
AUTOMATED CORRESPONDENCE ANALYSIS FOR THE

BINARY EXTENSIONS OF THE LOGIC OF PARADOX

YAROSLAV PETRUKHIN AND VASILY SHANGIN

Abstract. B. Kooi and A. Tamminga present a correspondence analysis for extensions

of G. Priest’s logic of paradox. Each unary or binary extension is characterizable by a

special operator and analyzable via a sound and complete natural deduction system. The

present paper develops a sound and complete proof searching technique for the binary

extensions of the logic of paradox.

§1. The logic of paradox and correspondence analysis. In (Kooi &
Tamminga, 2012), the authors present a uniform method (entitled as correspon-
dence analysis following the notion of correspondence theory from modal logic1)
to set up natural deduction systems for the unary or binary truth-functional
extensions of the logic of paradox (LP) (Asenjo, 1954, 1966; Priest 1979, 1984,
2002). They extensively use the fact that LP is not functionally complete. The
method has been extended to the strong three-valued logic K3 (Kleene, 1938,
1952) in (Tamminga, 2014) and to the relevant logic FDE (Anderson & Belnap,
1975, 1992) in (Tamminga, 2016; Petrukhin, 2016).

The authors put the idea of this method as follows:

“We show that for every single entry E in a truth table f for a unary
or a binary operator there is an inference scheme Π/φ such that E is an
entry in f if and only if Π/φ is valid according to f. As a consequence,
each truth table for a unary (or binary) operator can be characterized
in terms of three (or nine) inference schemes. Moreover, adding the
inference schemes that characterize a truth table f as derivation rules
to a natural deduction system for LP yields a natural deduction system
which is sound and complete with respect to the semantics that also
contains, next to LP ’s truth-tables for ¬, ∨, and ∨, the truth table f .”
(Kooi & Tamminga, 2012, p. 721)

Now let us briefly introduce LP. We stick to the notation in (Kooi & Tam-
minga, 2012). The language L of LP is a standard propositional language with
a countable set P of propositional variables {p1, . . . , pn, . . . } and ∧ (conjunc-
tion), ∨ (disjunction), ¬ (negation). For the purpose of this paper, L does not

Key words and phrases. Non-classical logic, logic of paradox, proof theory, proof search,

correspondence analysis, natural deduction.
The second author is supported by Russian Foundation for Humanities, grant 16-03-00749

“Logical-epistemic problems of knowledge representation”.
1See (Sahlqvist, 1975; van Benthem, 1976, 2001) for details about modal correspondence

theory.

1

2 Preliminary draft

include → (implication). Nevertheless, one may define it in a standard way:
φ → ψ := ¬φ ∨ ψ. The notions of both a well-formed formula and a valuation
v from P to the set {1, i, 0} of truth-values “true”, “both”, and “false” are as
usual. A literal is a (negation of a) propositional variable. LP -connectives are
defined by the following truth tables:

f¬
1 0
i i
0 1

f∨ 1 i 0
1 1 1 1
i 1 i i
0 1 i 0

f∧ 1 i 0
1 1 i 0
i i i 0
0 0 0 0

LP -consequence relation (Π |= φ) is defined as follows: if v(ψ) 6= 0, for all
ψ ∈ Π, then v(φ) 6= 0, for each valuation v. LP -tautology is a formula φ iff
v(φ) 6= 0, for each valuation v. Note that one obtains the strong logic K3 (Kleene,
1938, 1952), if one defines Π |= φ as follows: if v(ψ) = 1, for all ψ ∈ Π, then
v(φ) = 1, for each valuation v. In other words, LP is K3 with two designated
values and K3 is LP with one designated value. The idea to consider K3 with
two designated values as a paraconsistent logic first appeared in (Asenjo, 1954,
1966). Later under the name of LP it was studied in (Priest, 1979, 1984, 2002).
Note also that Resher (1969) proved that the class of LP -tautologies coincides
with the class of classical ones2. However, LP -consequence relation differs from
a classical one: for example, φ ∧ (¬φ ∨ ψ) 6|= ψ in LP.

Let L(∼)m(◦)n be an extension of L by unary ∼1, . . . ,∼m and binary ◦1, . . . , ◦n
operators. Let us denote a logic built in L(∼)m(◦)n by LP(∼)m(◦)n. Thus, truth
tables of LP(∼)m(◦)n-connectives are f¬, f∧, f∨, f∼1

, . . . , f∼m
, f◦1 , . . . , f◦n . In a

particular case, LP might be extended only by binary operators ◦1, . . . , ◦n. So
we obtain a logic LP(◦)n in a language L(◦)n.

The definition of a single entry correspondence is as follows:

Definition 1.1 (Kooi & Tamminga, 2012). Let Π ∪ {φ} ⊆ L(∼)m(◦)n. Let
x, y, z ∈ {0, i, 1}. Let E be a truth table entry of the type f∼(x) = y or f◦(x, y) =
z. Then the truth table entry E is characterized by an inference scheme Π/φ, if

E if and only if Π |= φ.

Kooi and Tamminga introduce inference schemes which characterize all possi-
ble entries in truth-tables f∼ and f◦. In the paper, we confine ourselves to the
case of f◦ only (see theorem 2.3 in section 2).

The paper is organised as follows. The rest of the section 1 is devoted to the
interesting extentions of LP. The 2nd section is about natural deduction systems
for LP and its binary extensions. Proof search procedure is described in the
3rd section. Algo-proof examples are in the section 4. Soundness, completenes
and termination are shown in the section 5. The 6th section contains concluding
remarks and future work.

Implicational extensions of LP. In this section, we will try to clarify pos-
sible interpretations of ◦. It seems to be quite natural to consider ◦ as an
implication. Of course, it is not the only one possible interpretation of ◦. One
may understand ◦ as an equivalence, the Sheffer’s stroke or any other binary
connective. However, in this paper, we stick to the interpretation of ◦ as a

2See also (Martin, 1975) and (Epstein, 1990).

Preliminary draft 3

conditional operator. Kooi and Tamminga point out to some well-known logics
resulted from adding binary operators to LP : RM3 (Anderson & Belnap, 1975)
and J3 (D’Ottaviano & da Costa, 1970; Epstein & D’Ottaviano, 2000). We
may also add the following logics mentioned in the literature: PCont (which
occurs under different names in the literature), LFI 1 & LFI 2 (Carnielli, Marcos
& Amo, 2000), and LP⇒ (Thomas, 2013). Moreover, we add logics with LP ’s
connections and implications from Heyting’s (1930) G3 and Sette’s (1973) P1.
At last, we discuss a class of logics with so called a natural implication (Tomova,
2012).

f→1
1 i 0

1 1 i 0
i 1 1 0
0 1 1 1

f→2
1 i 0

1 1 i 0
i 1 i 0
0 1 1 1

f→3
1 i 0

1 1 0 0
i 1 i 0
0 1 1 1

f→4
1 i 0

1 1 0 0
i 1 1 0
0 1 1 1

f→5
1 i 0

1 1 1 0
i 1 1 0
0 1 1 1

f→6
1 i 0

1 1 1 0
i 1 i 0
0 1 1 1

Heyting’s implication→1. Although Heyting’s logic G3 (Heyting, 1930; Gödel,
1932; Jaśkowski, 1936) does not have the same concept of consequence relation
as LP, G3’s implication→1 has one nice property: it verifies modus ponens with
one and with two designated values. Recall that LP ’s own implication defined
as ¬φ ∨ ψ fails to verify modus ponens. Notice that Batens (1980) considers
K3’s extension by →1 (G3’s conjunction and disjunction are the same as K3’s
and LP ’s ones, but G3’s negation differs from K3’s and LP ’s ones).

Jaśkowski’s implication →2. Jaśkowski’s 1948 paper is well-known as one of
the first works dedicated to paraconsistency. Jaśkowski suggested several para-
consistent logics, and one of them has →2 as a conditional operator. Later
this implication appeared in (Asenjo & Tamburino, 1975; Battens, 1980; Rozo-
noer, 1983a, 1983b; Avron, 1986), where LP with →2 is considered. Following
(Rozonoer, 1983a, 1983b), we call this logic PCont. Besides, →2 appeared in
D’Ottaviano & da Costa’s (1970) J3, Batens’ (1989) CLuNs and Carnielli, Mar-
cos & Amo’s (2000) LFI 1.

Sobociński’s implication →3. In 1952, Sobociński presented→3 as an implica-
tion which is free from so called paradoxes of the classical conditional. Conjunc-
tion and disjunction in Sobociński’s logic are defined via ¬ and→3; consequence
relation is the same as in LP. It seems to be natural to replace Sobociński’s
conjunction and disjunction by more familiar LP ’s ones. Such a logic (under the
name of RM3) is mentioned in (Anderson & Belnap, 1975).

Rescher’s implication→4. This implication came from Rescher’s logic (Rescher,
1969) which, unlike LP, has the only one designated value. Moreover, it is not an
extension of K3. However,→4 verifies modus ponens with one and with two des-
ignated values, likewise →1. Recently Thomas (2013) proposed LP ’s extension
by →4 without referring to (Rescher, 1969).

Sette’s implication →5. Implication of Sette’s (1973) paraconsistent logic P1

is another fine candidate to be an extension of LP. P1 has two designated values

4 Preliminary draft

and its truth tables for negation, conjunction, and disjunction differ from LP ’s
ones. Notice that P1 was analysed in (da Costa, & Alves, 1981; Mortenson, 1989;
Popov, 1999). Besides, →5 is an implication of the logic P2 (Marcos, 2005).

Carnielli, Marcos & Amo’s implication →6. Besides abovementioned LFI 1,
Carnielli, Marcos & Amo (2000) consider also the logic LFI 2 which consists of
LP ’s negation, an unary operator of inconsistency, conjunction and disjunction
(which differ from LP ’s ones), and an implication →6.

Tomova’s natural implications. We have considered six interesting implica-
tions from various logics which can be added to LP. Now let us describe the
special class of implications which can be added to LP.

Following Tomova (2012, p. 175), we call an implication → natural, iff the
following conditions are fulfilled (V3 = {1, i, 0} and D is a set of designated
values):

1. C-extending, i.e. restrictions to the subset {0, 1} of V3 coincide with the
classical implication.

2. If x → y ∈ D and x ∈ D, then y ∈ D, i.e. matrices for implication need
to be normal in the sense of Lukasiewicz-Tarski (1930) (they verify modus
ponens).

3. Let x ≤ y, then x→ y ∈ D;
4. x→ y ∈ V3, in other cases.

Tomova (2012) showed that in three-valued logics with two designated values
there are 24 natural implications:

f→ 1 i 0
1 1 b 0
i a a 0
0 1 a 1

where a ∈ {1, i} and b ∈ {1, i, 0}. Note these implications are not natural in
the sense of (Avron, 1991). Note also among these implications are those which
have already been mentioned in the literature. For example, all implications →i

(i ∈ {1, . . . , 6}) discussed above are natural.
Later on following (Rescher, 1969), Tomova (2015a, 2015b) extended the class

of natural implications by making the distinction between a stronger and a
weaker versions of modus ponens. The stronger version is designation-preserving
and the weaker one is tautology-preserving. As follows from (Tomova, 2015b),
if we replace the condition (2) in the definition of natural implication by the
weaker version of modus ponens (if |= x→ y and |= x, then |= y) then we obtain
16 new natural implications (if D = {1, i}):

f→ 1 i 0
1 1 i 0
i a a a
0 1 1 1

f→ 1 i 0
1 1 i 0
i a a i
0 1 i 1

f→ 1 i 0
1 1 b 0
i 1 1 1
0 1 1 1

f→ 1 i 0
1 1 0 0
i a a a
0 1 1 1

f→ 1 i 0
1 1 1 0
i 1 1 1
0 1 a 1

Preliminary draft 5

One may add any of these implications to LP and set up a proof system for
this extension of LP via correspondence analysis.

§2. Natural deduction systems for LP and its extensions. Kooi &
Tamminga introduce the following rules of NDLP

3. We divide them into elimi-
nation and introduction rules.

Elimination rules:

(∧E1)
φ ∧ ψ
φ

(∧E2)
φ ∧ ψ
ψ

(∨E)
[φ] [ψ]

φ ∨ ψ χ χ
χ

(¬¬E)
¬¬φ
φ

(¬∨E)
¬(φ ∨ ψ)

¬φ ∧ ¬ψ
(¬∧E)

¬(φ ∧ ψ)

¬φ ∨ ¬ψ
Introduction rules:

(∧I)
φ ψ

φ ∧ ψ
(∨I1)

φ

φ ∨ ψ
(∨I2)

ψ

φ ∨ ψ
(¬¬I)

φ

¬¬φ

(¬∨I)
¬φ ∧ ¬ψ
¬(φ ∨ ψ)

(¬∧I)
¬φ ∨ ¬ψ
¬(φ ∧ ψ)

(EM)
φ ∨ ¬φ

There are following reasons to consider (¬∨E) and (¬∧E) ((¬∨I) and (¬∧I))
as elimination (introduction) rules. For example, (¬∨E) might be replaced with

(¬∨E1)
¬(φ ∨ ψ)

¬φ
and (¬∨E2)

¬(φ ∨ ψ)

¬ψ
; and (¬∧I) might be replaced with

(¬∧I1)
¬φ

¬(φ ∧ ψ)
and (¬∧I2)

¬ψ
¬(φ ∧ ψ)

. We, again, recall that we stick to (Kooi

& Tamminga, 2012).
In contradistinction to (Kooi & Tamminga, 2012), we define a natural deduc-

tion derivation in a linear (“Fitch-style”) format.4

Definition 2.1. A derivation in NDLP of a formula φ from a set of assump-
tions Π is a finite non-empty sequence of formulae with the following conditions:

• Each formula is a assumption or follows from the previous formulae via a
NDLP -rule;

• By applying (∨E) each formula starting from the assumption φ until a
formula χ, inclusively, as well as each formula starting from the assumption
ψ until a formula χ, inclusively, is discarded from the derivation.

Definition 2.2. A proof in NDLP is a derivation from the empty set of as-
sumptions.

Natural deduction systems NDLP(◦)n for extensions of LP. To obtain
natural deduction systems for extensions of LP, the authors introduce inference
schemes which characterize all possible entries in truth-tables for f◦ [Kooi &
Tamminga 2012, p. 722-723].

Theorem 2.3 (Kooi & Tamminga, 2012). Let φ, ψ, χ ∈ L(◦)n. Then:

3This system was first formulated in (Priest, 2002). An alternative natural deduction system
for LP can de found in (Roy, 2006).

4This definition is a standard one: see, for example (Copi, Cohen, McMahon, 2011, p. 366).

6 Preliminary draft

f◦(0, 0) =

 0 iff φ ◦ ψ |= φ ∨ ψ
i iff |= ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ (φ ∨ ψ)
1 iff ¬(φ ◦ ψ) |= φ ∨ ψ

f◦(0, i) =

 0 iff ψ ∧ ¬ψ, φ ◦ ψ |= φ
i iff ψ ∧ ¬ψ |= ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ φ
1 iff ψ ∧ ¬ψ,¬(φ ◦ ψ) |= φ

f◦(0, 1) =

 0 iff φ ◦ ψ |= φ ∨ ¬ψ
i iff |= ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ (φ ∨ ¬ψ)
1 iff ¬(φ ◦ ψ) |= φ ∨ ¬ψ

f◦(i, 0) =

 0 iff φ ∧ ¬φ, φ ◦ ψ |= ψ
i iff φ ∧ ¬φ |= ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ ψ
1 iff φ ∧ ¬φ,¬(φ ◦ ψ) |= ψ

f◦(i, i) =

 0 iff φ ∧ ¬φ, ψ ∧ ¬ψ, φ ◦ ψ |= χ
i iff φ ∧ ¬φ, ψ ∧ ¬ψ |= (φ ◦ ψ) ∧ ¬(φ ◦ ψ)
1 iff φ ∧ ¬φ, ψ ∧ ¬ψ,¬(φ ◦ ψ) |= χ

f◦(i, 1) =

 0 iff φ ∧ ¬φ, φ ◦ ψ |= ¬ψ
i iff φ ∧ ¬φ |= ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ ¬ψ
1 iff φ ∧ ¬φ,¬(φ ◦ ψ) |= ¬ψ

f◦(1, 0) =

 0 iff φ ◦ ψ |= ¬φ ∨ ψ
i iff |= ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ (¬φ ∨ ψ)
1 iff ¬(φ ◦ ψ) |= ¬φ ∨ ψ

f◦(1, i) =

 0 iff ψ ∧ ¬ψ, φ ◦ ψ |= ¬φ
i iff ψ ∧ ¬ψ |= ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ ¬φ
1 iff ψ ∧ ¬ψ,¬(φ ◦ ψ) |= ¬φ

f◦(1, 1) =

 0 iff φ ◦ ψ |= ¬φ ∨ ¬ψ
i iff |= ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ (¬φ ∨ ¬ψ)
1 iff ¬(φ ◦ ψ) |= ¬φ ∨ ¬ψ

In (Kooi & Tamminga, 2012), NDLP and NDLP(◦)n are shown to be sound
and complete.

Example.

A proof of φ◦ψ in the system with R◦(0, 0, 1), R◦(1, 0, 1), R◦(1, 1, 1), R◦(i, 0, 1),
R◦(i, 1, 1), R◦(i, i, 1), and R◦(1, i, 1).5

(1) (φ ◦ ψ) ∨ ¬(φ ◦ ψ) (EM)

(2) ¬(φ ◦ ψ) assumption

(3) φ ∨ ψ R◦(0, 0, 1): 2

(4) ¬φ ∨ ψ R◦(1, 0, 1): 2

(5) ¬φ ∨ ¬ψ R◦(1, 1, 1): 2

(6) φ assumption

(7) ¬φ assumption

(8) φ ∧ ¬φ (∧I): 6, 7

(9) ψ R◦(i, 0, 1): 8, 2

(10) ¬ψ R◦(i, 1, 1): 8, 2

5Discarded formulae are put in square brackets, after the analysis of a proper inference step.

Preliminary draft 7

(11) ψ ∧ ¬ψ (∧I): 9, 10

(12) φ ◦ ψ R◦(i, i, 1): 11, 8, 2

(13) ψ assumption

(14) ¬φ assumption

(15) φ ∧ ¬φ (∧I): 6, 14

(16) ¬ψ R◦(i, 1, 1): 15, 2

(17) ψ ∧ ¬ψ (∧I): 16, 13

(18) φ ◦ ψ R◦(i, i, 1): 17, 15, 2

(19) ¬ψ assumption

(20) ψ ∧ ¬ψ (∧I): 13, 19

(21) ¬φ R◦(1, i, 1): 20, 2

(22) φ ∧ ¬φ (∧I): 6, 21

(23) φ ◦ ψ R◦(i, i, 1): 21, 20, 2

(24) φ ◦ ψ (∨E): 19, 14, 5, [19-23], [14-18]

(25) φ ◦ ψ (∨E): 13, 7, 4, [13-24], [7-12]

(26) ψ assumption

(27) ¬φ assumption

(28) φ ∧ ¬φ (∧I): 6, 27

(29) ¬ψ R◦(i, 1, 1): 28, 2

(30) ψ ∧ ¬ψ (∧I): 29, 26

(31) φ ◦ ψ R◦(i, i, 1): 30, 28, 2

(32) ¬ψ assumption

(33) ψ ∧ ¬ψ (∧I): 32, 26

(34) ¬φ R◦(1, i, 1): 33, 2

(35) φ ∧ ¬φ (∧I): 34, 6

(36) φ ◦ ψ R◦(i, i, 1): 35, 33, 2

(37) φ ◦ ψ (∨E): 27, 32, 5, [27-31], [32-36]

(38) φ ◦ ψ (∨E): 6, 26, 3, [6-25], [26-37]

(39) φ ◦ ψ assumption

(40) φ ◦ ψ (∨E): 2, 39, 1, [2-38], [39]

§3. Proof search for NDLP and NDLP(◦)n . To the best of our knowl-
edge, there are no papers concerning natural proof searching for LP. In the
paper, we follow an original approach to proof searching for natural deduction
systems in classical and non-classical logics (Bolotov, Basukoski, Grigoriev &
Shangin, 2006), (Bolotov, Bocharov, Gorchakov & Shangin, 2009). In treating
LP -connectives ¬, ∧ and ∨, we use proof searching for the paraconsistent logic
PCont (Bolotov & Shangin, 2012). Therefore, in proof searching for each bi-
nary extension of LP we are left to deal with the derivation rules which are the
characterizing inference schemes for f◦1 , . . . , f◦n .

Dealing with all the systems in question, we keep in mind that we always
search for a proof in a particular system.

8 Preliminary draft

The proof searching procedure is a goal-directed one and generates two se-
quences: list−proof and list−goals. The first sequence contains either a deriva-
tion (if it can be found) or a counterexample (if a derivation can’t be found).
The second sequence stacks goals and starts with the initial−goal (the state-
ment we desire to prove). The proof searching procedures described below de-
fine an algo-derivation for NDLP and NDLP(◦)n (we abbreviate it as ALGLP

and ALGLP(◦)n). At each step of a proof search, we choose a specific goal (the

current−goal), which we aim to reach. Note a goal is always a formula.
Suppose we are tasked to find an algo-derivation of φ from Π in someNDLP(◦)n .

The notation “Γ ` ∆”, where Γ ⊆ Π and φ is the first constituent of ∆ (i.e. φ is
the initial−goal), should be read as follows: Γ and ∆ are the list−proof and the
list−goals, correspondingly, of an algo-derivation of φ from Π in some NDLP(◦)n

at the current step of a proof search. In particular, “Γ, ψ ` ∆, χ” is supposed to
mean that ψ is a constituent of Γ and χ is the last constituent of ∆ (i.e. χ is
the current−goal).

Definition 3.1. Let Γ, ψ ` ∆, ψ. A current−goal ψ is said to be reached if
ψ isn’t discarded from the list−proof .

The idea of the current−goal ψ’s reachability is that it occurs (as an assump-
tion or being inferred) in the list−proof . However, it mustn’t be discarded for
sometimes the same formula reappears as the current−goal. While proof search-
ing we check the reachability of the current−goal. If successful we apply the
appropriate introduction rule. If unsuccessful, both list−proof and list−goals
are updating.

Definition 3.2. Γ ` ∆ is said to lead to Γ′ ` ∆′ if an algorithm starts at a
moment with Γ ` ∆ and stops at a moment with Γ′ ` ∆′.

Proof searching procedures. In describing proof searching procedures we
follow (Bolotov & Shangin, 2012, pp. 8–10) with considerable modifications.
Procedure 1 (P1). The elimination rules are applied following P1. The

list−proof is added with a conclusion of an elimination rule if the list−proof
contains premise(s) of this rule. P1 is supplemented with marks. Once a rule is
applied, both its premise(s) is/are marked to avoid infinite applications of the
same rule to the same formula. If the conclusion of the rule is discarded from
the list−proof then its premises are unmarked and another application of this
rule to the same formula is possible.
Procedure 2 (P2). P2 checks whether the current−goal is reached. A

reached goal is deleted from the list−goals, and the previous goal becomes the
current one.
Procedure 3 (P3). P3 launches if P1 stops and one doesn’t reach the

current−goal. P3 consists of two subprocedures: P3.1 and P.3.2. P3.1 deals with
the current−goal in the list−goals whereas P3.2 deals with special compound
formulae in the list−proof .

Procedure 3.1 (P3.1). P3.1 analyses the current−goal. If one doesn’t
reach the current−goal then a new current−goal is added to the list−goals and
some formulae are, possibly, added to the list−proof as follows:

Preliminary draft 9

P3.1.1. If Γ ` ∆, φ∧ψ and φ∧ψ isn’t reached then Γ ` ∆, φ, ψ (if a conjunctive
formula isn’t reached we search for both of its conjuncts one by one starting from
the right one).

P3.1.2.1. If Γ ` ∆, φ∨ψ and φ∨ψ isn’t reached then Γ ` ∆, φ (if a disjunctive
formula isn’t reached we search for its left disjunct).

P3.1.2.2. If Γ ` ∆, φ and φ isn’t reached then Γ ` ∆, ψ (if the left disjunct
isn’t reached we delete the left one from the list−goals and search for its right
one).6

P3.1.2.3. If Γ ` ∆, ψ and ψ isn’t reached then Γ∗, (φ∨ψ)∨¬(φ∨ψ),¬(φ∨ψ) `
∆, φ ∨ ψ, φ ∨ ψ, where Γ∗ = Γ ∪ {¬(φ ∨ ψ)} (if no disjunct is reached we delete
the right one and search for the disjunctive formula by refutation, i.e. adding
(φ∨ψ)∨¬(φ∨ψ) with the mark by the rule (EM) and an assumption ¬(φ∨ψ)
in the list−proof and setting φ ∨ ψ as a new current−goal).

7

P3.1.3. If Γ ` ∆,¬(φ∧ ψ) and ¬(φ∧ ψ) isn’t reached then Γ ` ∆,¬φ∨¬ψ (if
¬(φ ∧ ψ) isn’t reached we search for ¬φ ∨ ¬ψ).

P3.1.4. If Γ ` ∆,¬(φ∨ ψ) and ¬(φ∨ ψ) isn’t reached then Γ ` ∆,¬φ∧¬ψ (if
¬(φ ∨ ψ) isn’t reached we search for ¬φ ∧ ¬ψ).

P3.1.5. If Γ ` ∆,¬¬φ and ¬¬φ isn’t reached then Γ ` ∆,¬¬φ, φ (if ¬¬φ isn’t
reached we search for φ).

P3.1.6. If Γ ` ∆, ψ, where ψ is a literal or φ◦ψ or ¬(φ◦ψ), and ψ isn’t reached
then Γ∗, ψ∨¬ψ,¬ψ ` ∆, ψ, ψ, where Γ∗ = Γ∪{¬ψ} (literals and formulae φ◦ψ,
¬(φ ◦ ψ) are treated in the same way as P3.1.2.3 treats a formula ¬(φ ∨ ψ)).8

P3.1.7. If Γ ` ∆, ψ ∨¬ψ and ψ ∨¬ψ isn’t reached then Γ, ψ ∨¬ψ ` ∆, ψ ∨¬ψ
(if ψ ∨ ¬ψ isn’t reached we add it in the list−proof by (EM)).
Procedure 3.2 (P3.2). P3.2 launches if P3.1 stops and one doesn’t reach

the current−goal. In particular, P3.2 deals with some compound formulae in
the list−proof trying to update the list−goals with new goals or the list−proof
with new formulae. These new goals or formulae, roughly, are useful either in
proving the initial−goal or in extracting a counterexample.

P3.2 is supplemented with marks. First, it deals with only those compound
formulae in the list−proof which aren’t marked by P1 (i.e. with those which the
elimination rules haven’t been applied to). Second, P3.2 has its own marking.
Once it is applied, the compound formula is marked to avoid infinite applications
of P3.2 to the same formula. If the result(s) of an application of P3.2 to the
formula is/are discarded from the list−proof then the formula is unmarked and
another application of P3.2 to it is possible.

6Note Γ ` ∆, φ and Γ ` ∆, ψ differ with respect to the current−goal only. It means all the
formulae from both the list−proof and the list−goals which have been inferred under P3.1.2.1

are deleted before launching P3.1.2.2. Note also that a term “deleted formula” shouldn’t be
confused with a term “discarded formula”. The latter is a part of a derivation (hence, of a
proof search) whereas the former is a part of a proof search only.

7Despite a new current−goal is the same formula φ∨ψ it’s not the same constituent in the

list−goals. Now we are to reach φ ∨ ψ with the presence of an assumption φ ∨ ψ in order to
reach then φ ∨ ψ without this assumption.

8We don’t unite P3.1.2.3 and P3.1.6 in one procedure in order to highlight the well-known

problem of natural deduction with disjunction (Prawitz, 1965), (D’Agostino, 1990).

10 Preliminary draft

P3.2.1. If Γ, φ ∨ ψ ` χ and χ isn’t reached then Γ∗, φ ∨ ψ, φ ` ∆, χ, χ, where
Γ∗ = Γ ∪ {φ} (if a disjunctive formula is unmarked and χ isn’t reached we add
an assumption φ in the list−proof and set χ as a new current−goal).

P3.2.1.1. If Γ∗, φ ∨ ψ, φ ` ∆, χ, χ and χ isn’t reached then Γ∗, φ ∨ ψ, φ, ψ ∨
¬ψ,ψ ` ∆, χ, χ, χ (if χ isn’t reached we add ψ ∨ ¬ψ with the mark by the
rule (EM) and one more assumption ψ in the list−proof and set χ as a new
current−goal).

P3.2.1.2. If Γ∗, φ∨ψ, φ, ψ∨¬ψ,ψ ` ∆, χ, χ, χ leads Γ∗, φ∨ψ, φ, ψ∨¬ψ,ψ, χ `
∆, χ, χ, χ then Γ∗∗, φ∨ψ, φ, ψ∨¬ψ,¬ψ ` ∆, χ, χ, χ, where Γ∗∗ = Γ∪{¬ψ} (if χ
is reached we discard an assumption ψ, add an assumption ¬ψ in the list−proof ,
delete the current−goal χ and set χ as a new current−goal).

9

P3.2.1.3. If Γ∗∗, φ ∨ ψ, φ, ψ ∨ ¬ψ,¬ψ ` ∆, χ, χ, χ leads to Γ∗∗, φ ∨ ψ, φ, ψ ∨
¬ψ,¬ψ, χ ` ∆, χ, χ, χ then Γ∗, φ ∨ ψ,ψ ` ∆, χ, χ, where Γ∗ = Γ ∪ {ψ} (the
current−goal χ is inferred from an assumption φ so we add an assumption ψ in
the list−proof and set χ as a new current−goal).

P3.2.1.4-P3.2.1.5. are in the same fashion as P3.2.1.1-P3.2.1.2.
P3.2.1.4. If Γ∗, φ ∨ ψ,ψ ` ∆, χ, χ and χ isn’t reached then Γ∗, φ ∨ ψ,ψ, φ ∨

¬φ, φ ` ∆, χ, χ, χ (if χ isn’t reached we add φ ∨ ¬φ with the mark by the
rule (EM) and one more assumption φ in the list−proof and set χ as a new
current−goal).

P3.2.1.5. If Γ∗, φ∨ψ,ψ, φ∨¬φ, φ ` ∆, χ, χ, χ leads to Γ∗, φ∨ψ,ψ, φ∨¬φ, φ, χ `
∆, χ, χ, χ then Γ∗, φ ∨ ψ,ψ, φ ∨ ¬φ,¬φ,` ∆, χ, χ, where Γ∗∗ = Γ ∪ {¬φ} (if χ is
reached we discard an assumption φ, add an assumption ¬φ in the list−proof ,
delete the current−goal χ and set χ as a new current−goal).

P3.2.2.1-P3.2.2.10 govern cases, where φ ◦ ψ is in the list−proof . We ap-
ply them depending on the rules for an operator ◦ in a particular system.
Note P3.2.2.1-P3.2.2.10 don’t govern one premise rules R◦(0, 0, 0), R◦(0, 1, 0),
R◦(1, 0, 0), and R◦(1, 1, 0). They are governed by P1.

P3.2.2.1. If Γ, φ ◦ψ ` ∆, χ and χ isn’t reached then Γ, φ ◦ψ ` ∆, χ, ψ ∧¬ψ (if
the system in question has one of the two premises rules R◦(0, i, 0) and R◦(1, i, 0)
or one of the one premise rules R◦(0, i, i) and R◦(1, i, i)).

P3.2.2.2. If Γ, φ ◦ψ ` ∆, χ and χ isn’t reached then Γ, φ ◦ψ ` ∆, χ, φ∧¬φ (if
the system in question has one of the two premises rules R◦(i, 0, 0) or R◦(i, 1, 0)
or one of the one premise rules R◦(i, 0, i) or R◦(i, 1, i)).

P3.2.2.3. If Γ, φ ◦ ψ ` ∆, χ and χ isn’t reached then Γ, φ ◦ ψ ` ∆, χ, φ ∧ ¬φ,
ψ ∧ ¬ψ (if the system in question has a three premises rule R◦(i, i, 0) or a two
premises rule R◦(i, i, i)).

P3.2.2.4. If Γ, φ ◦ψ ` ∆, χ and χ isn’t reached then Γ, φ ◦ψ, φ∨¬φ, ψ ∨¬ψ `
∆, χ (if the system in question has neither i-rules, nor 0-rules, i.e. it has 1-rules
only).

P3.2.2.5. If Γ, φ ◦ ψ ` ∆, χ and χ isn’t reached then Γ, φ ◦ ψ, ((φ ◦ ψ) ∧ ¬(φ ◦
ψ)∨ (φ∨ψ) ` ∆, χ (if the system in question has a zero premise rule R◦(0, 0, i)).

P3.2.2.6. If Γ, φ◦ψ ` ∆, χ and χ isn’t reached then Γ, φ◦ψ, ((φ◦ψ)∧¬(φ◦ψ)∨
(φ ∨ ¬ψ) ` ∆, χ (if the system in question has a zero premise rule R◦(0, 1, i)).

9We infer the current−goal χ from an assumption ψ and then try to infer the new
current−goal χ from an assumption ¬ψ.

Preliminary draft 11

P3.2.2.7. If Γ, φ◦ψ ` ∆, χ and χ isn’t reached then Γ, φ◦ψ, ((φ◦ψ)∧¬(φ◦ψ)∨
(¬φ ∨ ψ) ` ∆, χ (if the system in question has a zero premise rule R◦(1, 0, i)).

P3.2.2.8. If Γ, φ◦ψ ` ∆, χ and χ isn’t reached then Γ, φ◦ψ, ((φ◦ψ)∧¬(φ◦ψ)∨
(¬φ ∨ ¬ψ) ` ∆, χ (if the system in question has a zero premise rule R◦(1, 1, i)).

The last two procedures apply only after the previous ones have been applied.
P3.2.2.9. If φ 6∈ Γ,¬φ 6∈ Γ, Γ, φ ◦ ψ ` ∆, χ and χ isn’t reached then Γ, φ ◦

ψ, φ∨¬φ ` ∆, χ (we add an unmarked φ∨¬φ to the list−proof by (EM) if the
previous procedures fail).

P3.2.2.10. If ψ 6∈ Γ,¬ψ 6∈ Γ, Γ, φ ◦ ψ ` ∆, χ and χ isn’t reached then Γ, φ ◦
ψ,ψ ∨ ¬ψ ` ∆, χ (we add an unmarked ψ ∨ ¬ψ to the list−proof by (EM) if
the previous procedures fail).
Procedure 4 (P4). P4 governs applications of the introduction rules. The

list−proof is added with a conclusion of an introduction rule if the list−proof
contains premise(s) of this rule following P3.1. In particular, P.3.1.1 governs
(∧I), P.3.1.2.1 governs (∨I1), P.3.1.2.2 governs (∨I2), P.3.1.3 governs (¬∨I),
P.3.1.4 governs (¬∧I), P.3.1.5 governs (¬¬I), P.3.1.2.3, P.3.1.6 and P.3.1.7 gov-
ern (EM). Suppose we search for a goal φ ∧ ψ. By P.3.1.1 we search for both φ
and ψ starting from ψ. If we are successful in searching for them we apply (∧I)
to reach φ∧ψ. Similar considerations (sometimes more subtle) hold for the rest
of goals.

P4 is supplemented with marks. As in case of the elimination rules, once a
rule is applied, both its premise(s) and a conclusion are marked to avoid infinite
applications of the same rule to the same formula. Another application of this
rule to the same formula is possible only if the conclusion of the rule is discarded
from the list−proof . P4, additionally, marks conclusions of the introduction
rules to avoid applications of P1 and P3 to them (i.e. no elimination rules are
applied to these formulae and they can’t be sources for new goals).

Proof searching algorithm ALGLP(◦)n . Here we give an informal presen-
tation. A flowchart of the algorithm is in Figure 1 below.

The algorithm starts searching for a derivation of φ from Γ by adding all the
formulae from Γ (if any) to the list−proof and setting φ as the initial−goal in
the list−goals. This is the box Input below. Then P2 starts up and checks the
reachability of the current−goal (the box P2).

If it is reached the algorithm goes to the box Is the current−goal the initial−goal.
In case the answer is YES we have the box The algo-derivation of φ from Γ; stop.
NO-answer leads to the box P4, where the introduction rules are applicable.
Then the algorithm returns to the box P2.

If it is not reached we go to the box Are the elimination rules applicable. If
YES we go to the box P1, where the elimination rules are applicable, and then
return to the box P2. If NO we go to the box Is the current−goal analyzable?

If we can analyse the current−goal we go to the box P3.1, where the algorithm
deals with the current goal in the list−goals, and then to the box P2. If we can’t
analyse the current−goal we go to the box Are there unmarked formulae in the
list−proof? NO-answer leads to the box Counterexample extraction; stop. YES-
answer leads to the box P3.2, where the algorithm deals with compound formulae
in the list−proof , and then to the box P2.

12 Preliminary draft

Input

P2

Is the cur-
rent−goal
the ini-

tial−goal?

Are
elimination

rules
applicable?

Algo-
derivation
of φ from
Γ, stop

P4 P1

Is the cur-
rent−goal
analyz-
able?

P3.1

Are there
unmarked
folmulae in

the
list−proof ?

P3.2

Counter-
example

extraction,
stop

Yes

No

No

Yes

Yes

No

Yes

No

Yes

No

Figure 1. A flowchart of the algorithm.

§4. Algo-Proof Examples.

Example 1. We give a sketch of the algo-proof of a formula p ◦ ¬¬p in
the system [R◦(0, 0, 1), R◦(0, i, 0), R◦(0, 1, 0), R◦(i, 0, 0), R◦(i, i, 1), R◦(i, 1, 0),
R◦(1, 0, 0), R◦(1, i, 0), R◦(1, 1, 1)]. We start out by setting p ◦ ¬¬p as the
initial−goal and proceed to analyse it. By P3.1.6, we add both (p ◦ ¬¬p) ∨

Preliminary draft 13

¬(p◦¬¬p) and ¬(p◦¬¬p) to the list−proof (the former by (EM) and the latter
as an assumption) while set p ◦ ¬¬p as the current−goal. P1 is launched with
inferring both p∨¬¬p and ¬p∨¬¬¬p (by R◦(0, 0, 1) and R◦(1, 1, 1), respectfully).

Now list−goals is as follows: p ◦ ¬¬p, p ◦ ¬¬p.
The algo-proof now looks as follows:

(1) (p ◦ ¬¬p) ∨ ¬(p ◦ ¬¬p) (EM)

(2) ¬(p ◦ ¬¬p) assumption

(3) p ∨ ¬¬p R◦(0, 0, 1): 2

(4) ¬p ∨ ¬¬¬p R◦(1, 1, 1): 2

The current−goal p ◦ ¬¬p is not reached so we proceed to analyse it via
P3.2.2.3 for the system has R◦(i, i, i). Two goals are added, ¬¬p ∧ ¬¬¬p and
p ∧ ¬p. P3.1.1 applies to the current−goal p ∧ ¬p and adds new goals ¬p and p
with p being the current−goal. Then, by P3.1.6, both p∨¬p and ¬p are added
to the list−proof while p is set to be the current−goal.
Now list−goals is as follows: p ◦ ¬¬p, p ◦ ¬¬p, ¬¬p ∧ ¬¬¬p, p ∧ ¬p, ¬p, p, p.

The algo-proof now looks as follows:

(1) (p ◦ ¬¬p) ∨ ¬(p ◦ ¬¬p) (EM)

(2) ¬(p ◦ ¬¬p) assumption

(3) p ∨ ¬¬p R◦(0, 0, 1): 2

(4) ¬p ∨ ¬¬¬p R◦(1, 1, 1): 2

(5) p ∨ ¬p (EM)

(6) ¬p assumption

The current−goal p is not reached so we apply P3.2.1 to p ∨ ¬¬p, mark it
and add p as an assumption. Now the current−goal p is reached. Then we add
¬¬p as an assumption and reach the current−goal p via (¬¬E). So we infer the
current−goal p from both disjuncts of p ∨ ¬¬p. Then (∨E) is applied with 7th

and 8-9th formulae being discarded from the list−proof and setting p as a new
current−goal.

Now list−goals is as follows: p ◦ ¬¬p, p ◦ ¬¬p, ¬¬p ∧ ¬¬¬p, p ∧ ¬p, ¬p, p.
The algo-proof now looks as follows:

(1) (p ◦ ¬¬p) ∨ ¬(p ◦ ¬¬p) (EM)

(2) ¬(p ◦ ¬¬p) assumption

(3) p ∨ ¬¬p R◦(0, 0, 1): 2

(4) ¬p ∨ ¬¬¬p R◦(1, 1, 1): 2

(5) p ∨ ¬p (EM)

(6) ¬p assumption

(7) p assumption

(8) ¬¬p assumption

(9) p (¬¬I): 8

(10) p (∨E): 3, 7, 9, [7], [8-9]

The current−goal p is reached at the moment and we add p as an assumption
to infer p by (∨E).

Now list−goals is as follows: p ◦ ¬¬p, p ◦ ¬¬p, ¬¬p ∧ ¬¬¬p, p ∧ ¬p, ¬p.

14 Preliminary draft

The algo-proof now looks as follows:

(1) (p ◦ ¬¬p) ∨ ¬(p ◦ ¬¬p) (EM)

(2) ¬(p ◦ ¬¬p) assumption

(3) p ∨ ¬¬p R◦(0, 0, 1): 2

(4) ¬p ∨ ¬¬¬p R◦(1, 1, 1): 2

(5) p ∨ ¬p (EM)

(6) ¬p assumption

(7) p assumption

(8) ¬¬p assumption

(9) p (¬¬I): 8

(10) p (∨E): 3, 7, 9, [7], [8-9]

(11) p assumption

(12) p (∨E): 5, 10, 11, [6-10], [11]

Now ¬p is the current−goal and we infer it analogously. Note p ∨ ¬¬p is
marked now, and below we use ¬p∨¬¬¬p in the same way we have used p∨¬¬p
above. So, we present this part of the proof without a detailed description. Note
on the 16th and 17th steps we apply P3.2.1 to the 4th formula.

Now list−goals is as follows: p ◦ ¬¬p, p ◦ ¬¬p, ¬¬p ∧ ¬¬¬p.

The algo-proof now looks as follows:

(1) (p ◦ ¬¬p) ∨ ¬(p ◦ ¬¬p) (EM)

(2) ¬(p ◦ ¬¬p) assumption

(3) p ∨ ¬¬p R◦(0, 0, 1): 2

(4) ¬p ∨ ¬¬¬p R◦(1, 1, 1): 2

(5) p ∨ ¬p (EM)

(6) ¬p assumption

(7) p assumption

(8) ¬¬p assumption

(9) p (¬¬I): 8

(10) p (∨E): 3, 7, 9, [7], [8-9]

(11) p assumption

(12) p (∨E): 5, 10, 11, [6-10], [11]

(13) ¬¬p ∨ ¬p (EM)

(14) ¬¬p assumption

(15) p (¬¬E): 14

(16) ¬p assumption

(17) ¬¬¬p assumption

(18) ¬p (¬¬E): 17

(19) ¬p (∨E): 4, 16, 18, [16], [17-18]

(20) ¬p assumption

(21) ¬p (∨E): 13, 19, 20, [14-19], [20]

(22) p ∧ ¬p (∧I): 12, 21

Preliminary draft 15

As previously, P3.1.1 applies to the current−goal ¬¬p∧¬¬¬p and adds both
¬¬¬p and ¬¬p to the list−goals with the latter being the current−goal. P3.1.5
applies to it and add p as the current−goal. This goal is reached for a formula
p is not discarded from the list−goals (step 12). So, (¬¬I) is applied to it to
infer ¬¬p with the current−goal ¬¬p being reached. Then ¬¬¬p is set to be
the current−goal. We reason analogously in reaching it and, therefore, skip a
detailed presentation. On 25th step the current−goal p ◦ ¬¬p is reached via
R◦(i, i, 1). At last, the initial goal p ◦ ¬¬p is reached by (∨E), and we have
successfully proven the desired formula in the system.

The algo-proof finally looks as follows:

(1) (p ◦ ¬¬p) ∨ ¬(p ◦ ¬¬p) (EM)

(2) ¬(p ◦ ¬¬p) assumption

(3) p ∨ ¬¬p R◦(0, 0, 1): 2

(4) ¬p ∨ ¬¬¬p R◦(1, 1, 1): 2

(5) p ∨ ¬p (EM)

(6) ¬p assumption

(7) p assumption

(8) ¬¬p assumption

(9) p (¬¬I): 8

(10) p (∨E): 3, 7, 9, [7], [8-9]

(11) p assumption

(12) p (∨E): 5, 10, 11, [6-10], [11]

(13) ¬¬p ∨ ¬p (EM)

(14) ¬¬p assumption

(15) p (¬¬E): 14

(16) ¬p assumption

(17) ¬¬¬p assumption

(18) ¬p (¬¬E): 17

(19) ¬p (∨E): 4, 16, 18, [16], [17-18]

(20) ¬p assumption

(21) ¬p (∨E): 13, 19, 20, [14-19], [20]

(22) p ∧ ¬p (∧I): 12, 21

(23) ¬¬p (¬¬I): 12

(24) ¬¬¬p (¬¬I): 21

(25) ¬¬p ∧ ¬¬¬p (∧I): 23, 24

(26) p ◦ ¬¬p R◦(i, i, 1): 22, 25, 2

(27) p ◦ ¬¬p assumption

(28) p ◦ ¬¬p (∨E): 1, 26, 27, [2-26], [27]

Example 2. We want to prove a formula p ◦ ¬¬p in the system [R◦(0, 0, 1),
R◦(0, i, 0), R◦(0, 1, 0), R◦(i, 0, 0), R◦(i, i, 0), R◦(i, 1, 0), R◦(1, 0, 0), R◦(1, i, 0),
R◦(1, 1, 1)]. Note this system differs from the one in Example 1 only with respect
to R◦(i, i, 0). We set p◦¬¬p as the initial goal. By P3.1.6, we add both (p◦¬¬p)∨
¬(p◦¬¬p) and ¬(p◦¬¬p) to the list−proof (the former by (EM) and the latter

16 Preliminary draft

as an assumption) while setting p◦¬¬p as the current goal. P1 is launched with
inferring both p∨¬¬p and ¬p∨¬¬¬p (by R◦(0, 0, 1) and R◦(1, 1, 1), respectfully).

Now list−goals is as follows: p ◦ ¬¬p, p ◦ ¬¬p.
The algo-proof now looks as follows:

(1) (p ◦ ¬¬p) ∨ ¬(p ◦ ¬¬p) (EM)

(2) ¬(p ◦ ¬¬p) assumption

(3) p ∨ ¬¬p R◦(0, 0, 1): 2

(4) ¬p ∨ ¬¬¬p R◦(1, 1, 1): 2

The current−goal p ◦ ¬¬p is not reached. Note the system has neither
R◦(i, i, i), nor R◦(i, i, 1) and, therefore, we can’t apply P3.2.2.3 or its ¬◦-analog
to the current−goal. So we apply P3.2.1 to p ∨ ¬¬p, mark it and add p as an
assumption. By P3.2.1.1, both ¬¬p∨¬¬¬p and ¬¬p are added to the list−proof
(the former by (EM) and the latter as an assumption). Then (¬¬E) is applied to
¬¬p to infer p. For the current−goal isn’t reached we apply P3.2.1 to ¬p∨¬¬¬p,
mark it and add ¬p as an assumption. By P3.2.1.1, both ¬¬¬p ∨ ¬¬¬¬p and
¬¬¬p are added to the list−proof (the former by (EM) and the latter as an
assumption). Then (¬¬E) is applied to ¬¬¬p to infer ¬p. The current−goal
p ◦ ¬¬p is, still, not reached while all compound formulae in the list−proof are
marked. (Let us remind the reader 1st, 6th, and 10th formulae can’t be a source
for new goals. See P3.2.1.1.) We stop by finding both p and ¬p in the list−proof .
From this fact we extract a valuation v such that v(p) = i. So, v(p ◦ ¬¬p) = 0
in the logic in question.

Now list−goals is as follows: p ◦ ¬¬p, p ◦ ¬¬p.
The algo-proof finally looks as follows:

(1) (p ◦ ¬¬p) ∨ ¬(p ◦ ¬¬p) (EM)

(2) ¬(p ◦ ¬¬p) assumption

(3) p ∨ ¬¬p R◦(0, 0, 1): 2

(4) ¬p ∨ ¬¬¬p R◦(1, 1, 1): 2

(5) p assumption

(6) ¬¬p ∨ ¬¬¬p (EM)

(7) ¬¬p assumption

(8) p (¬¬E): 7

(9) ¬p assumption

(10) ¬¬¬p ∨ ¬¬¬¬p (EM)

(11) ¬¬¬p assumption

(12) ¬p (¬¬E): 11

§5. Soundness, completeness and termination.

Theorem 5.1 (Termination of the algorithm). The algorithm halts on any in-
put.

Proof. P1 is finite because the number of formulae in the list−proof is finite
at each start of P1. Once an elimination rule is applied both its conclusion and
premise(s) are marked to prevent infinite applications of the same rule to the

Preliminary draft 17

same formula. This formula may be unmarked if the conclusion of this applica-
tion is discarded from the list−goals. It means the list−proof has changed since
this application, and, again, the number of formulae in the updated list−proof
is finite.

P2 is finite for it matches the current−goal with the formulae in the list−proof
which is finite by the argument above.

P3 consists of two subprocedures, and we start out with P.3.1. First, in P3.1.1,
P3.1.2.1, P3.1.2.2 and P.1.3.5 the new current−goal is of less degree as the pre-
vious one. (The degree of a formula is as usual defined to be the number of
connectives in it.) We add P.1.3.7 to this group, where no new current−goal ap-
pears. Second, P3.1.2.3, P3.1.6, P3.1.8.1, P3.1.8.3, P3.1.8.6 and P3.1.8.7 analyse
the current−goal without increasing its degree.

The third group contains the other subprocedures which indirectly decrease
the degree of the current−goal. For example, in P3.1.4 the degree of the new
current−goal ¬φ ∧ ¬ψ is more than the degree of the previous one ¬(φ ∨ ψ).
However, at the next step P3.1.1 applies to ¬φ ∧ ¬ψ. One by one, formulae ¬ψ
and ¬φ become the new current−goals with the degrees of both formulae being
less than the degree of ¬(φ ∨ ψ).

P3.2 is finite because the number of formulae in the list−proof is finite at each
start of P3.2. Once P3.2 is applied both the formula in the list−goal and the
current−goal are marked to prevent infinite applications of this subprocedure
to the same formula. This formula may be unmarked if this goal is reached, the
elimination rule in question is applied and the conclusion of this application is
discarded from the list−proof . It means the list−proof has changed since this
application, and, again, the number of formulae in the updated list−proof is
finite. This concludes the argument that P3 is finite.

P4 is finite for applications of the introduction rules are determined by the
list−goals which is finite by the argument above. The domino effect of P4 results
in reaching the previous goal(s) after reaching the current−goal. For example,
if we prove both conjuncts then we prove the conjunction immediately. �

Theorem 5.2 (Soundness of the algorithm). The algorithm is sound.

Proof. By theorem 3.3. in (Kooi & Tamminga, 2012), each system is sound.
Any algo-derivation is a derivation in one of the systems. Therefore, the algo-
rithm is sound. �

To prove completeness we need two lemmata. We use a technique from and, for
the reason of space, refer the reader to (Bolotov & Shangin, 2012) in some cases.

Lemma 5.3. A truth-value assignment ξ of a formula in a model is inductively
defined as follows:

1. ξ(¬¬φ):
1.1. If ξ(¬¬φ) = 1 then ξ(φ) = 1.
1.2. If ξ(¬¬φ) = i then ξ(φ) = i.
2. ξ(φ ∧ ψ):
2.1. If ξ(φ ∧ ψ) = 1 then ξ(φ) = 1 and ξ(ψ) = 1.
2.2. If ξ(φ ∧ ψ) = i then

2.2.1. ξ(φ) = i and ξ(ψ) = 1, or

18 Preliminary draft

2.2.2. ξ(φ) = i and ξ(ψ) = i, or
2.2.3. ξ(φ) = i and ξ(ψ) = 1.

3. ξ(φ ∨ ψ):
3.1. If ξ(φ ∨ ψ) = 1 then

3.1.1. ξ(φ) = 1, ξ(ψ) = 0; or
3.1.2. ξ(φ) = 1, ξ(ψ) = i; or
3.1.3. ξ(φ) = 1, ξ(ψ) = 1; or
3.1.4. ξ(φ) = 0, ξ(ψ) = 1; or
3.1.5. ξ(φ) = i, ξ(ψ) = 1.

3.2. If ξ(φ ∨ ψ) = i then
3.2.1. ξ(φ) = i and ξ(ψ) = 0, or
3.2.2. ξ(ψ) = i and ξ(ψ) = i, or
3.2.3. ξ(ψ) = 0 and ξ(ψ) = i.

4. ξ(φ ◦ ψ):
4.1 If ξ(φ ◦ ψ) = 1 then

4.1.1. ξ(φ) = 1 and ξ(ψ) = 1, or
4.1.2. ξ(φ) = 1 and ξ(ψ) = i, or
4.1.3. ξ(φ) = 1 and ξ(ψ) = 0, or
4.1.4. ξ(φ) = i and ξ(ψ) = 1, or
4.1.5. ξ(φ) = i and ξ(ψ) = i, or
4.1.6. ξ(φ) = i and ξ(ψ) = 0, or
4.1.7. ξ(φ) = 0 and ξ(ψ) = 1, or
4.1.8. ξ(φ) = 0 and ξ(ψ) = i, or
4.1.9. ξ(φ) = 0 and ξ(ψ) = 0.

4.2 If ξ(φ ◦ ψ) = i then
4.2.1. ξ(φ) = 1 and ξ(ψ) = 1, or
4.2.2. ξ(φ) = 1 and ξ(ψ) = i, or
4.2.3. ξ(φ) = 1 and ξ(ψ) = 0, or
4.2.4. ξ(φ) = i and ξ(ψ) = 1, or
4.2.5. ξ(φ) = i and ξ(ψ) = i, or
4.2.6. ξ(φ) = i and ξ(ψ) = 0, or
4.2.7. ξ(φ) = 0 and ξ(ψ) = 1, or
4.2.8. ξ(φ) = 0 and ξ(ψ) = i, or
4.2.9. ξ(φ) = 0 and ξ(ψ) = 0.

5. ξ(¬(φ ∧ ψ)):
5.1. If ξ(¬(φ ∧ ψ)) = 1 then ξ(¬φ ∨ ¬ψ) = 1.
5.2. If ξ(¬(φ ∧ ψ)) = i then ξ(¬φ ∨ ¬ψ) = i.
6. ξ(¬(φ ∨ ψ)):
6.1. If ξ(¬(φ ∨ ψ)) = 1 then ξ(¬φ ∧ ¬ψ) = 1.
6.2. If ξ(¬(φ ∨ ψ)) = i then ξ(¬φ ∧ ¬ψ) = i.
7. ξ(¬(φ ◦ ψ)):
7.1 If ξ(¬(φ ◦ ψ)) = 1 then

7.1.1. ξ(φ) = 1 and ξ(ψ) = 1, or
7.1.2. ξ(φ) = 1 and ξ(ψ) = i, or
7.1.3. ξ(φ) = 1 and ξ(ψ) = 0, or
7.1.4. ξ(φ) = i and ξ(ψ) = 1, or
7.1.5. ξ(φ) = i and ξ(ψ) = i, or
7.1.6. ξ(φ) = i and ξ(ψ) = 0, or

Preliminary draft 19

7.1.7. ξ(φ) = 0 and ξ(ψ) = 1, or
7.1.8. ξ(φ) = 0 and ξ(ψ) = i, or
7.1.9. ξ(φ) = 0 and ξ(ψ) = 0.

7.2 If ξ(¬(φ ◦ ψ)) = i then
7.2.1. ξ(φ) = 1 and ξ(ψ) = 1, or
7.2.2. ξ(φ) = 1 and ξ(ψ) = i, or
7.2.3. ξ(φ) = 1 and ξ(ψ) = 0, or
7.2.4. ξ(φ) = i and ξ(ψ) = 1, or
7.2.5. ξ(φ) = i and ξ(ψ) = i, or
7.2.6. ξ(φ) = i and ξ(ψ) = 0, or
7.2.7. ξ(φ) = 0 and ξ(ψ) = 1, or
7.2.8. ξ(φ) = 0 and ξ(ψ) = i, or
7.2.9. ξ(φ) = 0 and ξ(ψ) = 0.

Proof. From the matrix definitions of LP(◦)n-connectives. �

This definition is easily extended to sets of formulae. For example, ξ(Γ) 6= 0
iff ξ(φ) = 1 or ξ(φ) = i, for each φ from Γ.

Lemma 5.4. If the algorithm with a task to find a derivation of α from Γ in
some system NDLP(o)n

stops without finding the derivation of α from Γ in this
system then the list−proof contains a set Σ, Γ ⊆ Σ, of non-discarded formulae
such that ξ(Γ) 6= 0 and ξ(α) = 0.

Proof. We, first, show that ξ(α) = 0, by Procedure 3.1, which analyzes the
current−goal in the list−goals. The number of cases depends on the type of the
current−goal.

1. If a is a literal, or φ∨ψ or φ◦ψ or ¬(φ◦ψ) then P3.1.2 or P3.1.6 is launched
by adding ¬α to the list−proof . It is easy to see that if ξ(¬α) = 1 then
ξ(α) = 0.

2. If a is φ∧ψ then P3.1.1 is launched with ψ and φ being the current−goal,
one by one. It is easy to see that if ξ(ψ) = 0 or ξ(φ) = 0 then ξ(φ∧ψ) = 0.

3. If a is ¬(φ∧ψ) then P3.1.3 is launched with ¬φ∨¬ψ being the current−goal.
It is easy to see that if ξ(¬φ ∨ ¬ψ) = 0 then ξ(¬(φ ∧ ψ)) = 0.

4. If a is ¬(φ∨ψ) then P3.1.4 is launched with ¬φ∧¬ψ being the current−goal.
It is easy to see that if ξ(¬φ ∧ ¬ψ) = 0 then ξ(¬(φ ∨ ψ)) = 0.

5. If a is ¬¬φ then P3.1.5 is launched with φ being the current−goal. It is
easy to see that if ξ(φ) = 0 then ξ(¬¬φ) = 0.

We, second, show that ξ(Γ) 6= 0, that is, a set Γ is a model set. The number
of cases depends on the type of a formula in Γ. See (Bolotov & Shangin, 2012)
for the proofs of cases 1-2 and 5-6. Here we give a new proof of case 3 for it is
extensively used in proving cases 4 and 7 below.

Case 1. If ¬¬φ ∈ Σ then 1.1 φ ∈ Σ; or
1.2 φ ∈ Σ, ¬φ ∈ Σ.

Case 2. If φ ∧ ψ ∈ Σ then 2.1. φ ∈ Σ, ψ ∈ Σ; or
2.2. φ ∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ; or
2.3. φ ∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ, ¬ψ ∈ Σ; or
2.4. φ ∈ Σ, ψ ∈ Σ, ¬ψ ∈ Σ.

20 Preliminary draft

Case 3. If φ ∨ ψ ∈ Σ then 3.1.1. φ ∈ Σ, ψ 6∈ Σ,¬φ 6∈ Σ,¬ψ ∈ Σ; or
3.1.2. φ ∈ Σ, ψ ∈ Σ,¬φ 6∈ Σ,¬ψ ∈ Σ; or
3.1.3. φ ∈ Σ, ψ ∈ Σ,¬φ 6∈ Σ,¬ψ 6∈ Σ; or
3.1.4. φ 6∈ Σ, ψ ∈ Σ,¬φ ∈ Σ,¬ψ 6∈ Σ; or
3.1.5. φ ∈ Σ, ψ ∈ Σ,¬φ ∈ Σ,¬ψ 6∈ Σ; or
3.1.6. φ ∈ Σ, ψ 6∈ Σ,¬φ ∈ Σ,¬ψ ∈ Σ; or
3.1.7. φ ∈ Σ, ψ ∈ Σ,¬φ ∈ Σ,¬ψ ∈ Σ; or
3.1.8. φ 6∈ Σ, ψ ∈ Σ,¬φ ∈ Σ,¬ψ ∈ Σ.

If φ∨ψ ∈ Σ then P3.2.1 is applied and there are four variants: (1) φ ∈ Σ and
ψ ∈ Σ (P3.2.1.1), or (2) φ ∈ Σ and ¬ψ ∈ Σ (P3.2.1.2), or (3) φ ∈ Σ and ψ ∈ Σ
(P3.2.1.4), or (4) ¬φ ∈ Σ and ψ ∈ Σ (P3.2.1.5).

Depending on if ¬φ ∈ Σ or ¬ψ ∈ Σ, variants (1), (3) cover cases 3.1.2, 3.1.3,
3.1.5 and 3.1.7.

By the corresponding cases of Lemma 5.3, ξ(φ ∨ ψ) = 1 or ξ(φ ∨ ψ) = i.
Depending on if ¬φ ∈ Σ or ψ ∈ Σ, variant (2) covers cases 3.1.1, 3.1.2, 3.1.6

and 3.1.7. By the corresponding cases of Lemma 5.3, ξ(φ∨ψ) = 1 or ξ(φ∨ψ) = i.
Depending on if φ ∈ Σ or ¬ψ ∈ Σ, variant (4) covers cases 3.1.4, 3.1.6, 3.1.7

and 3.1.8. By the corresponding cases of Lemma 5.3, ξ(φ∨ψ) = 1 or ξ(φ∨ψ) = i.
Case 4. If φ ◦ ψ ∈ Σ then 4.1. φ ∈ Σ, ¬φ 6∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ, or

4.2. φ ∈ Σ, ¬φ 6∈ Σ, ψ ∈ Σ, ¬ψ ∈ Σ, or
4.3. φ ∈ Σ, ¬φ 6∈ Σ, ψ 6∈ Σ, ¬ψ ∈ Σ, or
4.4. φ ∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ, or
4.5. φ ∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ, ¬ψ ∈ Σ, or
4.6. φ ∈ Σ, ¬φ ∈ Σ, ψ 6∈ Σ, ¬ψ ∈ Σ, or
4.7. φ 6∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ, or
4.8. φ 6∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ, ¬ψ ∈ Σ, or
4.9. φ 6∈ Σ, ¬φ ∈ Σ, ψ 6∈ Σ, ¬ψ ∈ Σ.

Note these conditions are syntactical counterparts of the corresponding con-
ditions of Lemma 5.3.

We will use the following notation. By a (x, y)-cluster, where x, y ∈ {0, i, 1},
we mean a set of ◦-rules with ξ(φ) = x and ξ(ψ) = y. For example, the (0,
0)-cluster is {R◦(0, 0, 0), R◦(0, 0, i), R◦(0, 0, 1)}. By a x-rule we mean a ◦-rule
with ξ(φ ◦ ψ) = x. R◦(0, 0, i) is an example of an i -rule.

We divide subcases into groups and prove this case for an arbitrary cluster
from each group depending on the type of a 0-rule in it. Group 1 consists of the
(0, 0)-cluster, the (0, 1)-cluster, the (1, 0)-cluster and the (1, 1)-cluster. Group
2 consists of the (0, i)-cluster, the (1, i)-cluster, the (i, 0)-cluster and the (i,
1)-cluster. The (i, i)-cluster forms group 3.

We start with group 1 and choose the (0, 0)-cluster. The analogous argument
holds if we would choose the (0, 1)-cluster, or the (1, 0)-cluster, or the (1, 1)-
cluster.

4.1. A system has R◦(0, 0, 0).
By R◦(0, 0, 0), φ ∨ ψ ∈ Σ. By case 3 of this Lemma, there are four variants:

(1) φ ∈ Σ and ψ ∈ Σ, or (2) φ ∈ Σ and ¬ψ ∈ Σ, or (3) φ ∈ Σ and ψ ∈ Σ, or (4)
¬φ ∈ Σ and ψ ∈ Σ. We show variants (1) and (3), and the others are treated
analogously.

Preliminary draft 21

If φ ∈ Σ and ψ ∈ Σ then there are four subvariants depending on if ¬φ ∈ Σ
or ¬ψ ∈ Σ. We show that in each of this subvariant, the system in question
has some i-rule or 1-rule. By correspondence analysis, it means ξ(φ ◦ ψ) = 1 or
ξ(φ ◦ ψ) = i.

4.1.1: φ ∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ and ¬ψ ∈ Σ. Let us consider the (i, i)-cluster.
By correspondence analysis, the system must have one and only one rule from the
(i, i)-cluster. Suppose the system has R◦(i, i, 0). Therefore, an arbitrary χ ∈ Σ
and this fact contradicts the condition of the Lemma that the current−goal isn’t
reached. So, the system hasn’t R◦(i, i, 0) and it has either R◦(i, i, 1) or R◦(i, i, i).
By cases 4.1.5 and 4.2.5 of Lemma 5.3, it means ξ(φ ◦ ψ) = 1 or ξ(φ ◦ ψ) = i.
Anyway, ξ(φ ◦ ψ) 6= 0.

4.1.2: φ ∈ Σ, ¬φ 6∈ Σ, ψ ∈ Σ and ¬ψ ∈ Σ. Let us consider the (1, i)-cluster.
By correspondence analysis, the system must have one and only one rule from
the (1, i)-cluster. Suppose the system has R◦(1, i, 0). Therefore, ¬φ ∈ Σ and
this fact contradicts the condition of the Lemma that ¬φ 6∈ Σ. So, the system
hasn’t R◦(1, i, 0) and it has either R◦(1, i, 1) or R◦(1, i, i). By cases 4.1.2 and
4.2.2 of Lemma 5.3, it means ξ(φ ◦ψ) = 1 or ξ(φ ◦ψ) = i. Anyway, ξ(φ ◦ψ) 6= 0.

4.1.3: φ ∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ and ¬ψ 6∈ Σ. We treat it analogously to 4.1.2.
4.1.4: φ ∈ Σ, ¬φ 6∈ Σ, ψ ∈ Σ and ¬ψ 6∈ Σ. We treat it analogously to 4.1.2.
We conclude the argument concerning R◦(0, 0, 0). The analogous argument is

easily applicable to the other rules, where φ ◦ ψ is the only premise, R◦(0, 1, 0),
R◦(1, 0, 0) and R◦(1, 1, 0).

4.2. Suppose the system has R◦(0, 0, i).
If φ ◦ ψ ∈ Σ then, by P3.2.2.5, ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ (φ ∨ ψ) ∈ Σ. By case 3

above, there are four variants:
(1) (φ ◦ ψ) ∧ ¬(φ ◦ ψ) ∈ Σ and φ ∨ ψ ∈ Σ, or
(2) (φ ◦ ψ) ∧ ¬(φ ◦ ψ) ∈ Σ and ¬(φ ∨ ψ) ∈ Σ, or
(3) φ ∨ ψ ∈ Σ and (φ ◦ ψ) ∧ ¬(φ ◦ ψ) ∈ Σ, or
(4) φ ∨ ψ ∈ Σ and ¬((φ ◦ ψ) ∧ ¬(φ ◦ ψ))) ∈ Σ.
Let us consider variant (2), first. ¬(φ ∨ ψ) ∈ Σ implies ¬φ ∈ Σ and ¬ψ ∈ Σ.

Depending on if φ ∈ Σ or ψ ∈ Σ, there are four subvariants:
(3.1) φ ∈ Σ, ψ ∈ Σ, ¬φ ∈ Σ, ¬ψ ∈ Σ. By case 4.2.5 of Lemma 5.3, it means

ξ(φ ◦ ψ) = ξ(¬(φ ◦ ψ)) = i.
(3.2) φ ∈ Σ, ψ 6∈ Σ, ¬φ ∈ Σ, ¬ψ ∈ Σ. By case 4.2.6 of Lemma 5.3, it means

ξ(φ ◦ ψ) = ξ(¬(φ ◦ ψ)) = i.
(3.3) φ 6∈ Σ, ψ 6∈ Σ, ¬φ ∈ Σ, ¬ψ ∈ Σ. By case 4.2.9 of Lemma 5.3, it means

ξ(φ ◦ ψ) = ξ(¬(φ ◦ ψ)) = i.
(3.4) φ 6∈ Σ, ψ ∈ Σ, ¬φ ∈ Σ, ¬ψ ∈ Σ. By case 4.2.8 of Lemma 5.3, it means

ξ(φ ◦ ψ) = ξ(¬(φ ◦ ψ)) = i.
For a proof of variants (1), (3) and (4) see case 3 above.
4.3. A system has R◦(0, 0, 1).
The cases below depend on the possible o-rules of a system.
4.3.1. The system has neither i-rules, nor 0-rules, i.e. it has 1-rules only. In

this case, none of P3.2.2.1-P3.2.2.8 is applicable. So, by P3.2.2.9-P3.2.2.10, both
φ ∨ ¬φ ∈ Σ and ψ ∨ ¬ψ ∈ Σ via (EM). See case 3.

In the cases below, the system has at least one i -rule or 0-rule.

22 Preliminary draft

4.3.2. The system has one of the rules R◦(0, 1, 0), R◦(1, 0, 0) and R◦(1, 1, 0).
See case 4.1, where we treat the remaining rule of this kind R◦(0, 0, 0).

4.3.3. The system has one of the rules R◦(0, i, 0), R◦(i, 0, 0), R◦(i, 1, 0),
R◦(1, i, 0). Suppose it has R◦(0, i, 0). The other cases are treated analogously.

By P3.2.2.1, there are two subvariants:
4.3.3.1. φ ◦ ψ ∈ Σ and ψ ∧ ¬ψ ∈ Σ;
4.3.3.2. φ ◦ ψ ∈ Σ and ψ ∧ ¬ψ 6∈ Σ.
If φ◦ψ ∈ Σ and ψ∧¬ψ ∈ Σ then φ ∈ Σ, ψ ∈ Σ, ¬ψ ∈ Σ, by R◦(0, i, 0), (∧E1),

(∧E2). If ¬φ ∈ Σ then φ ∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ, ¬ψ ∈ Σ. See case 4.1.2.
In order to prove 4.3.3.2 we reason as follows. By 3.1.1, if the current−goal is

ψ ∧ ¬ψ then the algorithm sets one by one ¬ψ and ψ as the current−goal. So,
by P3.1.6, we have (I) ¬ψ ∈ Σ and ψ 6∈ Σ or (II) ¬¬ψ ∈ Σ and ¬ψ 6∈ Σ. In both
cases, P3.2.2.9 is applied to φ ◦ ψ and, therefore, φ ∨ ¬φ ∈ Σ. See case 3.

4.3.4. The system has the rule R◦(i, i, 0). By the condition, the current−goal
isn’t reached. So, φ ∧ ¬φ 6∈ Σ or ψ ∧ ¬ψ 6∈ Σ. See 4.3.3.

4.3.5. The system has one of the rules R◦(0, 1, i), R◦(1, 0, i) and R◦(1, 1, i).
See case 4.2, where we treat the remaining rule of this kind R◦(0, 0, i).

4.3.6. The system has one of the rulesR◦(0, i, i), R◦(i, 0, i), R◦(i, 1, i), R◦(1, i, i).
Suppose it has R◦(0, i, i). The other cases are treated analogously.

By P3.2.2.1, there are two subvariants:
4.3.6.1. φ ◦ ψ ∈ Σ and ψ ∧ ¬ψ ∈ Σ;
4.3.6.2. φ ◦ ψ ∈ Σ and ψ ∧ ¬ψ 6∈ Σ.
If ψ∧¬ψ ∈ Σ then ψ ∈ Σ, ¬ψ ∈ Σ, by (∧E1), (∧E2). Then P3.2.2.9 is applied

to φ ◦ ψ and, therefore, φ ∧ ¬φ ∈ Σ. See case 3.
For a proof of 4.3.6.2 see case 4.3.3.2.
4.3.7. The system has the rule R◦(i, i, i). P3.2.2.3, (φ∧¬φ ∈ Σ or φ∧¬φ 6∈ Σ)

and (ψ ∧ ¬ψ ∈ Σ or ψ ∧ ¬ψ 6∈ Σ). Note φ ∨ ¬φ ∈ Σ or ψ ∨ ¬ψ ∈ Σ, by
P3.2.2.9-P3.2.2.10. See case 3.

This concludes a proof for group 1. Let us recall group 1 consists of the (0,
0)-cluster, the (0, 1)-cluster, the (1, 0)-cluster and the (1, 1)-cluster.

A proof for group 2 is analogous one (especially note case 4.3.3). This group
consists of the (0, i)-cluster, the (1, i)-cluster, the (i, 0)-cluster and the (i, 1)-
cluster.

A proof for group 3 is analogous one (especially note case 4.3.4). This group
consists of the (i, i)-cluster.

This concludes a proof of case 4.
Case 5. If ¬(φ ∧ ψ) ∈ Σ then ¬φ ∨ ¬ψ ∈ Σ.
Case 6. If ¬(φ ∨ ψ) ∈ Σ then ¬φ ∧ ¬ψ ∈ Σ.
Case 7. If ¬(φ ◦ ψ) ∈ Σ then 7.1. φ ∈ Σ, ¬φ 6∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ, or

7.2. φ ∈ Σ, ¬φ 6∈ Σ, ψ ∈ Σ, ¬ψ ∈ Σ, or
7.3. φ ∈ Σ, ¬φ 6∈ Σ, ψ 6∈ Σ, ¬ψ ∈ Σ, or
7.4. φ ∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ, or
7.5. φ ∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ, ¬ψ ∈ Σ, or
7.6. φ ∈ Σ, ¬φ ∈ Σ, ψ 6∈ Σ, ¬ψ ∈ Σ, or
7.7. φ 6∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ, ¬ψ 6∈ Σ, or
7.8. φ 6∈ Σ, ¬φ ∈ Σ, ψ ∈ Σ, ¬ψ ∈ Σ, or
7.9. φ 6∈ Σ, ¬φ ∈ Σ, ψ 6∈ Σ, ¬ψ ∈ Σ.

Preliminary draft 23

A proof of case 7 is analogous to the proof of case 4. �

Theorem 5.5 (Completeness of the algorithm). The algorithm is complete.

Proof. The contraposition of Lemma 5.4 yields us the proof of this theorem.
�

§6. Concluding remarks and future work. In the paper, we propose
a proof searching procedure for the natural deduction calculi for the binary
extensions of the logic of paradox in (Kooi & Tamminga, 2012). We show that
the algorithm is finite, sound and complete.

We believe the procedure will be useful in solving a problem posed in (Kooi &
Tamminga 2012, p. 729): which of the nine derivation rules that characterize a
truth table f◦ are necessary and sufficient for which axioms and derivation rules
in axiomatizations of f◦. On the other hand, we hope to apply this procedure
to both the other extensions of LP and to extensions of the other functionally
incomplete logics.

Implementation of this algorithm is another task for the future work. We also
plan to investigate derivable rules for the systems in question with respect to
making proof searching more efficient. It is of much importance to find rules
which are derivable in a maximum number of the systems. Last, not least, some
conventional natural deduction rules (for example, the ◦-introduction rule in the
form of deduction theorem: if φ ` ψ then ` φ ◦ ψ) need to be studied.

BIBLIOGRAPHY

Anderson, A. R., & Belnap, N. D. (1975). Entailment. The Logic of Relevance
and Necessity, Vol. 1. Princeton, NJ: Princeton University Press.

Anderson, A. R., & Belnap, N. D. (1992). Entailment. The Logic of Relevance
and Necessity, Vol. 2. Princeton, NJ: Princeton University Press.

Asenjo, F. G. (1954). La Idea de un Calculo de Antinomias. Seminario Matem-
atico. Universidad Nacional de La Plata.

Asenjo, F. G. (1966). A calculus of antinomies. Notre Dame Journal of Formal
Logic, 7(1), 103-105.

Asenjo, F. G. & Tamburino J. (1975). Logic of antinomies. Notre Dame
Journal of Formal Logic, 16(1), 17-44.

Avron, A. (1991). Natural 3-valued logics — characterization and proof theory.
The Journal of Symbolic Logic, 56(1), 276-294.

Avron, A. (1986). On an implicational connective of RM. Notre Dame Journal
of Formal Logic, 27(2), 201-209.

Batens, D. (1980). Paraconsistent extensional propositional logics. Logique et
Analyse, 23(90-91), 195-234.

Batens, D. (1989). Dynamic dialectical logic. In Priest G., Routley R., Nor-
man J., editors. Paraconsistent Logic Essays on the Inconsistent. Philosophia
Verlag, Munich, 187-217.

Bolotov, A., Basukoski, A., Grigoriev, O., & Shangin, V. (2006). Natural
deduction calculus for linear-time temporal logic. In Joint European Conference
on Artificial Intelligence (JELIA-2006), Liverpool, 56-68.

24 Preliminary draft

Bolotov, A., Bocharov, V., Gorchakov A., & Shangin, V. (2009). Automated
first order natural deduction. In Proceedings of the 4th Indian International
Conference on Artificial Intelligence (IICAI-2009), Tumkur, 1292-1311.

Bolotov A., & Shangin V. (2012) Natural deduction system in paraconsistent
setting: Proof search for PCont. Journal of Intelligent Systems, 21(1), 1-24.

Carnielli, W. A., Marcos, J., & Amo, S. (2000). Formal inconsistency and
evolutionary databases. Logic and Logical Philosophy, 8, 115-152.

Copi, I. M., Cohen, C., McMahon, K. (2011). Introduction to Logic, Four-
teenth Edition. Routledge, New York.

D’Agostino, M. (1990). Investigations into the Complexity of some Proposi-
tional Calculi, Ph.D. Thesis, Oxford University, Oxford.

Da Costa, N. C. A., Alves, E. H. (1981). Relations Between Paraconsistent
Logic and Many-Valued Logic. Bulletin of the Section of Logic, 10(4), 185-190.

D’Ottaviano, I. M. L., da Costa N. C. A. (1970). Sur un probléme de Jaśkowski.
Comptes Rendus de l’Académie des Sciences de Paris, 270, 1349-1353.

Epstein, R. L. (1990). The semantic foundations of logic. Vol. 1: Propositional
logic. Dordrecht: Kluwer.

Epstein, R. L., & D’Ottaviano, I. M. L. (2000). Paraconsistent logic: J3. In
Epstein, R. L. Propositional Logics (second edition), chapter 9. Belmont, CA:
Wadsworth Publishing Company.

Gödel, K. (1932). Zum intuitionistischen Aussgenkalkül. Anzeiger der Akademie
der Wissenschaften in Wien, 69, 65-66. English translation: On the intuition-
istic propositional calculus. In Gödel, K., Collected works. Vol.1. New York,
1986, 300-301.

Heyting, A. (1930). Die Formalen Regeln der intuitionistischen Logik. Sitzungs-
berichte der Preussischen Academie der Wissenschaften zu Berlin, Berlin, 42-46.
English translation: The Formal Rules of Intuitionistic Logic. In Mancosu, P.,
editor. From Brouwer to Hilbert. The Debate on the Foundations of Mathematics
in the 1920s. Oxford, 1998, 311-328.

Jaśkowski, S. (1936). Recherches sur le système de la logique intuitioniste.
Actes du Congrès International de Philosophie Scientifique, 6, 58-61. English
translation: Investigations into the system of intuitionistic logic. Studia Logica,
1975, 34, 117-120.

Jaśkowski, S. (1948). Rachunek zdań dla systemów dedukcyjnych sprzecznych.
Studia Societatis Scientiarum Torunensis, Sectio A, Vol. I, No. 5, Toruń, 57-77.
English translation: A propositional calculus for inconsistent deductive systems.
Logic and Logical Philosophy, 7, 1999, 35-56.

Kleene, S. C. (1938). On a notation for ordinal numbers. The Journal of
Symbolic Logic, 3(4), 150-155.

Kleene, S. C. (1952). Introduction to metamathematics. New York & Toronto:
D. van Nostrand Company, Inc.

Kooi, B., & Tamminga, A. (2012). Completeness via correspondence for ex-
tensions of the logic of paradox. The Review of Symbolic Logic, 5(4), 720-730.

 Lukasiewicz J., Tarski A. (1930). Untersuchungen über den Aussagenkalkul.
Comptes Rendus des Séances de la Société des Sciences et des Letters de Varsovie,
3(23), 1-21. English translation: Investigations into the sentential calculus.

Preliminary draft 25

In Lukasiewicz J. Selected Works. Amsterdam & Warszawa, North-Holland &
PWN. 1970, 131-152.

Marcos, J. (2005). On a problem of da Costa. Essays of the foundations of
mathematics and logic, Polimetrica International Scientific Publisher, Monza,
Italy, 53-69.

Martin, J. N. (1975). A syntactic characterization of Kleene’s strong connec-
tives with two designated values. Mathematical Logic Quarterly, 21(1), 181-184.

Mortenson, C. (1989). Paraconsistency and C1. In Priest G., Routley R., Nor-
man J., editors. Paraconsistent Logic Essays on the Inconsistent. Philosophia
Verlag, Munich, 289-305.

Petrukhin, Y. (2016). Correspondence analysis for first degree entailment.
Logical Investigations, 22(1), 108-124.

Popov, V. M. (1999). On the logics related to Arruda’s system V1, Logic and
Logical Philosophy, 7, 87-90.

Prawitz, D. (1965). Natural deduction. Stockholm, Almqvist & Wiksell.
Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1),

219-241.
Priest, G. (1984). Logic of paradox revisited. Journal of Philosophical Logic,

13(2), 153-179.
Priest, G. (2002). Paraconsistent logic. In Gabbay D. M., and Guenthner F.,

editors. Handbook of Philosophical Logic (second edition), Vol. 6. Dordrecht,
The Netherlands: Kluwer Academic Publishers, 287-393.

Resher, N. (1969). Many-valued logic. New York: McGraw Hill.
Roy, T. (2006). Natural Derivations for Priest, An Introduction to Non-

Classical Logic, Australasian Journal of Logic, 5, 47-192.
Rozonoer, L. (1983a). On finding contradictions in formal theories. I, Auto-

matica and Telemekhanica, 6, 113-124. (in Russian).
Rozonoer, L. (1983b). On finding contradictions in formal theories. II, Auto-

matica and Telemekhanica, 7, 97-104. (in Russian).
Sahlqvist, H. (1975). Completeness and correspondence in the first and sec-

ond order semantics for modal logic. In Kanger, S., editor. Proceeding of the
Third Scandinavian Logic Symposium. Amsterdam: North-Holland Publishing
Company, 110-143.

Sette, A. (1973). On propositional calculus P1. Mathematica Japonica, 18,
173-180.

Sobociński, B. (1952). Axiomatization of a partial system of three-valued
calculus of propositions. The Journal of Computing Systems, 1, 23-55.

Tamminga, A. (2014). Correspondence analysis for strong three-valued logic.
Logical Investigations, 20, 255-268.

Tamminga, A. (2016). Sequent Calculi for Four-valued Logic. The 7th In-
ternational Conference Teaching Logic and Prospects of its Development, Kyiv,
May, 12-15, 2016. (Work in progress)

Thomas, N. (2013). LP⇒: Extending LP with a strong conditional. Mathe-
matics, arXiv:1304.6467.

Tomova, N. E. (2012). A lattice of implicative extensions of regular Kleene’s
logics. Reports on Mathematical Logic, 47, 173-182.

26 Preliminary draft

Tomova, N.E. (2015a). Erratum to: Natural Implication and Modus Ponens
Principle. Logical Investigations, 21(2), 186-187.

Tomova, N.E. (2015b). Natural Implication and Modus Ponens Principle.
Logical Investigations, 21(1), 138-143.

van Benthem, J. (1976). Modal correspondence theory. PhD Thesis, Univer-
siteit van Amsterdam, Amsterdam.

van Benthem, J. (2001). Correspondence theory. In Gabbay D. M., and
Guenthner F., editors. Handbook of Philosophical Logic (second edition), Vol. 3.
Dordrecht, The Netherlands: Kluwer Academic Publishers, 325-408.

FACULTY OF PHILOSOPHY

DEPARTMENT OF LOGIC

LOMONOSOV MOSCOW STATE UNIVERSITY

MOSCOW, 119991, RUSSIA

E-mail : yaroslav.petrukhin@mail.ru, shangin@philos.msu.ru

