction and the metrics used.

One of the most rigorous and yet intuitive theoretical meth-
ods that can be used to analyze intermolecular interactions is the
combination of topological partitioning of 3D coordinate space7 and
extracting electronic molecular Hamiltonian contributions within
McWeeney’s separability theory.8 The topological partitioning onto
atomic basins in the real space is usually performed within the
Quantum Theory of Atoms in Molecules (QTAIM),9 i.e., by means
of the analysis of the electron density function ρ(r). The QTAIM
method is of a particular interest for the analysis of intermolecu-
lar interactions as it allows us to trace the most important bonding
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two-center interactions corresponding to so-called “privileged
exchange interaction channels.”10 That is, among all atomic pairs
from different molecules, QTAIM highlights those with the most
pronounced covalent character, which ensures the directionality
of an interaction11 and, hence, the transferability of its structural
characteristics. In its turn, McWeeney’s theory combined with the
integration over topological basins provides a route to decompose
the energy of interaction between any two chemically meaning-
ful fragments of space into the physically defined one-particle and
two-particle contributions. Such a treatment is widely known as
the Interacting Quantum Atoms (IQA)12,13 approach and serves
as the real space analog of commonly used energy decomposition
schemes,14–17 yet allowing us to analyze the interaction’s nature in
the orbital invariant manner.

Although the IQA method is successfully used in solving
various tasks, including those emerged in studies of intermolec-
ular interactions,18–22 its applicability to large systems struggles
from time-consuming computations. This remains a problem even
when invoking approximations to the most resource-intensive two-
particle contributions; the latter can be rigorously achieved only if
the exact two-particle reduced density matrix (2-RDM) is known.
The approximations for 2-RDM commonly used23,24 are based
on the treatment of the full one-particle reduced density matrix
(1-RDM) that raises two important problems. First, the accuracy
of the approximations is questioned even if the high rung post-
HF wavefunction theory is under consideration.25,26 Second, the
requirement for 1-RDM to be computed does not allow us to
reduce calculation time sufficiently and prevents from using the IQA
decomposition when only the trace of 1-RDM [ρ(r)] is known. This
eliminates the possibility to investigate probably the most impor-
tant systems with intermolecular interactions—crystalline objects.
For crystals, the ρ(r) function and its derivatives (computed, for
example, by means of periodic plane wave codes or reconstructed
from high-resolution x-ray diffraction datasets) are usually the only
available descriptors of electronic structure.

This paper aims to overcome these problems by providing a
protocol to estimate IQA contributions into the binding energy of
intermolecular interactions Ebind using the information about the
ρ(r) field only. Namely, three main IQA contributions into Ebind
(deformation energy and Coulombic and exchange–correlation
in situ energies) are approximated on the basis of electronic popu-
lation of intermolecular surface corresponding to bonding between
topological fragments27 and the widely known multipole expansion
of the Coulombic term.28 The performance of the suggested pro-
tocol is tested by means of the regression analysis for three model
sets of associates stabilized by intermolecular interactions. The more
representative set of molecular dimers (further referred to as DS)
stabilized by different types of non-covalent interactions is com-
posed of associates from the well-known S6629 and X4030 sets with
the addition of a few systems to obtain a more uniform intermolec-
ular energies distribution. The second set (hereinafter referred to as
CS) consists of several molecular clusters cut from the correspond-
ing optimized crystal structures and is designed to test interactions
formed by a caged central molecule with its supramolecular envi-
ronment, i.e., to emulate forces that stabilize packing of molecules
in a condensed state, such as crystals. While these two sets were
used for both tuning and testing the protocol, the third verification
set (VS, 20 bimolecular systems and three molecular clusters) was

utilized to provide an external validation of the protocol’s perfor-
mance when using the parameters fitted against the DS and CS
datasets. To reduce the computational cost, the IQA contributions
for both sets were approximated by means of the DFT scaling tech-
nique.31 However, to verify the reliability of the proposed protocol,
the exact two-particle IQA terms were calculated for some associates
from DS using the coupled cluster wavefunction.

The discussion is structured as follows. First, the IQA-based
decomposition of the intermolecular interaction energy is briefly
recalled (for a more descriptive consideration of IQA theory, the
reader is referred to the recent review13) and the approxima-
tions of corresponding IQA contributions are discussed. Then, the
approaches used to calculate the geometry, ρ(r) function, and IQA
terms for systems in DS and CS are detailed. Finally, the results
of regression analysis invoked to optimize and verify the proposed
protocol are summarized.

II. THEORETICAL BACKGROUND
A. Basics of the IQA method

As mentioned in Introduction, the essence of the QTAIM-
based IQA method is to combine the exhaustive ρ(r)-based topolog-
ical partitioning of a system onto atomic basins (Ω) and the reduced
density matrix formalism in order to decompose the total electronic
energy into all possible intra- and interatomic contributions,

E =∑
Ω

EΩ
self +

1
2∑Ω

∑

Ω′≠Ω
EΩΩ′

int . (1)

The additivity of contributions for each Ω enables a simple
procedure to calculate the energy of any multiatomic fragment. By
setting Ω and Ω′ as unions of basins composing two disjoint mul-
tiatomic fragments A and B, Eq. (1) can be applied to calculate not
only so-called self-energies of these fragments but also the potential
energy of interaction between them in their in situ states. The latter
is known32 as the in situ interaction energy Ein situ and is simply equal
to EAB

int (the sum of corresponding EΩΩ′
int terms).

The RDM formalism allows us to further decompose each con-
tribution from (1) into one- and two-particle terms. However, for
practical purposes of reducing computational cost, the decomposi-
tion of EΩΩ′

int is of more interest as it allows us to elucidate the nature
of an interfragment interaction by performing the IQA calculations
only for associates in their bonded, in situ state of interest. Indeed,
all terms of the EAB

int contribution can be grouped by their depen-
dence on 1-RDM and 2-RDM to provide corresponding classical
Coulombic and exchange–correlation energies,

EAB
int = VAB

C + VAB
xc =∑

Ω∈A
∑

Ω′∈B
VΩΩ′

C +∑

Ω∈A
∑

Ω′∈B
VΩΩ′

xc . (2)

The VAB
C contribution is responsible for the classical electro-

static component and can be computed exactly from the correspond-
ing charge densities,

VAB
C =∑

Ω∈A
∑

Ω′∈B
∫

Ω

dr1∫

Ω′
dr2

×
{ZΩδ(r1 − RΩ) − ρ(r1)} ⋅ {ZΩ′δ(r2 − RΩ′) − ρ(r2)}

r12
. (3)
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In its turn, the non-classical VAB
xc contribution in (2) formally

depends on the exchange–correlation part of 2-RDM ρxc(r1, r2),

VAB
xc =∑

Ω∈A
∑

Ω′∈B
∫

Ω
dr1∫

Ω′
dr2

ρXC
2 (r1, r2)

r12
. (4)

The VAB
xc term is known33 to be connected with the delocaliza-

tion index,34 which basically demonstrates how much the electrons
of two atoms are prone to association, thereby serving as the real-
space analog of bond order.35 In other words, the VAB

xc term pro-
vides information on covalent character of the interaction between
A and B.36

Combining decompositions (1) and (2), one can write the bind-
ing energy Ebind (measurable dissociation energy minus zero-point
terms and relaxation of nuclei) in the following manner:32

Ebind = Edef + Ein situ = Edef + VAB
C + VAB

xc . (5)

In the context of intermolecular interactions, A and B correspond
to the unions of basins from different molecules and Edef denotes
the change in self-energy of these molecules (including intra- and
interatomic terms) occurring upon the formation of intermolecular
interaction.

The IQA analysis can be very time consuming for large systems,
mostly due to high resource-intensity of two-particle and, especially,
diatomic terms computation.13 Some previously developed tricks27

and observations will be discussed in Sec. II B with the aim to make
substantial CPU time savings for the IQA analysis of intermolecular
interactions based on decomposition (5).

B. Electron density-based approximations
of IQA contributions into the intermolecular
binding energy

Evidently, the exchange–correlation contribution is the most
problematic term of any energy decomposition. As mentioned,
it requires the knowledge of 2-RDM that formally restricts the
applicability of the IQA approach only to wave function theories
and forces one to handle rather voluminous matrices. To avoid
these inconveniences, a number of solutions were developed for
both density functional theory (DFT) and wavefunction theory
(WFT, post-HF) methods. For the Kohn–Sham version of DFT,
the exchange–correlation IQA contributions are commonly evalu-
ated using atomic scaling factors31,37 (though the bond order density
approach is also known38,39) with the VΩΩ′

xc term estimated from
the Hartree–Fock exchange integrals over Kohn–Sham orbitals. In
contrast to the fully additive DFT IQA schemes, the known 2-
RDM approximations for the post-HF methods struggle to provide
the correct value of total electronic energy and are based on the
reduced density matrix functional theory (RDMFT40,41) utilizing
natural orbitals and their occupation numbers.23,24 Finally, the mul-
tipolar approach VΩΩ′

xc is also known with the delocalization index
(still depending on 2-RDM) being the first term of the expansion.27

Anyhow, all mentioned approximations are based on the con-
sideration of at least one-particle density matrix that prevents IQA
to be used in any orbital-free description of electronic structure.
Recently,27 inspired by the exchange–correlation rationalization10

of bonding between QTAIM topological atoms and the similar-
ity between atomic surface terms of the hypervirial theorem42–44

and delocalization indices, we proposed the following model for
the interatomic VΩΩ′

xc contribution, which is solely based on the
peculiarities of ρ(r) function:

VΩΩ′
xc ≅

k
∣RΩΩ′ ∣

p2 ∮S
ds(r)RΩΩ′ ⋅ n(r)ρ(r)

p1
+ b. (6)

Here, k, b, p1, and p2 are the parameters obtained by a fitting
procedure and RΩΩ′ is the internuclear vector; the integration is
performed over the zero-flux surface of ρ(r) separating two topo-
logical basins. The reliability of this model was validated for diatomic
systems only where it allows us to reproduce VΩΩ′

xc (at least, approx-
imated by means of RDMFT) with sufficiently high accuracy.27 Its
applicability in the case of intermolecular interactions will be shown
in this paper based on the following extension to the interfragment
energy:

VAB
xc ≅ b + k

⎛

⎜

⎝

∑

S(Ω∣Ω′)

1
∣RΩΩ′ ∣

p2 ∮S(Ω∣Ω′)
ds(r)RΩΩ′ ⋅ n(r)ρ(r)

p1
⎞

⎟

⎠

,

(7)
where the summation is carried out for all interatomic surfaces
between atoms Ω and Ω′ denoting QTAIM bonding contributions
and composing the whole intermolecular surface. Hereafter, this
sum will be referred to as integral for simplicity.

The next component of Ebind to be approximated, namely, the
deformation energy Edef , is responsible for the rearrangements of
electronic structure upon the formation of interaction and describes
charge redistribution as well as changes of spin states and kinetic
energies of the fragments. This term is no less problematic to
evaluate due to the need of additional computations of the free,
non-interacting fragments. Luckily, a possible interrelation between
the deformation energy and VAB

xc was noticed previously for inter-
molecular interactions (see, for instance, Ref. 45). The authors of the
mentioned paper stated that these terms “virtually cancel” each other
for the interactions of LP. . .π type; in fact, VAB

xc and Edef were found
to be nearly equal in absolute value. It can be assumed that this ten-
dency can be extended to other types of non-covalent interactions.
The analysis of IQA terms for some bimolecular datasets published
previously,46,47 indeed, demonstrates that the VAB

xc ≅ −Edef trend
holds for various types of non-covalent interactions except for those
with a predominantly covalent character (i.e., with a large magni-
tude of VAB

xc : GeO2⋅ ⋅ ⋅Br−, GeH3F⋅ ⋅ ⋅N3
−, SiO2⋅ ⋅ ⋅CO, GeH4⋅ ⋅ ⋅F−,

SiO2⋅ ⋅ ⋅NCH, SiH3F⋅ ⋅ ⋅N3
−, SiO2⋅ ⋅ ⋅Br−, SiO2⋅ ⋅ ⋅CS, SiH4⋅ ⋅ ⋅F−; see

Fig. S1).
Keeping in mind that the most important reason for the elec-

tronic structure deformation occurred upon the formation of weak
interactions (such as intermolecular ones) is the redistribution of
electronic charge; the interrelation between VAB

xc and Edef terms can
be rationalized as the consequence of ρ(r) behavior. The VΩΩ′

xc terms
are linked with the delocalization phenomenon, which is always
a two-side coin: the delocalization of electrons between two space
basins is related to the intrabasin localization of electrons through
the electronic population. With a constant value of electronic popu-
lation (the situation that is commonly observed upon the formation
of intermolecular interactions), an increase in the delocalization
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index lowers the localization one. In the same manner, according
to the stationary atomic (fragment) hypervirial theorem, the ema-
nation of a new intermolecular surface is always the reflection of
changes occurring within the atomic basins. The surface integral
in (6) approximating the VΩΩ′

xc terms can be seen as the measure
of these rearrangements as it is linked with the basin integrals of
rΩ ⋅ ∇ρ(rΩ) (where rΩ is a position vector centered on nucleus Ω)
at constant electronic populations from the perspective of the diver-
gence theorem, which describes a special case of the hypervirial
theorem for the ̂r2

Ω density momentum operator.48 These observa-
tions allow us to use the r.h.s. of (6) and (7) (probably, with the
reparameterization to increase its accuracy) to evaluate Edef values
for intermolecular interactions.

Finally, the electrostatic contribution is to be discussed. While
it can be calculated directly from the charge density [see Eq. (3)], the
computations of corresponding six-dimensional integrals are still
too consuming. The most known and widely used approximation
to VΩΩ′

C deals with the multipolar approach utilizing a binomial Tay-
lor expansion of r−1

12 = ∣RΩΩ′ − (r1 − r2)∣
−1 (∣RΩΩ′ ∣ is the internuclear

distance). The applicability of this approximation was thoroughly
studied (in particular, by the group of Popelier28,49–51) to reconstruct
the atomic electrostatic potentials and the VΩΩ′

C energies with a less
than 1 kcal/mol accuracy. In particular, a fast pseudo-convergence
for the VΩΩ′

C expansions was observed for atomic pairs having
either low values of electron density within the interatomic region
or large magnitudes of RΩΩ′ that enabled an extensive use of this
approximation in studies of intermolecular interactions and even in
developments of new force fields for long-range interactions.52

Although there are at least two known equivalent formulations
of VΩΩ′

C expansions (in spherical harmonics28,53 and Cartesian ten-
sors), in this work, we focused on the Buckingham-type expansion54

of electrostatic energy calculated for each pair of topological atoms,

VΩΩ′
C = TqΩqΩ′

+ Tα(qΩμΩ′
α − qΩ′μΩ

α )

+ Tαβ(
1
3

qΩΘΩ′
αβ +

1
3

qΩ′ΘΩ
αβ − μΩ

α μΩ′
β )

+ Tαβγ

⎛

⎜
⎜
⎜

⎝

1
15

qΩΦΩ′
αβγ −

1
15

qΩ′ΦΩ
αβγ −

−
1
3

μΩ
α ΘΩ′

βγ +
1
3

μΩ′
α ΘΩ

βγ

⎞

⎟
⎟
⎟

⎠

+ ⋅ ⋅ ⋅ , (8)

where qΩ, μΩ
α , ΘΩ

αβ, ΦΩ
αβγ are the charge, dipole, quadrupole, and

octupole traceless moments of the atomic basin Ω (defined solely
in terms of moments of electron density distribution) and T is the
corresponding symmetric tensor (Tαβγδ. . . = ∇α∇β∇γ∇δ . . .R−1).

III. COMPUTATIONAL METHODS
A. Models, quantum chemistry,
and IQA computations

Two test sets of model species and their combinations were
considered for searching, checking, and analyzing the proposed
trends (see Tables S1 and S2), while the third set (Table S3) is con-
structed to validate the performance of the proposed protocol on
systems not included in the parameter optimization procedure. The
weakly bonded dimer set (referred to as DS) with various types of

intermolecular interactions consists of systems from the well-known
S6629 and X4055 sets, and few new systems were also added in order
to obtain a more uniform distribution of intermolecular energies.
Quantum chemical calculations were carried out using two meth-
ods: the PBE0 functional,56 which is considered the gold standard
in density functional theory,57 and the coupled-cluster with single
and double exitations (CCSD) theory,58 which is considered the gold
standard among post-HF methods.

In the former case, the calculation was carried out using
the Gaussian 09 (rev D03) program,59 and the standard Ahlrich’s
basis def2-TZVP was used.60 The optimal geometry was found for
each dimer with the use of the tight convergence criteria and the
Grimme’s dispersion correction61 (Becke–Johnson damping62). All
structures from DS correspond to the energy minima according
to the normal mode calculations (ultrafine grids were used). The
QTAIM and DFT IQA analysis was performed using the AIMAll
program.63

In the case of CCSD calculations, the geometry optimization
was performed in the Gaussian program, whereas the exact unre-
laxed second-order density matrices were obtained for the resulting
geometries using the MRCC program64,65 at the facilities of JRC
PMR IGIC RAS. Due to the increased computational cost, the ana-
lyzed set was reduced, and the cc-pVTZ66 basis set was chosen.
For the exact RDMs, the QTAIM and IQA computations were per-
formed using the TWOE program.67–69 This shortened set will be
further referred to as SS.

The second set consists of so-called caged systems (further
referred to as CS; see Table S2), which are represented by molecular
clusters cut from the corresponding optimized crystal structures.70

For these systems, the following procedures were conducted. First
of all, the full crystal structure relaxation was initially performed
using the CRYSTAL1771,72 software at the PBE0-D3/def2TZVP60

level. Two approaches were then investigated using the same level
of theory in the Gaussian 09 (rev D03) program:59 the most straight-
forward one included the generation of wavefunctions for isolated
molecular clusters based on CRYSTAL17 fixed geometry data and
the second one involved additional geometry optimization of each
central molecule in cluster in order to obtain more reasonable Edef
values. In both cases, the QTAIM and IQA analysis was performed
by means of the AIMAll program.63 Both strategies generally showed
similar values and trends (Fig. S2), but for some systems, the results
for the second approach were somewhat inadequate with highly
overestimated values of the energy components (see Table S2)—for
this reason, it was decided to focus on the first approach.

The EAB
int , VAB

C , and VAB
xc contributions were calculated as the

sums of corresponding pair energies between atoms of two dif-
ferent molecules (DS and SS) and between atoms of the central
molecule and surrounding molecules (CS). Due to the unfeasibility
of straightforward variational calculations of Ebind and Edef values for
CS (as the clusters without central molecules cannot be considered
as free of intermolecular interactions), the IQA-based approxima-
tion was used. Recently, the values of Ebind calculated using this
simple approach have been found to be in rather good agreement
with the crystal lattice energies Ecoh.70 Namely, the Ebind and Edef
terms were estimated as the differences of corresponding energies
(the total electronic one for Ebind and the self-energy for Edef ) of
a central molecule in its bounded (in cluster) and isolated states,
multiplied by two to scale the resulting molecular energy to the
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bimolecular set level. Indeed, while the interaction energy and its
components for one molecule need to be multiplied by a number of
molecules in crystal to model extensive specific quantity, a proper
comparison between one-molecule (central molecules from CS) and
two-molecule (DS) energetic values requires the multiplication of
the formers by two.

The third set (referred to as VS) is intended to verify the para-
meters obtained for DS and CS. It includes 20 systems from D1200,73

SH250,74 R739,75 HB375,76 and HB300SPX77 sets as well as three
caged systems (see Table S3) in order to obtain a representative range
of interaction types and energies. All the quantum chemical and IQA
calculations for this set were carried out in a completely analogous
manner to the DS and CS systems.

B. Processing of interatomic surfaces
The calculations of the surface integrals in the r.h.s. of expres-

sion (7) were performed using a self-written script based on the
modified Multiwfn program78 and approximating IASes numeri-
cally (due to the absence of analytical solutions for IAS79). The stan-
dard algorithm of IAS processing was slightly changed to increase
numerical integration accuracy by avoiding the widely known prob-
lem of “free space” arising for weak and non-directional noncovalent
interactions. In particular, this issue was faced for many systems
from the CS when the standard Multiwfn algorithm was used (see,
for instance, Fig. S3). Note that no such problem was observed for
the skeletal trajectories from AIMAll used to perform the IQA com-
putations (see above); a trivial test on the sanity of the resulting
volume integrals is passed (atomic Lagrangian values were of 10−5

order in magnitude for all systems). The modified algorithm is as
follows:

(1) Generation of skeletal trajectories using the bisection method
starting at the (3, −1) critical point of ρ(r). For each surface,
there were 100 trajectories of 200 points with 0.03 a.u. step
(see Fig. S4).

(2) Obtaining an integration grid by specific partitioning of sec-
tors between two neighboring skeletal trajectories. First, the
spaces between the skeletal trajectories are divided into trian-
gles in such a way that the added section between the points
has minimal length. Next, for each triangle, if the length of
added section exceeds the distance between the points in the
skeletal trajectories, an additional partitioning is performed,
leading to objects with a smaller area—tetragons and triangle,
the centers of which are the integration grid (see Fig. S5).

The accuracy of this algorithm was verified by comparison
with an external standard; its role was played by “flat” integrals
∮S ds(r)ρ(r) generated by means of the AIMAll program for the DS.
These integrals were also calculated using the described approach,
and the values turned to be quite similar (see Table S4) with the
mean absolute deviation being less than 0.0011 a.u. Thus, the pro-
posed algorithm for calculating surface integrals can be considered
as sufficient for the purposes of this paper.

C. Optimization of protocol parameters
The optimization of parameters of the model (7) was made by

an iterative scheme used in the previous work:27 the parameters p1
and p2 were optimized (starting from 1.0 to 1.0, respectively) by the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method80–83 using the
SciPy library in order to obtain the highest coefficient of determi-
nation for a linear trend with coefficients k and b. Hence, at each
step, for the parameters p1 and p2, the coefficients k and b were
linearly adjusted by the least squares method and the correspond-
ing coefficient of determination was calculated, which later served as
the value of the function of arguments p1 and p2 maximized by the
BFGS method. For non-linear optimization, the dimensionless value
of 5 × 10−3 was used as the numerical gradient cutoff.

In order to obtain the Coulomb part of intermolecular bind-
ing energy without the direct six-dimensional integrations, we
decided to rely on the multipole expansion in terms of Buckingham-
type Cartesian tensors,54 which were calculated for QTAIM atomic
basins up to and including the 1/R−7

AB terms (i.e., including all
dipole–quadrupole and charge–octupole energies) via the modified
Multiwfn program.78

IV. THE VERIFICATION OF THE PROPOSED PROTOCOL
A. Exchange–correlation contribution
into in situ intermolecular energy

We start from checking the performance of the proposed para-
metric model (7) to estimate VAB

xc in the case of intermolecular
interactions. The regression based on the optimized p1 and p2 para-
meters demonstrates an excellent quality for both the DS and CS
(see Table I and Figs. 1 and S6). Moreover, the observed depen-
dence is also preserved if the exact 2-RDMs are used (i.e., for the
SS), albeit with slightly different resulting parameters. The obtained
mean absolute errors (MAEs) for the model with the optimal para-
meters are as follows: 0.35 kcal/mol (DS), 1.66 kcal/mol (CS), and
0.35 kcal/mol (SS).

Two important notes should be made regarding the observed
trends. First, the reason for the difference in the parameters obtained
by the optimization for DS and SS (especially in values of k) is to
be mentioned. This difference is clearly due to the approximations
used to calculate interatomic exchange–correlation energies from
DFT (see discussion above): the Hartree–Fock functional underes-
timates correlation effects. Second, the optimized parameters in the
case of SS (Fig. 1) are somewhat different from those for diatomic
systems27 (p1 = 1.113 and p2 = 1.094 with k = −0.416 and b = −0.001
for diatomics; p1 = 1.078 and p2 = 1.028 with k = −0.301 and
b = −0.0007 for SS). Although this difference is negligible espe-
cially taking into account the use of Müller23 approximation for
diatomics, there may be several additional reasons, including the
rather small size of the SS. Moreover, it should be noted that the

TABLE I. Data for the linear trends between VAB
xc and model (7) (at starting and

optimized parameters).

Test set p1 p2 k b R2

DS 1.0 1.0 −0.202 0.0036 0.9829
DS 1.137 1.053 −0.389 0.0006 0.9975
CS 1.0 1.0 −0.198 0.0315 0.9338
CS 1.195 1.013 −0.430 −0.0105 0.9945
SS 1.0 1.0 −0.204 0.0019 0.9935
SS 1.078 1.028 −0.301 0.0007 0.9969
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FIG. 1. The obtained linear trend between minus intermolecular
exchange–correlation energy −VAB

ee XC and the integral for DS and SS (top)
and for CS (bottom). The parameters p1 and p2 are taken from the optimization.
All quantities are given in a.u.

deviation of the p1 and p2 parameters from the optimized values
affects the coefficient of determination only slightly. The numerical
gradient magnitude for the last steps of optimization does not exceed
1 × 10−2, which indicates a gentle slope of R2 as a function of para-
meters near R2

= 0.99. Nevertheless, the performance of the trend
for SS together with its similarity with that for diatomics demon-
strates the reliability of the model (7) for calculations of the VAB

xc
component for intermolecular interactions.

Finally, the results for the CS and DS show a remarkable sim-
ilarity that allows us to use the average values of parameters to
estimate VAB

xc for both the isolated and crystalline systems on the
level of PBE0 method accuracy. Indeed, the optimization of (7) for
the combined set DS+CS results in p1 = 1.171 and p2 = 1.044 with
the MAE value equal to 0.82 kcal/mol (see Fig. 2).

Moreover, the external validation of model (7) confirms its
robustness. Namely, its use with the parameters obtained for the
DS+CS demonstrates a preservation of the protocol performance for
the VS: the observed coefficients of linear regression coincide with
those obtained earlier, and R2 retains a high value with the MAE
value equal to 1.27 kcal/mol (see Fig. 3).

B. Deformation energy contribution
In full agreement with the assumption that the deformation

energy should be compensated by the VAB
xc term for any weak

FIG. 2. The obtained linear trend between minus intermolecular
exchange–correlation energy −VΩΩ′

ee XC and the integral for the combined
DS+CS using the optimal parameters. All quantities are given in a.u.

intermolecular interaction (see above), the comparison of IQA
components for DS, CS, and SS demonstrates excellent lin-
ear dependencies between VAB

xc and Edef (see Table II and
Fig. S7).

FIG. 3. The obtained linear trend between minus intermolecular
exchange–correlation energy −VΩΩ′

ee XC and the integral for the VS using the
parameters from optimization against the combined DS+CS. All quantities are
given in a.u.
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TABLE II. Data for the linear dependence Edef ∼ VAB
xc .

Edef = k ⋅ VΩΩ′
xc + b

Test set k b R2

DS −1.018 −0.0004 0.9970
CS −1.156 −0.0134 0.9924
SS −0.979 −0.0005 0.9962

TABLE III. Data for linear dependencies between the parametric model (optimized
against VΩΩ′

xc ) and Edef .

Edef = k ⋅ Integral + b

Test set p1 p2 k b R2

DS 1.137 1.053 0.396 −0.0009 0.9950
CS 1.195 1.013 0.498 −0.0013 0.9875
SS 1.078 1.028 0.295 −0.0012 0.9941
DS+CS 1.171 1.044 0.459 −0.0007 0.9982

From this, model (7) with the parameters optimized against
VAB

xc values should already be a satisfactory approximation to Edef .
Indeed, the corresponding determination coefficients are rather high
(see Table III and Fig. S8), while the MAE values are 0.49, 2.78, 0.95,
and 0.48 kcal/mol for DS, CS, DS+CS, and SS, respectively.

The optimization against Edef expectedly results in the increas-
ing of R2 (Table IV and Fig. S9) and lowering errors: 0.48, 1.1, 0.94,
and 0.42 kcal/mol for DS, CS, DS+CS, and SS, respectively. It should
be noted that the resulting parameters R2 and MAEs deviate only
slightly from those obtained by the optimization against VAB

xc for DS,
SS, and DS+CS.

This contrasts with the CS where the optimal values of p1 and
p2 differ significantly for the VAB

xc and Edef estimations. The behav-
ior of the optimization trajectory for Edef can be explained by the
shortcoming of the deformation energy definition used for the caged
systems (see Sec. III for details). The doubling of the change of
self-energy of the central molecule is only a crude approximation
to describe the deformation of the entire molecular cluster as it
obviously produces higher Edef values due to the overestimation of
energy changes of boundary molecules. Despite this problem for
caged systems, the combined DS+CS is still of a sufficient quality
that allows us to use the obtained parameters to estimate defor-
mation contributions of Ebind at the DFT accuracy. Again, model

TABLE IV. Data for linear trends obtained by re-optimization of parameters p1 and p2
for model (7) against Edef .

Test set p1 p2 k b R2

DS 1.136 1.069 0.402 −0.0009 0.9951
CS 1.289 0.620 0.452 −0.0009 0.9912
SS 1.115 1.039 0.354 −0.0007 0.9949
DS+CS 1.191 1.045 0.507 −0.0006 0.9982

FIG. 4. The obtained linear trend between deformation energy Edef and the inte-
gral for the VS using the parameters from optimization for combined DS+CS. All
quantities are given in a.u.

(7) preserves its performance (now for estimations of deformation
energy) for the VS systems if the DS+CS parameters are used: there
is good agreement between the observed and previously obtained k
and b coefficients, while the R2 value is still high and the MAE value
is less than 1 kcal/mol (see Fig. 4).

C. Electrostatic term
The last component of intermolecular binding energy Ebind to

be approximated is the Coulomb contribution VAB
C . It should be

noted that the direct optimization of model (7) against this term
provides unsatisfactory results (see Table V). In other words, the
electronic population of topologically defined intermolecular surface
cannot be used to correctly describe the Coulomb contribution into
the in situ intermolecular energy. This is in total agreement with the
known dependence of the topological bonding on not Coulombic
but exchange–correlation energies.10,48

In its turn, the multipole approximation of VΩΩ′
C terms by

expansion (8) truncated up to 1/R−7
ΩΩ′ terms provides a reasonable

alternative to the exact calculations based on Eq. (3). The trends
obtained for the DS, CS, DS+CS, and SS (Fig. 5 and S10) are of an
excellent quality with the corresponding MAEs being less than 0.3,
2.1, 0.6, and 0.3 kcal/mol.

TABLE V. Data for linear trends obtained by re-optimization of parameters p1 and p2

for model (7) against VΩΩ′
C .

Test set p1 p2 k b R2

DS 0.189 4.121 −0.029 0.0016 0.9467
CS 1.617 0.639 −0.688 0.0007 0.9627
SS 1.585 0.495 −0.523 0.0197 0.840
DS+CS 1.818 0.641 −1.243 0.0004 0.9100
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FIG. 5. The linear trend for the combined DS+CS (top) and the SS (bottom)
between the approximated VΩΩ′

C using the multipole expansion and actual VΩΩ′
C

retrieved from the ordinary IQA procedure. All quantities are given in a.u.

D. Total binding energy of intermolecular
interaction

Given the demonstrated possibility of restoring all the main
components of Ebind, it is of interest to verify the applicability of
the approximations used in obtaining this integral quantity by sim-
ple summation of its evaluated parts. Quite expectedly, though, the
resulting accuracy of this approach is rather low: the sum of neg-
ative Ein situ (=VAB

C + VAB
xc ) and positive Edef terms, both large in

absolute values, leads to the summation of errors arising in the
recovery of each component (see Figs. S11–S14). This results in a
significant noise level of linear trends, rather than low R2 values
(not more than 0.976). Moreover, the trends can even mistake in a
sign of binding energy value if the most weak interactions are under
consideration.

Nevertheless, a valuable information on the role of Ebind com-
ponents can be obtained from these trends when combining the
above described ρ(r)-based approximations (having the optimized

p1 and p2 parameters) with the values obtained from the ordinary
IQA procedure (Table VI, Figs. S11–S14).

For instance, the use of (4) to calculate VAB
xc terms (even when

the exact 2-RDM is known) shows no pronounced positive effect
on the accuracy of Ebind estimations. A similar situation is observed
when approximated Edef terms are changed over the variational
ones. However, one must recall that the approximation of deforma-
tion energy based on the ρ(r) topology may provide unsatisfactory
results for strong interactions with large covalent contributions.
Finally, the approximation of VAB

C can be considered as the most cru-
cial one: the use of 6D integrations of atomic charge densities [see
Eq. (3)] instead of the approximation (8) lowers MAE values (less
than 1 kcal/mol for DS+CS) and makes the trends pronouncedly less
noisy (compare Fig. 6 and Fig. S13). Although we have to mention
that this change in accuracy may be originated from the accu-
racy in treatment of atomic basins by the software used to expand
VΩΩ′

C terms (see Sec. III), it agrees well with the role of electro-
static forces as the driver of intermolecular interactions. Anyway,
higher-order terms of the VΩΩ′

C expansion can be readily calculated
to increase the accuracy in restoring of the Coulombic component
of Ebind.

Finally, the surface integral of a slightly different form (yet also
counting electronic population of intermolecular surface) was sug-
gested in our research group to estimate the binding energy and
successfully tested for a number of systems from the DS.84 This
allows us to assume that the parametric model (7) can produce bind-
ing energy when reoptimized. Indeed, by carrying out the above
procedure for systems from Ref. 84, we were able to achieve simi-
lar accuracy (R2

= 0.9841, MAE 0.65 kcal/mol vs R2
= 0.9804 and 0.3

kcal/mol in Ref. 84). However, the associates with stronger inter-
actions (such as Cl3COH. . .H2O, F3COH. . .H2O, H3COH. . .HF,
H3COH. . .HCl, H3COH. . .HBr) added to generate the DS in the
current study significantly violate the linearity of trend, even if
included in the re-optimization procedure (see Fig. S15). This
also suggests the inability of the proposed model (7) to properly
describe Ebind, thus indirectly confirming that the population of
intermolecular surface as a strength of bonding between topological
basins is purely determined by exchange–correlation intermolecular
effects.

E. Efficiency of the proposed protocol

In terms of efficiency, the proposed protocol has several funda-
mental advantages over the standard IQA procedures for estimating
both the intermolecular exchange–correlation energy and the defor-
mation energy terms, while retaining a satisfactory level of accuracy.
First, the presented approach is only based on the analysis of the
electron density function and does not require 2RDM or its approx-
imations, which substantially reduces the computational cost of
the method. Furthermore, the relative efficiency of the proposed
protocol in terms of the necessary amount of calculations com-
pared to standard procedures is quite obvious: while the former
approach requires surface integrals, the exact VAB

xc terms require
six-dimensional volume integrals, and at least two additional vari-
ational calculations are required for the exact determination of the
deformation energy, in general.
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TABLE VI. Data for linear trends between the binding energies and the sum of its components obtained either by the above
approximation (marked as approx.) or by the conventional IQA procedure.

Binding energy components used k b R2 MAEa

DS

Ebind = VAB
xc (approx⋅) + Edef (approx.) + VAB

C (approx.) 0.910 −0.0004 0.9759 0.406
Ebind = VAB

xc (approx⋅) + Edef (approx.) + VAB
C 0.977 −0.0001 0.9800 0.335

Ebind = VAB
xc (approx⋅) + Edef + VAB

C (approx.) 0.904 −0.0004 0.9716 0.474
Ebind = VAB

xc + Edef (approx⋅) + VAB
C (approx.) 0.899 −0.0004 0.9585 0.513

CS

Ebind = VAB
xc (approx⋅) + Edef (approx.) + VAB

C (approx.) 0.838 −0.0040 0.9008 2.925
Ebind = VAB

xc (approx⋅) + Edef (approx.) + VAB
C 0.937 −0.0020 0.9597 1.832

Ebind = VAB
xc (approx⋅) + Edef + VAB

C (approx.) 0.873 −0.0032 0.8851 3.571
Ebind = VAB

xc + Edef (approx⋅) + VAB
C (approx.) 0.867 −0.0033 0.9284 2.551

DS+CS

Ebind = VAB
xc (approx⋅) + Edef (approx.) + VAB

C (approx.) 0.917 −0.0008 0.9391 1.119
Ebind = VAB

xc (approx⋅) + Edef (approx.) + VAB
C 0.981 −0.0004 0.9651 0.922

Ebind = VAB
xc (approx⋅) + Edef + VAB

C (approx.) 0.920 −0.0007 0.9389 1.243
Ebind = VAB

xc + Edef (approx⋅) + VAB
C (approx.) 0.934 −0.0007 0.9481 0.953

SS

Ebind = VAB
xc (approx⋅) + Edef (approx.) + VAB

C (approx.) 1.027 0.000 03 0.9526 0.524
Ebind = VAB

xc (approx⋅) + Edef (approx.) + VAB
C 0.982 −0.0001 0.9752 0.375

Ebind = VAB
xc (approx⋅) + Edef + VAB

C (approx.) 1.038 0.0001 0.9620 0.495
Ebind = VAB

xc + Edef (approx⋅) + VAB
C (approx.) 1.006 0.0001 0.9412 0.558

aGiven in kcal/mol.

FIG. 6. Linear trend between the binding energy and the sum of the VAB
xc and Edef

energies obtained via the parametric model (8) and the IQA-defined VAB
C for the

combined DS+CS.

V. CONCLUSIONS
Summarizing, the ρ(r)-based protocol to approximately calcu-

late IQA contributions of intermolecular binding energy is suggested
and tested on the model sets comprised by associates having vari-
ous types of non-covalent interactions. The protocol’s verification is
made based on the IQA components calculated in the DFT (PBE0)
approximation as well as by the treatment of the exact 2-RDM com-
puted at the CCSD level. The essential feature of the protocol is
the ability to estimate exchange–correlation and deformation con-
tributions from the knowledge of electron density topology and
electronic population of the QTAIM-defined intermolecular sur-
face. It can be noticed that the proposed protocol works within the
paradigm of quantum chemical topology7 and makes it possible to
fetch out the so-called bonding contributions into the VAB

xc and Edef
terms.

The corresponding estimations of the intermolecular VAB
xc term

use the extension of the previously published model,27 which was
suggested for diatomic species and is confirmed to be accurate
for intermolecular interactions in this study. The Edef estimations
are made in a similar fashion owing to the proximity of abso-
lute values of these two terms found in this paper for a broad
range of non-covalent interactions having relatively low covalent
(exchange–correlation) contributions. This proximity is arguably
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linked with the interdependence of delocalization and localization
of electrons at constant populations of topological basins, which
is known from the theory of delocalization indices and has been
recently demonstrated48 for the surface integrals used to evaluate
VAB

xc in this work. Although this allows us to avoid the direct eval-
uation of Edef term, the total intercompensation of VAB

xc and Edef
cannot be expected in a general case: a non-zero charge transfer
between molecules may occur upon the formation of even weak
intermolecular interactions.

Still, in full concordance with the conventional point of view,
the relation between VAB

xc and Edef makes the electrostatic com-
ponent to be the main driver of the intermolecular interaction
formation. The corresponding VAB

C term is of long-range charac-
ter and, hence, is not easy (if possible) to approximate based on
properties of bonding between topological fragments. However, the
multipolar expansion used to calculate interatomic Coulomb terms
for the studied systems has once again confirmed its robustness.

Here, one should note that the proposed protocol can also be
used to estimate the total intermolecular binding energy as the sum
of VAB

xc , Edef , and VAB
C although with a relatively low accuracy (not

less than 1.2 kcal/mol in average for the most representative set
of species), which can be improved by using a non-approximated
electrostatic term also relying only on the trace of 1-RDM.

Thus, using the combination of fitted surface integral method
and multipole expansion, the main IQA components of Ebind can
be numerically yet rather accurately reconstructed from the electron
density function without resorting to six-dimensional integrals and
full 1-RDM or 2-RDM computations. The approach is anticipated to
be helpful when unveiling the nature of intermolecular interactions
in theoretical studies of large supramolecular ensembles as well as in
experimental charge density investigations of single crystals.

SUPPLEMENTARY MATERIAL

See the supplementary material for all the observed linear
trends as well as the tables containing all data on the optimization
of model (7).
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