УДК 553.85

МИНЕРАЛОГИЯ, УСЛОВИЯ ОБРАЗОВАНИЯ И ГЕНЕЗИС АГРЕГАТОВ САМОРОДНЫХ И СУЛЬФИДНЫХ МИНЕРАЛОВ ПОЛДНЕВСКОГО МЕСТОРОЖДЕНИЯ ДЕМАНТОИДА (СРЕДНИЙ УРАЛ)

© 2023 г. В. В. Мурзин^{а,} *, Д. А. Варламов^{b,} **, Е. С. Карасева^a, А. Ю. Кисин^a

^{*а}Институт геологии и геохимии УрО РАН, ул. Академика Вонсовского, 15, Екатеринбург, 620110 Россия* ^{*b*}Институт экспериментальной минералогии РАН, ул. Академика Осипьяна, 4, Черноголовка, 142432 Россия</sup>

> **E-mail: murzin@igg.uran.ru* ***E-mail: dima@iem.ac.ru* Поступила в редакцию 21.04.2023 г. После доработки 21.06.2023 г. Принята к публикации 11.07.2023 г.

Описаны полиминеральные агрегаты округлых форм ("желваки"), сложенные самородными и сульфидными минералами Cu, Ni, Fe, Ag и других элементов из жильных магнетит-кальцит-хризотиловых пород с ювелирным демантоидом в Коркодинском гипербазитовом массиве. Общей чертой шести выделенных типов самородно-сульфидных желваков, сложенных самородной медью, хизлевудитом, пентландитом, купритом и другими сульфидно-самородными минералами, является сфероидальная форма, что сближает их с отдельными зернами других минералов жильной массы (кальцит, магнетит и др.). В хизлевудит-пентландитовых желваках обнаружены специфические симплектиты ртутистого серебра и никелистой меди в хизлевудите, а также аваруита – в Со-пентландите. Совпадающий набор рудных минералов во вмещающем жильную массу серпентините (самородные медь, ртутистое серебро, хизлевудит, пентландит, аваруит) и желваках из жильного материала свидетельствует об их генетической связи и сопряженности демантоидной минерализации с эволюционирующими процессами серпентинизации.

Установлено, что желваки образовались при температуре ниже 380°С в восстановительных условиях при очень низких значениях фугитивности серы ($10^{-17}-10^{-27}$ бар) и кислорода (10^{-30} бар при 200° С – 10^{-21} бар при 350°С). Для хизлевудит-пентландитовых желваков такие условия сохранялись в течение всего времени их формирования, в то время как для других желваков восстановительные условия ранних парагенезисов сменялись окислительными в поздних парагенезисах, что фиксируется замещением самородной меди купритом.

Предполагается, что особенности морфологии и строения самородно-сульфидных желваков, присутствие в них симплектитовых срастаний рудных минералов связано со специфическими условиями, создающимися при декомпрессии корово-мантийной смеси, поднимающейся к поверхности в зоне разлома. Источником металлов был глубинный высокотемпературный флюид, взаимодействующий с основными и ультраосновными породами в восстановительных условиях при низком значении отношения вода-порода (W/R).

Ключевые слова: демантоид, самородная медь, ртутистое серебро, хизлевудит, аваруит, симплектиты, декомпрессия, корово-мантийная смесь, серпентинизация **DOI:** 10.31857/S0016777023060060, **EDN:** IBHRUT

введение

Демантоид — самая дорогостоящая разновидность граната андрадита, что позволило У.Р. Филлипсу и А.С. Таланцеву (Phillips, Talantsev, 1996) назвать уральский демантоид "царем в семействе гранатов". Впервые демантоид открыт и описан в золотоносных россыпях на Среднем Урале в середине 19-го века. В начале 20-го века было открыто Полдневское месторождение демантоида в ультраосновных породах, расположенное в 100 км к югу от г. Екатеринбурга. Геологоразведочные работы на месторождении были начаты только в 90-х годах прошлого столетия и продолжаются в настоящее время.

Кроме Урала, демантоиды в серпентинитах известны в Италии, Иране, Пакистане, США, Китае, Словакии, на Кавказе и Камчатке (Adamo et al., 2009, 2015; Ahadnejad et al., 2022 и др.). Промышленно значимые месторождения демантоида известны также в скарнах Намибии и Мадагаскара (Rondeau et al., 2006).

Коренные месторождения демантоида в ультраосновных породах остаются слабоизученными, поскольку исследования обычно направлены только на сам драгоценный камень. Многие вопросы генезиса, места и условий образования демантоида остаются нерешенными, в том числе такие, как поисковые признаки и критерии. Исследования на уральских месторождениях (Полдневском и Коркодинском) показали отсутствие структурного контроля минерализованных жил с демантоидом, что сказывается на эффективности поисковых и геологоразведочных работ (Кисин и др., 2020).

Возможностью решения указанных проблем представляется наличие опытных эксплуатационных карьеров на Полдневском и Коркодинском месторождениях демантоида на Среднем Урале. В этих месторождениях демантоид локализуется в жилах выполнения в серпентинизированных породах и ассоциирует с серпентином, форстеритом, магнетитом, карбонатами, клинохлором. Жилы с этими минералами весьма распространены на месторождении, но демантоид встречается довольно редко. Характерной чертой демантоида Полдневского месторождения, как и в целом демантоида всех других месторождений Урала, является обилие в его зернах волосовидных включений типа "конский хвост". При детальном исследовании этих "включений" они оказались полыми каналами, образованными в результате специфического роста кристаллов демантоида, механизм которого пока не ясен (Kissin et al., 2021).

Объектом настоящего исследования стали полиминеральные агрегаты (желваки, стяжения, скопления; далее "желваки") в жилах выполнения, сложенные самородными и сульфидными минералами меди, никеля, железа и других элементов, нередко встречаемые при добыче ювелирного демантоида на Полдневском месторождении. В результате гипергенных процессов породы около желваков обычно окрашены в яркие зеленые цвета за счет образования в них карбонатов и гидрокарбонатов Cu и Ni, что на практике используется в качестве поискового признака жил с демантоидом. Исследование морфологии, строения и минерального состава желваков позволило получить новые данные о генезисе и физико-химических условиях образования как самих желваков, так и ассоциирующего с ними демантоида.

Краткая характеристика Полдневского месторождения демантоида

Полдневское месторождение демантоида приурочено к Коркодинскому гипербазитовому массиву, описание которого приводится по (Калуги-

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 65 № 6

на и др., 2017). Протяженность массива около 12 км при ширине до 2 км; вытянут в север-северо-западном направлении согласно простиранию вмещающего одноименного дизъюнктивного нарушения зоны Главного Уральского разлома (ГУР). В строении массива принимают участие дуниты и клинопироксениты, реже гарцбургиты, иногда – верлиты и вебстериты. Породы серпентинизированы и тектонизированы. В ассоциации с ультрабазитами отмечены эклогитоподобные амфиболиты. Считается, что Коркодинский массив представлен пластиной толщиной 200-300 м, полого залегающей на нижнепалеозойских породах и перемещенной на запад в составе более крупного надвига. Лежачий контакт пластины падает под углом 45°- 50° , а висячий — 20° — 70° на восток.

Месторождение вскрыто небольшими карьерами-траншеями (протяженностью до 150 м, при ширине 3–5 м и глубиной до 20 м в интервалах с демантоидной минерализацией) и несколькими магистральными канавами протяженностью до 400 м, вскрывших в различной степени серпентинизированные дуниты и клинопироксениты. На месторождении выявлено 7 крупных (до 200 м протяженностью, при ширине 0.5-4.5 м) и около 20 небольших субмеридиональных линейных зон повышенной трещиноватости (зоны разуплотнения). В плане они сближенные, кулисообразные, слабоизвилистые, субпараллельные; паление субвертикальное, ±30°. Зоны разуплотнения обычно представлены многочисленными, различно ориентированными жилами выполнения декомпрессионных трещин, с околожильной серпентинизацией вмещающих пород (дунитов и клинопироксенитов). Жилы выполнения сложены минералами серпентина (антигорит, клинохризотил, лизардит) и кальцитом. Мощность измеряется первыми сантиметрами и редко достига-10-20 см. Структура жил волокнистая, грубоволокнистая, шестоватая, столбчатая, с линейностью, ориентированной под углом к границам с вмещающими породами. Обычно присутствуют кристаллы магнетита, вытянутые согласно линейности. Только к единичным жилам приурочена минерализация демантоида. Форма жил линзовидная; по простиранию прослеживаются на 1.5-2.5 м, при мощности 2-3 см, редко до 10-15 см и крутом падении. По простиранию жил проводники (трещины, прожилки) отсутствуют, по падению они прослежены выработками на глубину до 20 м, со смещением в ту или иную сторону (рудные столбы). Минеральный состав жил с демантоидом не отличается от жил без демантоида. В жилах демантоид распределен неравномерно и образует гнездообразные скопления. По результатам полевых исследований выяснено, что минерализация демантоида не имеет структурного контроля, встречается и за пределами зон разуплотнения и, по сути, слагает рудные столбы

2023

Фиг. 1. Морфология и строение желваков демантоида (а) и самородно-сульфидных (б) в серпентин-кальцитовой породе и извлеченных из породы желваков III (в), IV (г), V (д) и VI (е) типов.

(Кисин и др., 2020; Карасева и др., 2021). Особенно наглядно это проявлено на Коркодинском месторождении, в 7 км к югу, где зоны разуплотнения отсутствуют и жилы с демантоидной минерализацией одиночные, не связанные между собой и прослеживаются только по падению. Это обстоятельство сильно осложняет проведение геологоразведочных и добычных работ.

Демантоид имеет округлую форму и радиальносекториальное строение. Такую же форму имеют и изученные нами рудные желваки, а также некоторые зерна карбонатов и магнетита (фиг. 1а, б). Минералы серпентина (клинохризотил, лизардит, антигорит), вмещающие демантоид, представлены вытянутыми, волокнистыми или шестоватыми агрегатами, ориентированными согласно вектору раскрытия вмещающих трещин растяжения. Зерна минералов в минерализованных зонах обычно не деформированы и несут признаки роста в условиях всестороннего растяжения и декомпрессии (Карасева и др., 2021).

МЕТОДЫ ИССЛЕДОВАНИЯ

Образцы рудных желваков для исследований предоставлены геологами ООО Корпорация

"Маяк", выполнявшими геологоразведочные работы на Полдневском месторождении демантоида. Всего исследовано более 10 образцов рудных желваков, размерами от 5 мм до 5 см, в т. ч. в полированных шлифах и аншлифах. Минеральный состав желваков и химический состав слагающих их минералов предварительно изучался методами оптической микроскопии, затем — растровой электронной микроскопии и рентгеноспектрального микроанализа.

Электронно-зондовый микроанализ, включающий получение изображений исследуемых объектов во вторичных (secondary) и отраженных (обратно-рассеянных, back-scattered) электронах, а также рентгеноспектральный локальный микроанализ, выполнялся в ИЭМ РАН на цифровом электронном сканирующем микроскопе Tescan VEGA-II XMU с энергодисперсионным спектрометром INCA Energy 450 и спектрометром с волновой дисперсией Oxford INCA Wave 700. Расчеты результатов рентгеноспектрального микроанализа выполнялись с помощью программы INCA Energy 300. Исследования выполнялись при ускоряющем напряжении 20 кВ, токе поглощенных электронов на образцах – от 150 до 400 пикоампер (в зависимости от микрорельефа, структуры и состава образца). Размер электронного зонда на поверхности образца составлял 157-180 нм. Аналитические линии и стандарты: Fe K_{α} , Co K_{α} , Ni K_{α} , CuK_{α} , ZnK_{α} , MnK_{α} , TiK_{α} , AgL_{α} , AuM_{α} (металлы); SK_{α} (FeS₂ синт.); Hg M_{α} (HgTe синт.); O K_{α} (SiO₂). Кислород рассчитывался, как правило, по стехиометрии, для проверки (при варьирующей валентности – гематит, куприт) использовалось прямое измерение кислорода.

ТИПЫ РУДНЫХ ЖЕЛВАКОВ И РЕЗУЛЬТАТЫ ИХ ИССЛЕДОВАНИЯ

По особенностям строения и минерального состава желваков выделены шесть типов (табл. 1). Желваки всех типов приурочены к жильному материалу. Первые два типа имеют микроскопические размеры, округлую или овальную форму и строение, характерное для жеод, т.е. с полостью в центральной части и радиальными микротрещинами, отходящими от полости к поверхности зерен. Размер их обычно не превышает 1–2 мм. Остальные типы желваков более крупные (от 2–3 до первых сантиметров) и характеризуются разнообразием форм: от округлой до линзовидной (фиг. 1в–е).

Микрожеоды магнетита (Ітип)

Обнаружены в жильной массе, сложенной хризотилом, карбонатом, магнетитом, демантоидом и другими минералами. Полости в микрожеодах выполнены кальцитом, насыщенным угловатыми включениями самородной меди и халькозина (фиг. 2a, б). Краевая часть полости, примыкающая к магнетиту, сложена самородной медью и небольшим количеством халькозина и Fe-Mg карбоната, проникающими и в радиальные микротрещины в магнетите.

Микрожеоды брусита (II тип)

Обнаружены в серпентин-бруситовых прожилках тонкопластинчатого строения, рассекающих серпентинит, примыкающий к жилам с демантоидом. В центральной части полостей находится самородная медь в срастании с кальцитом, которые также выполняют радиальные микротрещины в брусите (фиг. 2в). В виде мелких включений (иногда ограненных) в самородной меди присутствуют халькозин и Сu-хизлевудит. Выделения самородной меди замещаются в краевых частях купритом (фиг. 2г).

Желваки гематита с самородной медью и купритом (III тип)

Желваки этого типа, как и все другие, встречены в жилах с демантоидной минерализацией; сложены тонкозернистыми карбонат-гематитовыми блоками, сцементированными самородной медью (фиг. 3а). Самородная медь местами рассекает кальцит-гематитовый агрегат в виде микропрожилков. Тонкозернистая масса представлена смесью кристаллов гематита, заключенных в карбонате (кальцит, Fe-Cu карбонат), и ксеноморфных мелких выделений самородной меди, халькозина, куприта (фиг. 3б). Куприт образуется по мели, начиная с краевых частей ее вылелений и развиваясь внутрь (фиг. 3в). В виде мелких включений в самородной меди присутствуют Hg-серебро, пентландит (Со до 2 мас. %:Си до 8 мас. %), куприт (фиг. 3г), а также борнитовый твердый раствор. Развиты вторичные Cu–Fe и Cu–Ni карбонаты и гидрокарбонаты меди, в том числе малахит.

Желваки куприта с самородной медью (IV тип)

Центральная часть желваков этого типа выполнена самородной медью с активно развивающимися по ней купритом и вторичными оксидными (гематит, тенорит), карбонатными (малахит, азурит) и силикатными (хризоколла) преимущественно медными минералами, формирующими оболочки желваков (фиг. 4а). В отдельных желваках куприт резко преобладает, а реликтовые выделения самородной меди в нем развиты незначительно.

В виде включений в куприте присутствуют халькозин, а также отдельные кристаллы или цепочки зерен угловатых форм медьсодержащего серебра (фиг. 4б). Купритовая масса содержит

2023

		I I MAR MARK	
Типы желваков (№ образцов)	Основные минералы	Акцессорные минералы	Ассоциации и парагенезисы минералов в желваке
I. Микрожеоды магне- тита (1808-1)	Магнетит, карбонаты (кальцит и др.), самородная медь	Халькозин	Магнетит → халькозин + самородная медь → кальцит + Fe−Mg-карбонат
II. Микрожеоды бру- сита (1808-1)	Брусит, кальцит, самородная медь, куприт	Халькозин, Си-хизлевудит	Брусит → кальцит + самородная медь + халькозин + медистый хизлевудит (Cu,Ni) ₃ S ₂ → куприт
III. Желваки гематита с самородной медью и купритом (1811)	Кальцит, гематит, самородная медь	Халькозин, Cu–Co-пентландит, Cu–Fe–S борнитовый твердый раствор, Hg-серебро	Гематит + кальцит + халькозин → → самородная медь + Си–Со-пент- ландит + борнитовый твердый раствор (Cu–Fe–S) + Hg-серебро → куприт → → малахит (карбонаты меди)
IV. Желваки куприта с самородной медью (P-305, 309)	Куприт, самородная медь	Халькозин, медистое серебро	Самородная медь → куприт + (?) халь- козин + медистое серебро→ гематит + + тенорит → малахит, азурит, хризоколла
V. Желваки хизлеву- дита с Со-пентланди- том и самородной медью (Р-306)	Хизлевудит, Со-пентландит, самородная медь	Ртутистое серебро, никелистая и золоти- стая медь	Хизлевудит I + Со-пентландит I + + самородная медь → медистый хиз- левудит II (Ni,Cu) ₃ S ₂) + пентландит II + куприт + ртутистое серебро + + никелистая медь + золотистая медь → малахит (карбонаты меди)
VI. Желваки хизлеву- дита и Со-пентландита с симплектитами (P-320)	Хизлевудит, Со-пентландит, аваруит	Ртутистое серебро, никелистая медь, обогащенный медью хизлевудит	Хизлевудит + никелистая медь (симплектитовые вростки) + ртутистое серебро (симплектиты в хизлевудите) → Со-пентландит + ава- руит (симплектитовые вростки и каймы) + медистый аваруит (по нике- листой меди) + серебро → кальцит и Cu–Ni карбонаты

Таблица 1. Типы "желваков" Полдневского месторождения демантоида

Примечание. Номера образцов соответствуют номерам проб в таблицах химического состава минералов.

микрополости или разбита трещинами, стенки которых инкрустированы кристаллами куприта (фиг. 4в), а сами полости выполнены вторичными карбонатами меди (малахитом) и Fe–Cu–Mg силикатами, замещающими куприт (фиг. 4г).

Желваки хизлевудита с Со-пентландитом и самородной медью (V тип)

Преобладающие рудные минералы желваков V типа представлены хизлевудитом и Со-пентландитом раннего и позднего парагенезисов. Крупные зерна этих сульфидов раннего парагенезиса монолитны. Характерная черта раннего хизлевудита I — наличие в некоторых его участках тонких пластинок, отвечающих медистому хизлевудиту (Ni,Cu)₃S₂ (фиг. 5а; фиг. 6б). Такие участки сходны с решетчатой структурой распада твердого раствора, а фазы с широким изоморфизмом Си и Ni предложено называть "полуторными" (Макеев и др., 1992). Ранние хизлевудит I и Со-пентландит I местами насыщены субграфическими симплектитовыми образованиями, представленными полостями, образованными при выщелачивании неизвестного минерала и затем заполненными вторичными Cu–Ni карбонатами (фиг. 5б). Составы Со-пентландита I в хизлевудите с симплектитами и без симплектитов не различаются.

К позднему парагенезису хизлевудита II и пентландита II относятся тонкозернистые агрегаты этих минералов, приуроченные к краевым частям желвака, а также к гнездово-прожилковым выделениям Mg–Ni–Cu карбонатов в хизлевудите I раннего парагенезиса (фиг. 5в). Хизлевудит в этих агрегатах представлен густой вкрапленностью в пентландите (фиг. 5г). По химическому составу хизлевудит II – медистый, отвечающий со-

Фиг. 2. Строение и минералы микрожеод I (а, б) и II (в, г) типов; а, б – округлое выделение магнетита (Mag) с полостью, выполненной кальцитом (Cal) и самородной медью (Cu); б – деталь "а", в краевой части полости локализуются мелкие зерна халькозина (Cct); в – микрожеода брусита (Brc) с самородной медью (Cu) и кальцитом (Cal) из серпентин (Spr)-бруситового прожилка в антигоритовом серпентините; г – деталь "в", выделение меди содержит вростки халькозина (Cct), Cu-хизлевудита (Hzl), а в краевых частях – куприта (Cpr). (Здесь и далее изображение микрофото приведено в BSE, если не оговорено другое).

ставам пластинчатых "полуторных фаз" в его раннем парагенезисе.

Крупные зерна самородной меди в желваках V типа отнесены к раннему парагенезису. Они приурочены к краевым частям желваков и локализуются, как правило, в нерудных минералах. Для таких зерен меди характерно замещение их купритом, а также беспримесный химический состав. Акцессорные минералы в желваках V типа – ртутистое серебро, никелистая и золотистая медь обычно ассоциируют с купритом и относятся к более позднему парагенезису минералов по отношению к сульфидам. Минералы этого парагенезиса заполняют трещиноватые участки и межзерновое пространство сульфидных агрегатов (фиг. 6а). На эти же участки накладываются наиболее поздние гипергенные минералы, прежде всего Cu–Ni карбонаты.

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 65 № 6 2023

Фиг. 3. Строение желваков III типа и слагающие их минералы: а – блоки тонкозернистого агрегата карбонат-гематитового состава (Cb-Hem), сцементированные самородной медью (Cu); б – агрегат кальцита (Cal), Fe-Cu карбоната (Cb) и гематита (Hem), насыщенного мелкими включениями самородной меди (Cu) и куприта (Cpr); в – развитие куприта (Cpr) по самородной меди (Cu), заключенной в карбонат-гематитовом агрегате (Cb-Hem); г – угловатые включения Cu-Co-пентландита (Pn), куприта (Cpr) и ртутистого серебра (Ag) в крупном выделении самородной меди (Cu).

Зерна ртутистого серебра имеют неправильные интерстициальные формы и размеры до 200 мкм. Они могут быть заключены как в хизлевудите, так и Со-пентландите (см. фиг. 5б), однако часто цепочки зерен серебра приурочены к контактам этих минералов, иногда в секущих их прожилковидных зонах совместно с Си—Ni карбонатами (фиг. 6а). В некоторых зернах серебра обнаруживается негомогенность, обусловленная большими вариациями содержаний ртути. Фазы с умеренными содержаниями ртути слагают центральную часть зерен. В расслоенной кайме присутствуют фазы с наиболее высоким содержанием ртути (26.7 мас. % Hg) и краевой фазы, не содержащей ртуть (фиг. 6б).

Медь позднего парагенезиса, в отличие от беспримесной меди раннего парагенезиса, является никелистой (4–8 мас. % Ni). Ее выделения заключены в куприте (фиг. 6в) и иногда вместе с купритом и Cu–Ni карбонатами выполняют центральную часть зональных прожилков, секущих хизлевудит (см. фиг. 6а). В прожилке аналогичного состава встречены единичные зерна меди с высоким содержанием не только никеля (2.68–4.95 мас. % Ni, 4 анализа), но и золота (15– 17.8 мас. % Au, 4 анализа).

Никелисто-золотистая медь слагает центральную часть весьма специфических зональных зерен (фиг. 6г). Краевая их часть сложена чередующимися концентрическими зонами золотосодержащего куприта и Au-Ni-Cu кислородсодержащих фаз, предположительно карбонатных. Контакты карбонатных (?) фаз как с никелисто-золотистой медью, так и с золотосодержащим купритом, сильно извилистые (коррозионные), что может трактоваться как замешение карбонатами куприта, который в свою очередь замещает никелисто-золотистую медь. Химический состав золотосодержащих минеральных фаз приведен в табл. 2. В куприте, замещающем золотистую медь, наблюдается значительный разброс содержаний примеси золота (от 0.15 до 12.45 мас. %), который еще более существенен в Си-Ni карбонатах (6.29-23.25 мас. %).

Фиг. 4. Строение желваков IV типа и слагающие их минералы: а – выделения самородной меди (Cu), замещающейся купритом (Cpr) в обрамлении агрегата зерен кальцита и вторичных малахита, тенорита, гематита и других минералов; б – цепочки зерен медистого серебра (Ag) в куприте (Cpr); в – кубические кристаллы куприта в прожилке вторичных медных минералов (изображение дано в режиме SE); г – замещение куприта (Cpr) агрегатом игольчатого малахита (Mlc) и Fe–Cu–Mg силикатов, в куприте присутствуют реликты самородной меди (Cu) меди.

Учитывая данный факт, а также то, что вхождение золота в куприт или карбонат ранее не фиксировалось, мы полагаем, что золото в оксидной и карбонатной фазах присутствует в виде собственных мельчайших частиц, размером значительно меньше электронного микрозонда.

Желваки хизлевудита и Со-пентландита с симплектитами (VI тип)

Желвак этого типа встречен в единственном числе. Он имеет форму выпуклого кабошона размером 1 см: одна сторона представлена полусферой, другая неровная (см. фиг. 1е). В поперечном и продольном срезах установлено, что желвак сложен блоками субграфического (симплектитового) агрегата хизлевудита и никелистой меди. В краевых частях блоков в направлении к их контактам наблюдается укрупнение зерен этого агрегата, а сам контакт трассируется полостями, выполненными вторичными гипергенными минералами (фиг. 7а). В хизлевудитовой матричной фазе местами присутствуют тонкие пластинчатые выделения медистого хизлевудита ("полуторной фазы"), аналогичные вышеописанным в желваках IV типа, а также небольшие участки, сложенные симплектовыми срастаниями хизлевудита и ртутистого серебра (фиг. 76).

К приконтактовым частям блоков приурочены агрегаты зерен Со-пентландита с тонкими симплектитовыми вростками аваруита и сопряженные с ним пустоты, выполненные кальцитом и вторичными Сu–Ni карбонатами (см. фиг. 7а). Со-пентландит-аваруитовый агрегат развивается по хизлевудиту с симплектитовыми вростками никелистой меди. Симплектиты никелистой меди при этом замещаются медистым аваруитом (фиг. 7в). Среди пентландит-аваруитовых симплектитов обнаружено овальное полиминеральное включение, сложенное ртутистым серебром с заключенными в нем кристалликами никелистой меди, медистым аваруитом и карбонатом (фиг. 7г).

Фиг. 5. Строение и минералы желваков IV типа: а – пластинки медистого хизлевудита (полуторная фаза) (Cu-Hzl) в раннем хизлевудите (Hzl I); б – участки раннего пентландита (PnI) монолитного и субграфического строения (Pn), в монолитном пентландите заключены зерна ртутистого серебра (Ag); в – тонкозернистый агрегат поздних хизлевудита и пентландита (Hzl-Pn II), приуроченного к прожилковым выделениям Mg–Ni–Cu карбонатов (Cb) в раннем хизлевудите I (Hzl I); г – тонкозернистый агрегат поздних хизлевудита (серый) и пентландита (белый).

В краевой части желвака присутствует также блок хизлевудита монолитного строения. В этом блоке локализуются угловатые включения низкортутистого серебра (5-6 мас. % Hg), участками в составе симплектитовых срастаний с хизлевудитом (фиг. 7д). В монолитном хизлевудите присутствуют также редкие округлые выделения, сложенные Со-пентландитом с эмульсионной субграфической вкрапленностью аваруита (симплектитами) (фиг. 7е). Эти выделения обрастают каймой аваруита или пентландит-аваруитовыми шестоватыми агрегатами. Химический состав хизлевудита с симплектитами никелистой меди и монолитного близок к стехиометрическому с суммарными содержаниями примесей Fe, Co и Си не превышающими 1 мас. %.

Особенности химического состава рудных минералов, слагающих желваки

Хизлевудит. Встречен и изучен в желваках II, V и VI типов. По химическому составу в желваках

выделены две разновидности хизлевудита – собственно никелевый и медистый. Собственно никелевый хизлевудит слагает участки различного строения - монолитного, с симплектитами никелистой меди, с симплектитами ртутистого серебра, в виде мелких линзочек в Со-пентландите. В целом для хизлевудита в участках различного строения характерны относительно низкие содержания примесных элементов (Fe,Co,Cu), не превышающие суммарно 1 мас. % (табл. 3, ан. 1-22). В то же время хизлевудит в Со-пентландите относительно других составов обогащен железом (2.2-2.5 мас. % Fe), а хизлевудит с симплектитами никелистой меди несколько обогащен медью (0.4-0.8 мас. % Си). Вариации отношения металл-сера (Ме : S, ат. %) в хизлевудите, по результатам приведенных в табл. 3 анализов, находятся в диапазоне 1.46-1.54, лишь немного отклоняясь от стехиометрического значения 1.5.

Медистый хизлевудит в желваках II, V и VI типов, отнесенный нами к полуторным фазам

Фиг. 6. Ртутистое серебро, никелистая и никелисто-золотистая медь в желваке V типа: а – зона контакта раннего хизлевудита (Hzl I) с пластинками полуторной фазы (Cu–Pn) и позднего тонкозернистого хизлевудит-пентландитового агрегата (Hzl-Pn II). В зоне контакта, а также в секущем хизлевудит I карбонатном (Cb) прожилке локализуются зерна самородного серебра (Ag), никелистой и золотистой меди (Cu), куприта (Cpr); б – зональные выделения ртутистого серебра (Ag), заключенные в Ni–Cu карбонате (Cb), повышение интенсивности окраски соответствует увеличению содержаний ртути в Ag–Hg сплаве; в – вростки никелистой меди (Cu) и Ni–Cu карбонатов (Cb) в куприте (Cpr), заключенном в массе Co-пентландита (Pn); г – деталь "а", зональные зерна никелисто-золотистой меди Cu(Au), замеиающейся "золотосодержащими" купритом (Cpr) и карбонатом (Cb). Зерна меди заключены в Ni–Cu карбонате (черное) с рассеянными в нем частицами ртутистого серебра (белое).

 $(Ni,Cu)_{3}S_{2}$, слагает тонкие пластинки в обычном матричном хизлевудите ранних парагенезисов или образует вкрапленность в Со-пентландите позднего парагенезиса в желваке VI типа. Включение аналогичного состава встречено также в самородной меди микрожелвака II типа в брусите. В медистом хизлевудите фиксируется широкий изоморфизм никеля (31.9–59.5 мас. % Ni) и меди (14.1-39.5 мас. % Cu) (табл. 3, ан. 23-34). Для включений медистого хизлевудита в Со-пентландите характерны более высокие содержания примесей Fe и Co (2.5-3.8 мас. % Fe, 0.3-0.7 мас. % Со), чем в пластинках в обычном хизлевудите (до 0.9 мас. % Fe, до 0.2 мас. % Со). Вариации значений (Me : S, at. %) в медистом хизлевудите шире (1.37-1.69), чем в обычном.

Пентландит (Fe,Ni) $_{9}S_{8}$. Присутствует в желваках III, V и VI типов. Во всех типах желваков этот

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 65 № 6

минерал характеризуется повышенными содержаниями примесей Со (до 20.5 мас. %), являясь промежуточным членом изоморфного ряда его с кобальтпентландитом Co_9S_8 (табл. 4). Менее значима в пентландите примесь Си (обычно менее 1 мас. %, до 8 мас. %), при этом корреляция меди с другими элементами в составе пентландита отчетливо не проявлена.

Низкие содержания кобальта (1.4—2.1 мас. % Co), уступающего в количественном отношении примеси меди (2.9—8 мас. % Cu), характерны для пентландита в парагенезисе с самородными медью и Hg-серебром в желваках III типа (табл. 4, ан. 1—3). Другая особенность этого пентландита — преобладание примеси железа над никелем (Ni/Fe = 0.56-0.59), что отличает его от этого минерала в желваках других типов (Ni/Fe = 1.00-1.38).

2023

№ обр./№ ан.	0	Ni	Cu	Ag	Au	Hg	Total	
(Cu.Au.Ni) твердый раствор								
P-306/109	H.o.	2.84	78.91	0.00	17.52	0.95	100.22	
P-306/110	H.o.	4.95	81.15	0.25	14.99	0.00	101.34	
P-306/111	H.o.	2.68	80.49	0.04	17.78	0.43	101.42	
P-306/112	H.o.	3.46	79.87	0.31	15.22	0.81	99.67	
	1	1	Купр	ИТ	1	1	1	
P-306/117	8.87	1.15	77.23	H.o.	11.12	H.o.	98.37	
P-306/118	9.93	1.87	83.55	0.33	4.98	H.o.	100.66	
P-306/119	9.33	1.44	76.82	1.15	7.70	H.o.	96.44	
P-306/120	10.32	1.29	85.97	0.19	0.76	H.o.	98.53	
P-306/121	9.60	2.07	82.93	0.65	4.40	H.o.	99.65	
P-306/148	7.73	2.89	84.03	H.o.	4.54	H.o.	99.19	
P-306/149	6.81	1.33	80.59	H.o.	9.75	H.o.	98.48	
P-306/154	7.23	1.52	74.75	1.41	12.45	H.o.	97.36	
P-306/158	9.39	1.24	88.51	H.o.	0.15	H.o.	99.29	
		I	Cu—Ni-ка	рбонат			1	
P-306/113	16.20	8.98	44.12	2.23	22.05	H.o.	93.58	
P-306/114	20.45	14.14	34.63	2.05	18.05	H.o.	89.32	
P-306/115	20.63	12.76	34.83	1.74	15.96	H.o.	85.92	
P-306/116	21.80	1.78	55.54	1.81	13.79	H.o.	94.72	
P-306/122	24.21	18.00	30.82	5.66	9.99	5.15	93.83	
P-306/123	19.60	14.29	28.00	6.60	23.25	4.41	96.15	
P-306/124	24.96	18.44	29.45	5.34	10.86	3.39	92.44	
P-306/125	27.83	20.47	28.12	3.56	6.75	4.02	90.75	
P-306/150	13.99	9.40	41.83	2.80	22.87	H.o.	90.89	
P-306/151	15.84	15.19	32.17	1.92	18.47	H.o.	83.59	
P-306/152	17.46	1.75	51.37	2.16	14.46	H.o.	87.20	
P-306/156	23.17	21.47	30.58	3.10	6.29	1.56	86.17	
P-306/157	19.16	18.65	29.11	5.73	11.24	3.20	87.09	

Таблица 2. Химический состав золотосодержащих минеральных фаз из позднего парагенезиса желвака V типа, мас. %

Примечание. Н.о. – элемент не определялся.

Значительно более богат кобальтом пентландит в желваках V типа (табл. 4, ан. 4-23). Содержание кобальта в раннем пентландите (Pn I) в парагенезисе с медистым хизлевудитом и самородной медью составляет 4–15 мас. % Со, а в позднем пентландите (Pn II) в парагенезисе с медистым хизлевудитом 4.4–5.1 мас. % Со.

Наиболее обогащен кобальтом пентландит в парагенезисе с аваруитом в VI типе желваков (12.3–19.4 мас. % Со), который, напротив, содержит не более 0.8 мас. % Си (табл. 4, ан. 24–31).

Самородная медь. Присутствует во всех типах желваков. В желваках I–IV типов она чиста по составу и лишь в отдельных анализах в ней фиксируются примеси Fe, Ni, Co в количествах, не превышающих 0.5 мас. %. Наибольшее число разновид-

ностей самородной меди встречено в желваках V типа. Здесь в составе раннего парагенезиса хизлевудита и пентландита присутствует беспримесная медь, а более позднем парагенезисе медистого хизлевудита, пентландита и куприта присутствует никелистая медь (4–8 мас. % Ni) (табл. 5), а также никелисто-золотистая (2.7–5 мас. % Ni, 15–17.8 мас. % Au) (см. табл. 2). В желваке VI типа симплектиты никелистой меди в парагенезисе с хизлевудитом еще более богаты никелем (5.6–21.2 мас. % Ni) и содержат до 2 мас. % Fe.

Аваруит. Химический состав аваруита, присутствующего в желваках VI типа, близок к составу интерметаллического соединения Ni₃Fe (Ni/Fe = 3) (табл. 6). Наблюдающиеся отклонения от стехиометрического соотношения Fe и Ni, в том числе связанные с присутствием в составе этого минерала

Фиг. 7. Строение и минералы желваков VI типа: а – зона укрупненной симплектитовой графики хизлевудит (Hzl)-никелистая медь (Cu) и примыкающие к ней линейные зонки тонкозернистых Со-пентландит-аваруитовых (Pn-Awr) симплектитов, сопряженные с пустотами, выполненными кальцитом и Cu–Ni карбонатами (Cb); б – зона тонкой симплектитовой графики двух составов: хизлевудит (Hzl)-никелистая медь (Cu – серое) и хизлевудит-ртутистое серебро (Ag – светлое); в – зерна Со-пентландита с тончайшими субграфическими вростками аваруита (Pn-Awr) в хизлевудите (Hzl). Хизлевудит содержит симплектитовые вростки никелистой меди (Cu), местами замещенные медистым аваруитом (Cu-Awr); г – полиминеральный сросток серебра (Ag) с включениями в нем кристаллов никелистой меди (Cu), медистого аваруита (Awr) и карбоната (Cb), заключенные в Со-пентландит-аваруитовой симплектитовой массе (Pn-Awr); д – хизлевудит (Hzl) с вростками самородного серебра (Ag) и двумя округлыми выделениями тонкого агрегата Со-пентландита и аваруита (см. "e"); е – деталь "д", блоки Со-пентландита с вкрапленностью аваруита (Pn-Awr) в хизлевудите (Hzl). Блоки имеют кайму, сложенную аваруитом (Awr) или тонкопластинчатым пентландит-аваруитовым агрегатом шестоватого строения.

Таблица 3. Химический состав хизлевудита из желваков различных типов, мас. %

№ п.п.	№ обр./ № ан.	Тип желвака	Ni	Fe	Co	Cu	S	Сумма	Ме : S, ат. %			
	Хизлевудит монолитного строения											
1	P-320/2	VI	72.31	0.53	0.00	0.00	26.63	99.47	1.49			
2	P-320/54	VI	72.92	0.29	0.00	0.00	26.04	99.25	1.54			
3	P-320/43	VI	73.21	0.00	0.00	0.42	26.54	100.17	1.50			
4	P-320/44	VI	73.35	0.00	0.14	0.06	26.70	100.25	1.51			
5	P-320/45	VI	71.76	0.11	0.30	0.10	26.07	98.34	1.50			
	1	1	Линзочки	и хизлевуди	ита в пентл	андите	I	I	1			
6	P-320/sp. 6	VI	70.10	2.40	0.67	0.00	25.91	99.08	1.54			
7	P-320/sp. 7	VI	70.04	2.54	0.63	0.00	25.95	99.16	1.54			
8	P-320/sp. 5	VI	68.80	2.19	0.86	0.05	25.97	97.87	1.51			
		Хиз	левудит с с	имплекти	гами никел	истой мед	И		•			
9	P-320/19	VI	72.37	0.14	0.00	0.44	26.85	99.8	1.48			
10	P-320/61	VI	72.34	0.07	0.03	0.44	26.37	99.25	1.51			
11	P-320/27	VI	71.10	0.52	0.27	0.77	25.96	98.62	1.53			
		•	Хизлевуд	ит с симпл	ектитами с	серебра			•			
12	P-320/59	VI	72.09	0.00	0.17	0.00	25.77	98.03	1.53			
13	P-320/sp. 1	VI	71.81	0.28	0.17	0.00	26.58	98.84	1.48			
14	P-320/1	VI	72.37	0.13	0.16	0.00	26.51	99.17	1.50			
		Х	Кизлевудит	с решетко	й полутор	ной фазы						
15	P-306/3	V	72.23	0.08	0.46	0.73	26.56	100.06	1.51			
16	P-306/5	V	71.79	0.10	0.25	0.09	26.36	98.59	1.50			
17	P-306/22	V	73.24	0.18	0.00	0.45	26.39	100.26	1.53			
18	P-306/25	V	70.82	0.40	0.00	0.81	26.48	98.51	1.48			
19	P-306/75	V	72.84	0.51	0.05	0.13	26.49	100.02	1.52			
20	P-306/79	V	72.00	0.51	0.00	0.32	27.22	100.05	1.46			
21	P-306/104	V	72.72	0.19	0.00	0.58	26.79	100.28	1.50			
22	P-306/105	V	71.53	0.06	0.04	0.06	26.03	97.72	1.50			
		Пла	стинки ме	цистого хи	злевудита і	в матрично	ОМ					
23	P-320/60	VI	50.36	0.33	0.15	24.74	23.80	99.38	1.69			
24	P-306/4	V	38.13	0.16	0.00	36.62	24.88	99.79	1.58			
25	P-306/66	V	44.49	0.27	0.13	29.00	26.29	100.18	1.49			
26	P-306/69	V	36.14	0.37	0.00	39.15	24.93	100.59	1.59			
27	P-306/77	V	52.92	0.94	0.00	20.65	26.60	101.11	1.50			
28	P-306/80	V	49.15	0.12	0.04	26.54	24.17	100.02	1.67			
29	P-306/93	V	59.52	0.15	0.17	14.06	26.15	100.05	1.52			
		Включ	ения меди	стого хизле	вудита в С	Со-пентлан	дите					
30	P-306/128	V	36.88	2.51	0.48	34.28	25.91	100.06	1.51			
31	P-306/129	V	31.94	2.62	0.30	39.45	25.55	99.86	1.53			
32	P-306/130	V	47.98	3.27	0.67	19.85	28.02	99.79	1.37			
33	P-306/29	V	38.02	3.79	0.71	27.82	27.01	97.35	1.38			
		Включе	ние медис	того хизле	вудита в са	мородной	меди					
34	1808-1/51	II	40.30	0.19	0.08	33.73	25.49	99.79	1.54			

гаолица	а ч. Лимичс	ский состав по	сніланди	та в желв	аках разл	пичных п	пов, ма	. /0		
№ п.п.	№ обр./ан.	Тип желвака	Ni	Fe	Co	Cu	S	Сумма	Ме: S, ат. %	Ni/Fe, ат. %
1	1811/sp.13	III	23.89	38.59	2.09	2.91	31.57	99.05	1.20	0.59
2	1811/sp.14	III	23.26	39.27	2.07	3.21	32.00	99.81	1.19	0.56
3	1811/sp.50	III	25.53	32.26	1.38	7.99	31.39	98.55	1.19	0.75
4	P-306/1	V	28.73	22.94	14.72	0.47	32.86	99.72	1.13	1.19
5	P-306/2	V	30.16	24.34	12.12	0.91	32.06	99.59	1.17	1.18
6	P-306/18	V	29.64	26.60	9.76	0.82	32.88	99.70	1.13	1.06
7	P-306/20	V	30.35	28.33	6.68	0.74	32.75	98.85	1.12	1.02
8	P-306/24	V	26.10	20.11	20.52	0.60	32.51	99.84	1.15	1.23
9	P-306/30	V	30.91	26.87	7.62	1.41	32.24	99.05	1.15	1.09
10	P-306/31	V	29.66	27.13	9.24	0.44	32.58	99.05	1.14	1.04
11	P-306/38	V	28.60	25.16	11.57	0.61	32.05	97.99	1.14	1.08
12	P-306/39	V	28.31	24.63	12.73	0.98	32.37	99.02	1.14	1.09
13	P-306/46	V	29.74	22.54	13.41	1.32	32.63	99.64	1.14	1.25
14	P-306/50	V	28.43	27.13	10.35	1.57	32.25	99.73	1.16	1.00
15	P-306/63	V	35.73	26.60	4.00	1.48	31.65	99.46	1.19	1.28
16	P-306/65	V	30.95	27.34	8.11	0.67	33.13	100.20	1.13	1.08
17	P-306/71	V	32.90	26.62	6.22	1.48	32.54	99.76	1.15	1.18
18	P-306/72	V	30.88	27.54	6.79	2.72	32.39	100.32	1.17	1.07
19	P-306/73	V	33.79	27.07	5.98	0.82	32.41	100.07	1.16	1.19
20	P-306/74	V	33.33	27.87	5.26	1.17	33.11	100.74	1.14	1.14
21	P-306/86	V	33.11	26.51	0.83	6.12	33.03	99.60	1.12	1.19
22	P-306/126	V	32.30	28.48	4.40	1.24	31.78	98.20	1.16	1.08
23	P-306/127	V	32.66	28.07	5.09	3.69	31.06	100.57	1.24	1.11
24	P-320/6	VI	27.81	23.11	18.13	0.00	30.73	30.73	1.25	1.14
25	P-320/29	VI	29.86	26.41	12.30	0.00	31.58	31.58	1.21	1.08
26	P-320/33	VI	28.82	21.88	16.13	0.84	31.63	32.47	1.19	1.25
27	P-320/40	VI	29.09	21.90	16.23	0.02	31.47	31.49	1.19	1.26
28	P-320/48	VI	25.83	21.98	18.61	0.02	31.25	31.27	1.18	1.12
29	P-320/50	VI	27.33	21.72	17.61	0.68	30.73	31.41	1.21	1.20
30	P-320/57	VI	28.42	24.42	14.26	0.24	32.31	32.55	1.16	1.11
31	P-320/62	VI	25.33	22.40	19.41	0.25	31.71	31.96	1.18	1.08

Таблица 4. Химический состав пентландита в желваках различных типов, мас. %

Примечание. Анализы 1–3 – в парагенезисе с самородной медью; ан. 4–21 – Pn I в парагенезисе с медистым хизлевудитом и самородной медью; ан. 22, 23 – Pn II в парагенезисе с медистым хизлевудитом; ан. 24–31 – в парагенезисе с аваруитом.

2023

примесей Си и Со, объясняются наличием достаточно широкой области гомогенности твердых растворов на основе соединения Ni₃Fe, достигающей 20 ат. % при 300°С (Диаграммы состояния..., 1986).

Выделены две разновидности аваруита, различающиеся по содержанию меди. Низкие содержания меди (до 1.2 мас. % Cu) характерны для симплектитовых вростков аваруита в пентландите, а также аваруита, обрастающего вокруг зерен пентландита. Вторая разновидность относится к медистому аваруиту (1.6–10.4 мас. % Cu), замещающему симплектитовые вростки никелистой меди в хизлевудите (табл. 6). Си–Fe сульфиды. В виде самостоятельных включений или срастаний с пентландитом в самородной меди в желваке III типа встречены Fe– Си–S фазы, отвечающие по составу борнитовому твердому раствору. По отношению к составу собственно борнита Cu_5FeS_4 (10 ат. % Fe) твердые растворы обогащены железом, содержание которого достигает 16.4 ат. % (табл. 7, ан. 10, 11). В них зафиксирована примесь Ag (до 0.3 мас. %).

Сульфиды меди, представленные фазами Cu-S, близкими по составу к халькозину Cu_2S (Cu/S = 1.95-2.07), присутствуют в различных парагенезисах в желваках I–IV типов. Его мел-

№ п.п.	№ обр./№ ан.	Cu	Fe	Со	Ni	Сумма				
1	P-306/10	99.86	0.01	0.00	0.00	99.87				
2	P-306/12	100.4	0.01	0.00	0.00	100.05				
3	P-306/132	99.74	0.00	0.04	0.00	99.78				
4	P-306/27	91.41	0.15	0.00	8.04	99.60				
5	P-306/40	95.11	0.22	0.01	3.98	99.32				
6	P-306/95	96.04	0.00	0.00	5.36	101.40				
7	P-320/9	93.70	0.02	0.03	6.10	99.85				
8	P-320/16	85.67	1.97	0.38	11.16	99.18				
9	P-320/21	93.80	0.57	0.07	5.63	100.07				
10	P-320/26	93.66	0.91	0.21	5.83	100.61				
11	P-320/38	78.63	0.56	0.52	18.63	98.34				
12	P-320/64	77.94	0.40	0.00	21.22	99.56				
13	P-320/67	92.19	0.12	0.15	7.58	100.04				
			•	•		•				

Таблица 5. Химический состав самородной меди в желваках V и VI типов

Примечание. Ан. 1–3 – в раннем парагенезисе с хизлевудитом и пентландитом в желваках V типа; ан. 4–6 – в позднем парагенезисе с медистым хизлевудитом, пентландитом и купритом в желваках V типа; ан. 7–13 – симплектиты никелистой меди в хизлевудите в желваках VI типа.

№ ан.	№ обр./№ ан.	Cu	Fe	Co	Ni	Сумма	Ni/Fe, ат. %
1	P-320/3	0.42	23.99	0.46	73.30	98.17	3.15
2	P-320/4	0.62	24.23	1.20	72.78	98.83	2.91
3	P-320/11	1.20	22.88	1.95	73.30	99.33	2.86
4	P-320/13	0.37	24.19	1.02	72.67	98.25	3.05
5	P-320/17	0.97	23.70	1.51	72.59	98.77	2.86
6	P-320/46	0.33	23.44	1.01	74.49	99.27	2.91
7	P-320/49	0.44	24.52	1.09	74.43	100.48	3.02
8	P-320/63	0.84	22.94	1.06	75.85	100.69	2.89
9	P-320/23	10.35	19.37	0.41	70.28	100.41	3.45
10	P-320/24	3.79	18.23	1.10	75.78	98.90	3.95
11	P-320/25	1.57	23.01	1.87	71.53	97.98	2.96
12	P-320/39	5.04	21.12	1.14	70.13	97.43	3.16
13	P-320/55	5.02	23.79	1.99	69.53	100.33	2.78

Таблица 6. Химический состав аваруита из желвака VI типа, мас. %

Примечание. Ан. 1–8 – каймы и симплектитовые вростки аваруита в пентландите; ан. 9–13 – выделения аваруита, замещающего симплектитовые вростки никелистой меди в хизлевудите.

кие включения, заключенные преимущественно в самородной меди и куприте, не различаются набором примесей (табл. 7, ан. 1–9). Для халькозина характерна примесь серебра, хотя в концентрациях не выше 0.4 мас. %.

Самородное серебро. Обычный минерал, присутствующий в желваках III—VI типов. Практически всегда содержит примесные элементы в высоких концентрациях. По наборам примесей выделяются несколько основных химических разновидностей самородного серебра – Ag–Cu, Ag–Hg, Ag–Hg–Cu и Ag-Hg-Ni (табл. 8). Примесь золота в самородном серебре надежно не установлена.

Каждому типу желваков присуща своя химическая разновидность самородного серебра. Так, медистое серебро (Ag–Cu), содержащее 3–6.5 мас. % меди, присутствует преимущественно в IV типе желваков. Здесь его кристаллы и частицы угловатых форм заключены в куприте.

Ртутисто-медистое серебро (Ag-Hg-Cu) характерно для желваков III типа и присутствует в отдельных зернах в желваках III и V типов. Вариации содержаний примесных компонентов зна-

№ ан.	№ обр., ан.	Тип желвака	Cu	Fe	Co	Ni	Ag	S	Total	Си/Ѕ, ат. %	Парагенезис
1	1808-1/37	Ι	78.15	1.76	0.05	0.00	H.o.	19.64	99.60	2.01	Cu + Cct
2	1808-1/40	Ι	80.60	0.44	0.13	0.00	H.o.	20.46	101.63	1.99	Cu + Cct
3	1808-1/41	Ι	78.03	0.96	0.35	0.29	H.o.	19.86	99.49	1.98	Cu + Cct
4	1808-1/50	II	78.51	0.00	0.15	0.00	H.o.	19.85	98.51	2.00	Cu + Cct + Cu-Hzl
5	P-309/9	IV	79.92	0.33	0.00	0.15	0.22	19.34	99.96	2.07	Cpr
6	P-309/11	IV	79.71	0.07	0.00	0.14	0.11	19.87	99.90	2.02	Cpr
7	P-309/18	IV	79.63	0.05	0.00	0.17	0.15	20.61	100.61	1.95	Cpr
8	P-309/27	IV	79.92	0.00	0.03	0.05	0.34	20.26	100.60	1.99	Cpr
9	P-309/36	IV	79.06	0.00	0.03	0.00	0.00	20.38	99.47	1.95	Cpr
10	1811/sp. 52	III	59.66	13.82	0.00	0.00	0.28	25.60	99.36	1.18	Cu+Pn+Bn(ss)
11	1811/sp. 49	III	52.72	18.30	0.12	0.00	0.11	26.65	97.90	1.00	Cu+Pn +Bn(ss)

Таблица 7. Химический состав сульфидов меди в желваках различных типов, мас. %

Примечание. Ан.1—9 — халькозин, ан. 10,11 — борнитовый твердый раствор. "- " — элемент не измерялся. Минералы: Cu — самородная медь, Cct — халькозин, Hzl — хизлевудит, Cpr — куприт, Pn — пентландит, Bn — борнит. Н.о. — элемент не определялся.

№ 6

2023

чительны (1.5–14.8 мас. % Hg, 2.6–8.6 мас. % Cu). Зерна этой разновидности серебра локализуются в самородной меди.

Для V типа желваков характерно ртутистое серебро (Ag-Hg), содержащее медь в количестве менее 1 мас. %. Зерна самородного серебра в этом типе желваков негомогенны по соотношениям компонентов и характеризуются наиболее высокими содержаниями ртути, варьирующими от 12.8 до 36 мас. %. Негомогенность выделений самородного серебра описана выше. Принадлежность их к позднему гнездово-прожилковому оксидно-сульфидному парагенезису, обусловила их локализацию на контактах с различными минералами – хизлевудитом, пентландитом, купритом и наиболее поздними карбонатами. Негомогенность некоторых зерен ртутистого серебра в желваках V типа (см. фиг. 6б), когда наиболее ртутистые фазы слагают центральные их части, а кайма может не содержать ртуть совсем, может быть обусловлена выносом ртути в гипергенных условиях, подобно образованию высокопробных кайм на зернах самородного золота (Мурзин, Малюгин, 1987).

В желваках VI типа самородное серебро имеет две позиции – в симплектитовых срастаниях с хизлевудитом и в виде угловатых включений в хизлевудите, часто в срастаниях с аваруитом, Cu–Ni карбонатами. Основная особенность самородного серебра в желваках VI типа – принадлежность его к ртутисто-никелистой (Ag–Hg–Ni) разновидности. Содержания ртути в этой разновидности варьируют от 3.5 до 9 мас. %, а никеля от 0.7 до 2.5 мас. % (см. табл. 8).

Состав самородного серебра в различных типах желваков на диаграмме Ag-Hg-Cu (фиг. 8) показывает, что в видовом отношении лишь наиболее

богатые ртутью фазы в желваках V типа по составу соответствуют таким минералам, как евгенит Ag_9Hg_2 и луаньхэит Ag_3Hg . Остальные фазы принадлежит серебро-ртутным твердым растворам. Согласно диаграмме состояния в системе Ag–Hg, растворимость Hg в Ag в твердом состоянии при температуре 276°C и ниже достигает 37.3 ат. % (Диаграммы состояния..., 1986).

Куприт. По отношению к самородной меди и медно-никелевым сульфидам куприт является более поздним, обычно развиваясь по ним. В желваках IV типа куприт слагает основную их массу, замещаясь теноритом CuO. Куприт, присутствующий в желваках II-V типов, имеет состав, близкий к стехиометрическому Cu₂O, и лишь в некоторых анализах фиксируются примеси Fe и Ni в количествах, не превышающих первые десятые доли процента. Исключение составляет куприт, замещающий никелисто-золотистую медь в желваке V типа. Как было показано выше, в таком куприте, так же, как и в замещающих куприт карбонатах, фиксируются высокие содержания золота – до 23.25 мас. % (см. табл. 2). Мы полагаем, что золото не входит в кристаллическую решетку этих минералов и присутствует в виде собственных мельчайших частиц, образованных в процессах минеральных замещений.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Роль серпентинизации в образовании демантоидной и сульфидно-самородной минерализации

Установленные настоящим исследованием рудные минералы обычно связываются с процессами серпентинизации ультраосновных пород (Рамдор, 1967). На Полдневском месторождении минерализация с демантоидом вмещается аподу-

№ обр /№ ан	Тип	Aσ	Hø	Cu	Ni	Сумма	Химическая
112 00p.//12 ull.	желвака	8	115	04	1.11	Cymmu	разновидность
1811/sp.3	III	86.55	7.48	5.06	H.o.	99.09	Ag-Hg-Cu
1811/sp.4	III	85.02	7.19	8.32	H.o.	100.53	Ag-Hg-Cu
1811/sp.5	III	87.05	8.09	5.62	H.o.	100.76	Ag-Hg-Cu
1811/sp.8	III	82.98	14.65	2.82	H.o.	100.45	Ag-Hg-Cu
1811/sp.9	III	82.52	14.75	2.65	H.o.	99.92	Ag-Hg-Cu
1811/sp.10	III	82.40	11.21	5.12	H.o.	98.73	Ag-Hg-Cu
1811/sp.20	III	91.15	2.95	5.69	H.o.	99.79	Ag-Hg-Cu
1811/sp.21	III	89.20	5.56	5.66	H.o.	100.42	Ag-Hg-Cu
1811/sp.34	III	82.44	14.44	3.91	H.o.	100.79	Ag-Hg-Cu
1811/sp.35	III	91.49	1.57	5.58	H.o.	98.64	Ag-Hg-Cu
1811/sp.41	III	89.20	1.94	7.04	H.o.	98.18	Ag-Hg-Cu
1811/sp.44	III	81.43	10.58	6.68	H.o.	98.69	Ag-Hg-Cu
1811/sp.40	III	90.79	0.00	8.63	H.o.	99.42	Ag-Cu
P-309/10	IV	90.76	0.00	6.51	0.00	97.27	Ag-Cu
P-309/16	IV	95.91	0.00	3.35	0.25	99.51	Ag-Cu
P-309/35	IV	96.57	0.00	2.94	0.19	99.70	Ag-Cu
P-306/10	V	84.54	13.73	0.00	0.00	98.27	Ag-Hg
P-306/11	V	86.98	12.75	0.21	0.58	100.52	Ag-Hg
P-306/13	V	71.61	27.53	0.91	0.00	100.05	Ag-Hg
P-306/16	V	84.28	13.93	0.87	0.85	99.93	Ag-Hg
P-306/17	V	71.57	27.70	0.46	0.44	100.17	Ag-Hg
P-306/37	V	64.38	35.96	0.00	0.00	100.34	Ag-Hg
P-306/55	V	84.49	13.23	0.85	0.00	98.57	Ag-Hg
P-306/56	V	84.97	13.22	0.18	0.00	98.37	Ag-Hg
P-306/58	V	72.87	26.76	0.72	0.00	100.35	Ag-Hg
P-306/59	V	98.83	0.01	0.80	0.78	100.42	Ag-Hg
P-306/102	V	83.85	15.86	0.50	0.00	100.21	Ag-Hg
P-306/107	V	69.26	26.56	3.42	1.32	100.56	Ag-Hg-Cu-Ni
P-306/91	V	83.71	14.93	1.40	0.00	100.04	Ag-Hg-Cu
P-306/15	V	71.60	26.39	1.13	0.88	100.00	Ag-Hg-Cu
P-320/7	VI	91.73	7.54	0.10	0.71	100.08	Ag-Hg-Ni
P-320/8	VI	90.77	6.98	0.00	1.69	99.44	Ag-Hg-Ni
P-320/18	VI	89.21	9.12	0.00	1.01	99.34	Ag-Hg-Ni
P-320/65	VI	91.94	3.49	0.00	2.35	97.78	Ag-Hg-Ni
P-320/66	VI	91.42	5.52	0.21	2.51	99.66	Ag-Hg-Ni
P-320/52	VI	92.27	6.12	0.48	0.73	99.60	Ag-Hg-Ni
P-320/31	VI	89.54	8.72	0.13	0.83	99.22	Ag-Hg-Ni
P-320/37	VI	93.05	3.60	0.36	1.57	98.58	Ag-Hg-Ni

Таблица 8. Химический состав самородного серебра в различных типах желваков и его химические разновидности

Н.о. – элемент не определялся.

VI

P-320/51

нитовыми антигоритовыми серпентинитами, в которых участками сохранены более ранние продукты петельчатой серпентинизации (Карасева и др., 2021). В породе обычна рассеянная вкрапленность Mn–Zn-содержащего хромшпинелида, замещающегося хроммагнетитом, хромсодержащим хлоритом и магнетитом (фиг. 9а).

92.44

5.62

0.00

Антигоритовый серпентинит разбит сетью карбонатных (кальцит, пироаурит), хризотиловых и серпентин-бруситовых прожилков, к которым приурочены скопления укрупненных зерен магнетита. К карбонатным прожилкам иногда приурочены наиболее крупные зерна самородной меди (до 0.5 мм). Карбонатизация серпентинита проявлена также в массе серпентинита вблизи зон с демантоидом. В карбонатизированном серпентините обнаружены выделения хизлевудита размерами до 0.1 мм, в том числе содержащими включения брейтгауптита (NiSb) и ртутистого серебра (фиг. 9б), а также полиминеральные срастания хизлевудита, Со-пентландита и авару-

99.41

Ag-Hg-Ni

1.35

Фиг. 8. Состав самородного серебра в желваках различных типов на диаграмме Ag-Hg-Cu.

ита (фиг. 9в). Хизлевудит активно замещается миллеритом.

В магнетите, замещающем хромшпинелид, зафиксированы мелкие вростки Со-пентландита, хизлевудита и самородной меди, а в самом хромшпинелиде в срастании с хроммагнетитом и хлоритом — самородной меди (фиг. 9г). К укрупненному магнетиту приурочены мелкие (5–10 мкм) включения борнита, самородной меди и миллерита.

Из приведенных наблюдений по минералогии серпентинитов, вмещающих минерализованные демантоидом жилы, следует, что дунит подвергся сначала ранней петельчатой, затем поздней антигоритовой серпентинизации и, наконец, карбонатизации в массе породы, с появлением магнетит-антигоритовых, хризотиловых, брусит-серпентиновых и карбонатных прожилков.

Железо из оливина при ранней серпентинизации фиксируется в виде вкрапленности пылевидного магнетита, который при развитии более поздних антигорита, хризотила и кальцита перераспределяется в агрегаты укрупненных зерен. Акцессорный хромшпинелид при серпентинизации активно замещается хроммагнетитом, хромсодержащим хлоритом и магнетитом. С серпентинизацией связано появление в породе Со-содержащего пентландита, хизлевудита, а также самородных минералов меди, серебра и аваруита, а в свободном микротрещинном пространстве — кальцита, укрупненного магнетита, сульфидов меди и никеля, самородной меди.

Совпадающий в целом набор рудных минералов в серпентините и изученных нами сульфидно-самородных желваках из жильного материала свидетельствует об их генетической связи и сопряженности демантоидной минерализации в целом с эволюционирующими процессами серпентинизации.

Физико-химические условия образования желваков

Наиболее важными температурными реперами для изученных нами парагенезисов желваков и серпентинитов являются точки устойчивости стехиометрических хизлевудита ниже 556°С и миллерита NiS ниже 379°С (Воган, Крейг, 1981), а также устойчивость соединения Ni₃Fe (аваруит) и твердого раствора на его основе ниже 493°С (Диаграммы состояния..., 1986).

Миллерит не характерен для желваков всех типов, в то время как в антигоритовом серпентините он активно замещает хизлевудит. Ассоциация антигорита с Со-пентландитом и хизлевудитом, таким образом, образовалась в серпентинитах при температуре выше 380°С, а для более поздних прожилковых ассоциаций с хризотилом, бруситом, кальцитом, укрупненным магнетитом и самородной медью эта температура является верхним пределом. Очевидно также, что самородно-суль-

Фиг. 9. Минералы антигоритового серпентинита: а – зональное зерно хромшпинелида, замещенного хроммагнетитом (Cr-mt), хромсодержащим хлоритом (Chl) и магнетитом (Mag) в серпентините; б – зерно хизлевудита (Hzl) с включениями ртутистого серебра (Ag) в кальцит (Cal)-серпентиновой (Spr) массе; в – зерно брейгауптита (Bhp) и полиминеральное срастание хизлевудита (Hzl), пентландита (Pn) и аваруита (Awr) в кальцит (Cal)-серпентиновой (Spr) массе; г – зерна самородной меди (Cu) в срастании с хромсодержащим хлоритом (Chl) в хромшпинелиде (Chr).

фидные парагенезисы желваков отлагались тоже ниже 380°С.

Присутствие в составе пентландита значительных содержаний кобальта позволяет провести оценки температурных условий отложения парагенезисов с этим минералом по данным экспериментальных исследований в системе Co_0S_8 -Ni₀S₈-Fe₀S₈ (фиг. 10). Анализ положения точек состава пентландита в самородносульфидных парагенезисах желваков III. V и VI типов на диаграмме устойчивости твердых растворов системы Co₉S₈-Ni₉S₈-Fe₉S₈ показывает, что отложение парагенезисов с пентландитом происходило при температуре ниже 400°С. В температурном диапазоне 200-300°С располагаются точки состава пентландита в парагенезисе с аваруитом в желваке VI типа. Более широкий диапазон характерен для пентландита в V типе желваков – ранняя его генерация (PnI) в парагенезисе с хизлевудитом и самородной медью начинает отлагаться при 300°С и продолжается ниже 200°С, а поздняя генерация (PnII) в парагенезисе с медистым хизлевудитом в краевых частях желвака соответствует температурному полю ниже 200°С. В нижней части диаграммы на фиг. 10 обособляются точки состава включений медистого пентландита в самородной меди из желваков III типа. Эти пентландиты имеют наиболее низкую величину Fe/Ni (ат. %) = 0.56-0.75 по отношению к остальным (Fe/Ni = 1.0-1.28), что указывает на образование пентландита желваков III типа при более высокой фугитивности серы, чем в желваках других типов (Kaneda, 1986).

Факт присутствия во всех типах желваков самородных металлов (самородных меди и серебра, аваруита) свидетельствует о формировании желваков в восстановительных условиях при очень низких значениях фугитивности серы и кислорода. В желваках VI типа такие условия сохранялись в течение всего времени их формирования, в то время как при образовании желваков I–V типов восстановительные условия ранних парагенезисов сменялись более окислительными в поздних, для которых характерно отложение куприта и за-

Фиг. 10. Поля устойчивости пентландитового твердого раствора при различных температурах на диаграмме Co_9S_8 – Ni_9S_8 – Fe_9S_8 (Kaneda, 1986) и состав Со-пентландита из различных парагенезисов в серпентините и желваках III, V и VI типов.

мещение им самородной меди. Граничные значения фугитивности кислорода в реакции оксидизации меди находятся в диапазоне 10^{-30} бар при 200° C -10^{-21} бар при 350° C (Schwarzenbach et al., 2014). Самородная медь устойчива при более низких значениях этой величины, а куприт, наоборот, при более высоких.

Оценка значений фугитивности серы при образовании желваков может быть дана на основе реакций сульфидизации самородных и сульфидных минералов в желваках (фиг. 11). Как следует из анализа диаграммы *T*–*f*S₂, значения фугитивности серы для температур образования желваков ниже 350°С были в пределах 10⁻¹⁷-10⁻²⁷ бар в поле между буферными реакциями сульфидизации мели и никеля. Различия в фугитивности серы при образовании желваков различных типов незначительны и определяются следующими наблюдениями: самородная медь присутствует в желваках всех типов, халькозин присутствует в желваках I–IV типов, а аваруит – только в желваках VI типа. Положение линии буферной реакции Ag/Ag₂S на диаграмме на фиг. 11 значительно выше линий реакций сульфидизации меди и никеля, что объясняет устойчивость серебра в само-

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 65 № 6 2023

родной форме в парагенезисах, характерных для желваков III-VI типов.

Установлено также, что главными факторами кристаллизации аваруит-сульфидной ассоциации, подобной выявленной в VI типе желваков, являются не только низкая фугитивность кислорода, но и низкое отношение вода/порода при гидратации перидотитов (Базылев, 2000). Такое сочетание факторов реализуется в обстановке гидратации офиолитовых перидотитов при пониженной температуре (*T* ниже 200°C, W/R < 0.2), в то время как при высоком отношении вода/порода (W/R > 300), характерном для серпентинизации океанических перидотитов, аваруит образуется при более высокой температуре 450–570°C (Lorand, 1985; Базылев, 2000).

Симплектитовые срастания в желваках и условия их образования

В нашем исследовании в желваках VI типа обнаружены специфические симплектиты ртутистого серебра и никелистой меди в хизлевудите, а также аваруита в Со-пентландите. Анализ литературных данных показал, что симплектиты как взаимные прорастания минералов с характерным, чаще всего червеобразным, рисунком описываются

Фиг. 11. Условия образования самородно-сульфидных желваков I–VI типов (серое поле) на диаграмме температура $(T) - фугитивность серы (lg fS_2)$. Реакции сульфидизации даны по (Бартон, Скиннер, 1970).

часто. Они встречаются в магматических, метаморфических и метасоматических породах. Соответственно, и генезис симплектитов может быть различным. В магматических породах это обычно эвтектическая кристаллизация расплавов. В метаморфических породах симплектиты часто связываются с перекристаллизацией и минеральными твердофазными реакциями, обусловленными резким изменением РТ-параметров. В метасоматических процессах, в которых участвует водный флюид, симплектитовые срастания могут возникать при реакционном взаимодействии двух контактирующих минералов с участием воды (гидратации). Однако во всех случаях движущей силой образования симплектитов являются резкие изменения РТ-параметров процессов минералообразования, в том числе обусловленные декомпрессией и разуплотнением пород (Сибилев, 2010; Асеева и др., 2014; Кабанова, 2016; Degi et al., 2010 и др.).

Для базит-гипербазитовых пород характерны симплектиты с участием рудных минералов – магнетит-хромит-диопсидовые (Хисина, Лоренц, 2015), ортопироксен-магнетитовые (Efimov, Malitch, 2012), амфибол-магнетитовые, антигорит-магнетитовые (Пыстин и др., 2011; Murzin et al., 2022). Симплектиты, сложенные самородными и сульфидными минералами, описываются значительно реже (Попов и др., 2013; Пушкарев и др., 2003, 2007). Близкие к изученным нами в желваке VI типа синтаксические срастания аваруита с пентландитом в парагенезисе с никелистой медью встречены в серпентините Уфалейского района на Южном Урале (Попов и др., 2013). К сожалению, в данной работе составы этих минералов не приводятся.

Симплектитовые срастания пентландита и хизлевудита с самородной медью описаны также в миароловых пегматитах Нижнетагильского дунит-клинопироксенитового массива в Платиноносном поясе Урала (Пушкарев и др., 2003, 2007). В этих пегматитах симплектиты приурочены к миароловой полости, заполненной серпентином. андрадитом, хлоритом, стекловатыми микросферулами оксидных и силикатно-оксидных фаз, а также гнездами. сложенными магнетитом. сульфидами никеля (пентландит, хизлевудит, миллерит) и самородными мелью, железом, никелем и аваруитом. Судя по приведенным в (Пушкарев и др., 2003) анализам, самородная медь является никелистой (до 5.5 мас. % Си) и родистой (до 2.2 мас. % Rh), хизлевудит содержит 1.2-1.7 мас. %

Си, а пентландит не содержит кобальт. Образование миароловых полостей происходит на заключительных стадиях твердо-пластичных деформаций дунитов в области декомпрессионной разгрузки и заполнения остаточным расплавом и флюидом (Пушкарев и др., 2007).

Генезис самородно-сульфидных "желваков"

Образование самородно-сульфидных агрегатов мы рассматриваем в рамках модели формирования Коркодинского массива и демантоидной минерализации в нем в процессе подъема корово-мантийной смеси во время позднепалеозойской Уральской коллизии (Кисин и др., 2020). Под корово-мантийной смесью здесь понимаются перемешанные фрагменты нижней коры, погруженной на глубину 60-70 км (испытавшей высокобарический метаморфизм), и верхней мантии, внедренные в зону Главного Уральского Разлома. Подъем корово-мантийной смеси сопровождался декомпрессией, разуплотнением, отделением глубинного флюида, автометаморфизмом и автометасоматозом. Синхронно возникающие при декомпрессии трещины растяжения заполнялись жильным материалом. в том числе с гнездами демантоида и самородно-сульфидными желваками при разгрузке глубинного флюида на глубоких горизонтах и, возможно, с участием метеорного флюида на верхних горизонтах. Предположения о формировании демантоидной минерализации при коллизионных процессах подтверждают и результаты прямого U-Pb LA-ICP-MS датирования демантоида на образцах с крайне низким содержанием U, давшего для Коркодинского месторождения 343 ± 4 млн лет, а для Полдневского — 292 ± 1 млн лет (Sorokina et al., 2023).

В предложенной модели источником меди, никеля и серебра был глубинный высокотемпературный гидротермальный раствор, взаимодействующий с основными и ультраосновными породами в высоко восстановительных условиях при низком значении отношения вода-порода (W/R). Механизм формирования рудоносного флюида в модели подъема корово-мантийной смеси обоснован результатами физико-химического моделирования образования золотоносных родингитов Карабашского массива на Южном Урале (Murzin et al., 2018). Подобные условия рассматривались также для серпентинизированных перидотитов из офиолитов Санта-Элена в Коста-Рике (Schwarzenbach et al., 2014), которые содержат ассоциацию самородных Cu, Fe, Ni и их сульфидов, аналогичную описанной выше в желваках из жильной демантоидной минерализации.

ОСНОВНЫЕ ВЫВОДЫ

 Общей чертой выделенных типов самородносульфидных желваков, сложенных самородной медью, хизлевудитом, пентландитом, купритом и другими минералами, является сфероидальная форма и радиально-секториальное строение, что сближает их с отдельными зернами других минералов жильной массы (кальцит, магнетит и др.). В хизлевудит-пентландитовых желваках VI типа обнаружены специфические симплектиты ртутистого серебра и никелистой меди в хизлевудите, а также аваруита в Со-пентландите. Особенности морфологии и строения самородно-сульфидных желваков, а также присутствие в них симплектитовых срастаний связано со специфическими условиями, создающимися при декомпрессии корово-мантийной смеси, поднимающейся к поверхности.

2. Совпадающий набор рудных минералов в серпентините (самородные медь, ртутистое серебро, хизлевудит, пентландит, аваруит) и сульфидно-самородных желваках из жильного материала свидетельствует об их генетической связи и сопряженности демантоидной минерализации в целом с эволюционирующими процессами серпентинизации.

3. Формирование самородно-сульфидных парагенезисов в желваках происходило при температуре ниже 380° С в восстановительных условиях при очень низких значениях фугитивности серы $(10^{-17}-10^{-27} \text{ бар})$ и кислорода $(10^{-30} \text{ бар при } 200^{\circ}$ С– 10^{-21} бар при 350° С). В желваках VI типа такие условия сохранялись в течение всего времени их формирования, в то время как при образовании желваков I–V типов восстановительные условия ранних парагенезисов сменялись более окислительными в поздних, для которых характерно замещение самородной меди купритом.

4. Источником Cu, Ni и Ag был глубинный высокотемпературный гидротермальный раствор, взаимодействующий с основными и ультраосновными породами в восстановительных условиях при низком значении отношения вода—порода.

БЛАГОДАРНОСТИ

Авторы благодарны С.Г. Селезневу и другим геологам ООО "Корпорация Маяк" за содействие в получении образцов для исследований.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственных заданий ИГиГ Уро РАН (№ Гос. учета НИОКТР 123011800011-2) и темы НИР ИЭМ РАН (FMUF-2022-0003).

СПИСОК ЛИТЕРАТУРЫ

Асеева А.В., Высоцкий С.В., Карабцов А.А., Александров И.А., Чувашова И.С. Трансформация гранатовых мегакристов под воздействием щелочных базальтовых магм // Тихоокеанская геология. 2014. Т. 33. № 2. С. 53–63.

Базылев Б. А. Развитие аваруит-содержащей минеральной ассоциации в перидотитах из зоны разлома 15°20 (Атлантический океан) как одно из проявлений океанического метаморфизма // Российский журн. наук о земле. 2000. Т. 2. № 3. С. 279–293.

№ 6 2023

Бартон П.Б., Скиннер Б.Дж. Устойчивость сульфидных минералов // Геохимия гидротермальных рудных месторождений. М.: Мир, 1970. С. 211–285.

Воган Д., Крейг Дж. Химия сульфидных минералов. Москва: Мир, 1981.

Диаграммы состояния двойных и многокомпонентных систем на основе железа. Справочник. Банных О.А., Будбере П.Б., Алисова С.П. и др. Москва: Металлургия, 1986. Кабанова Л.Я. Симплектиты как показатели декомпрессионных условий образования // Наука ЮУрГУ: матер. 68-й науч. конф. Челябинск: Южно-Уральский государственный университет, 2016. С. 275–283.

Калугина Р.Д., Копанев В.Ф., Стороженко Е.В. и др. Государственная геологическая карта Российской Федерации. Масштаб 1 : 200000. Издание второе. Серия Среднеуральская. Лист О-41-ХХV. Объяснительная записка. М.: Московский филиал ФГБУ "ВСЕГЕИ", 2017. Карасева Е.С., Кисин А.Ю., Мурзин В.В. Полдневское месторождение демантоида (Средний Урал): Геология и минералогия // Литосфера. 2021. № 5. С. 681–696. https://doi.org/10.24930/1681-9004-2021-21-5-683-698

Кисин А.Ю., Мурзин В.В., Карасева Е.С., Огородников В.Н., Поленов Ю.А., Селезнев С.Г., Озорнин Д.А. Проблемы структурного контроля демантоидной минерализации на Полдневском месторождении // Известия УГГУ. 2020. Вып. 2(58). С. 64–73.

https://doi.org/10.21440/2307-2091-2020-2-64-73

Макеев А.Б. Минералогия альпинотипных ультрабазитов Урала: Наука. СПб.: Наука, 1992.

Мурзин В.В., Малюгин А.А. Типоморфизм золота зоны гипергенеза (на примере Урала). Свердловск: УНЦ АН СССР, 1987.

Попов В.А., Колисниченко С.В., Блинов И.А. Никелистая медь и накаурит из голубой жилы в ультрамафитах (Верхнеуфалейский район, Южный Урал) // Четырнадцатые Всероссийские научные чтения памяти ильменского минералога В.О. Полякова. Миасс: Институт минералогии УрО РАН, 2013. С. 13–24.

Пушкарев Е.В., Аникина Е.В., Гарути Дж., Заккарини Ф. Родистая самородная медь из миароловых дунитов Нижнетагильского массива // Вестник Уральского отделения РМО № 2. Екатеринбург: УГГГА, 2003. С. 78–82.

Пушкарев Е.В., Аникина Е.В., Гарути Дж., Заккарини Ф. Хром-платиновое оруденение Нижнетагильского типа на Урале: Структурно-вещественная характеристика и проблема генезиса // Литосфера. 2007. № 3. С. 28–65. Пыстин А.М., Потапов И.Л., Пыстина Ю.И., Генералов В.И., Онищенко С.А., Филиппов В.Н., Шлома А.А., Терешко В.В. Малосульфидное платинометалльное оруденение на Полярном Урале. Екатеринбург: УрО РАН, 2011.

Рамдор П. О широко распространенном парагенезисе рудных минералов, возникающих при серпентинизации // Геология рудн. месторождений. 1967. № 2. С. 32–43.

Сибелев О.С. Декомпрессионные симплектиты в апоэклогитах Гридинской зоны меланжа (Беломорский подвижный пояс) // Геология и полезные ископаемые Карелии. 2010. Т. 13. С. 66–72.

Хисина Н.Р., Лоренц К.А. Дегидрогенизация как механизм образования ориентированных шпинель-пироксеновых симплектитов и магнетит-гематитовых включений в оливинах земного и внеземного происхождения // Петрология. 2015. Т. 23. № 2. С. 195–208. https://doi.org/10.7868/S0869590315020065

Adamo I., Bocchio R., Diella V., Pavese A., Vignola P., Prosperi L., Palanza V. Demantoid from Val Malenco, Italy: Review and update // Gems and Gemology. 2009. V. 45. P. 280–287.

https://doi.org/10.5741/gems.45.4.280

Adamo I., Bocchio R., Diella V., Caucia F., Schmetzer K. Demantoid from Balochistan, Pakistan: Gemmological and Mineralogical Characterization // J. Gemmol. 2015. V. 34. P. 428–433.

https://doi.org/10.15506/JoG.2014.34.4.344

Ahadnejad V., Krzemnicki M.S., Hirt A.M. Demantoid from Kerman Province, South-east Iran: A Mineralogical and Gemmological Overview // The J. Gemmology. 2022. V. 38. № 4. P. 329–347.

https://doi.org/10.15506/JoG.2022.38.4.329

Degi J., Abart R., Torok K., Wirth R., Rhede D. et al. Symplectite formation during decompression induced garnet breakdown in lower crustal mafic granulite xenoliths: mechanisms and rates // Contrib. Mineral. Petrol. 2010. N 159. P. 293–314.

Efimov A.A., Malitch K.N. Magnetite-orthopyroxene symplectites in gabbros of the Urals: a structural track of olivine oxidation // Geology of Ore Deposits. 2012. V. 54. N° 7. P. 531–539.

Phillips W.R., Talantsev A.S. Russian demantoid, czar of the garnet family // Gems and Gemology. 1996. V. 32. № 2. P. 100–111.

https://doi.org/10.5741/gems.32.2.100

Kaneda H., Takenouchi S., Shol T. Stability of pentlandite in the Fe–Ni–Co–S system // Mineralium Deposita. 1986. V. 21. P. 169–180.

Kissin A.Y., Murzin V.V., Karaseva E.S. "Horsetail" Inclusions in the Ural Demantoids: Growth Formations // Minerals. 2021. V. 11. № 8. P. 825. https://doi.org/10.3390/min11080825

Lorand J.P. The behaviour of the upper mantle sulfide component during the incipient alteration of "Alpine"-type peridotites as illustrated by the Beni Bousera (Northern Morocco) and Ronda (Southern Spain) ultramafic bodies // Tschermaks Min. Petr. Mitt. 1985. V. 34. P. 183–209.

Murzin V.V., Chudnenko K.V., Palyanova G.A., Varlamov D.A., Naumov E.A., Pirajno F. Physicochemical model of formation of Cu–Ag–Au–Hg solid solutions and intermetallic alloys in the rodingites of the Zolotaya Gora gold deposit (Urals, Russia) // Ore Geol. Rev. 2018. V. 93. P. 81–97. https://doi.org/10.1016/j.oregeorev.2017.12.018

Murzin V., Palyanova G., Mayorova T., Beliaeva T. The Gold–Palladium Ozernoe Occurrence (Polar Urals, Russia): Mineralogy, Conditions of Formation, Sources of Ore Matter and Fluid // Minerals. 2022. V. 12, 765. https://doi.org/10.3390/ min12060765

Rondeau B., Fritsch E., Mocquet B., Lulyac Y. Ambanja (Madagascar) – New source of gem demantoid garnet // InColor. 2009. V. 11. P. 16–20.

Schwarzenbach E.M., Gazel E., Caddick M.J. Hydrothermal processes in partially serpentinized peridotites from Costa Rica: evidence from native copper and complex sulfide assemblages // Contrib Mineral Petrol. 2014. V. 168:1079.

Sorokina E.S., Albert R., Botcharnikov R.E., Popov M.P., Häger T., Hofmeister W., Gerdes A. Origin of Uralian andradite (var. demantoid): Constraints from in situ U-Pb LA-ICP-MS dating and trace element analysis // Lithos. 2023. V. 444–445. 1070.

https://doi.org/10.1016/j.lithos.2023.107091