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Abstract—Ferromagnetics, multiferroics, and other magnetically ordered materials are described by
various models of magnetization evolution of the medium. In this work, we develop a multi-particle
quantum hydrodynamics method for such systems. We derive the evolution equation for macroscopic
magnetization, corresponding to the non-dissipative version of the Landau-Lifshitz equation for spin-
1
2 particles, using the Heisenberg Hamiltonian. It is shown that the well-known form of the exchange
interaction contribution in the Landau–Lifshitz equation arises at the third order in the interaction radius.
The possibilities for systematic generalization of the obtained result are discussed when considering the
fifth order or particles with a large spin.
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INTRODUCTION

The tradition of deriving equations for the collec-
tive dynamics of many-particle systems traces back
to the work of N.N. Bogoliubov, “Problems of the
Dynamic Theory in Statistical Physics” [1], where a
method for constructing chains of kinetic equations
and subsequent closure procedures was proposed.
First and foremost, Bogoliubov’s chain method al-
lows for obtaining the Boltzmann kinetic equation for
weakly interacting gases, where atomic interactions
are taken into account through the collision integral.
Additionally, in [1], the derivation of the Vlasov kinetic
equation for plasma is presented, where long-range
interactions between charged particles are accounted
for via self-consistent electric fields. This result was
obtained in the quasi-static approximation, leaving
open the question of deriving the complete system of
Maxwell–Vlasov equations, which has recently been
addressed in works [2–4].

The approach proposed by N.N. Bogoliubov has
undergone significant development and has served
as an example for constructing chains of equations
based on alternative methods for describing physical
systems.

*E-mail: andreevpa@physics.msu.ru
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Prominent examples include the derivation of the
Landau–Silin kinetic equation for Fermi liquids by
A.S. Kondratiev (see, for example, [5]), and the dia-
grammatic method by M.V. Keldysh, explored in the
works [6, 7].

An important issue in hydrodynamic and kinetic
theories, within the context of classical physics, is
the need to construct smooth material fields (scalar
density field, vector current field, pressure field, tem-
perature field, etc.) based on the dynamics of point
particles. This is addressed by Y.L. Klimontovich,
who considers it as a superposition of delta functions
[8, 9].

One of the primary methods of smoothing (const-
ructing smooth fields) is the method of averaging
over the distribution function [10]. However, this
approach is valid for stochastic systems where the
particle system “forgets” the initial conditions after
some time τ0, which is associated with partial neglect
of cause-and-effect relationships in the dynamics of
individual particles. A more general approach to
constructing smooth material fields while preserving
cause-and-effect relationships in the dynamics of in-
teracting particles can be achieved through explicit
spatial averaging, specifically over a physically in-
finitesimal volume. Usually, in the literature, this
operation either remains implicit or is replaced by
averaging over the distribution function. However,
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an analytical operator that provides explicit averaging
over a physically infinitesimal volume for a specific
quantity Δ was proposed by M. Drofa and L.S. Kuz-
menkov in their paper [11]. This approach allowed
for formulating classical mechanics of many-particle
systems in terms of the evolution of material fields.
The closure of the system of equations, under certain
restrictions on the set of material fields, led to the
derivation of hydrodynamic equations in a determin-
istic interpretation while preserving cause-and-effect
relationships in the particle evolution. Considering
material fields in a six-dimensional phase space of co-
ordinates and momenta enables the non-probabilistic
derivation of kinetic equations and the corresponding
interpretation of the “distribution function”. These
results have led to the need for implementing a similar
approach within the framework of quantum mechan-
ics [12, 13].

The many-particle wave function contains infor-
mation about a quantum system of particles, and its
evolution satisfies the non-stationary Schrödinger
equation. This evolution can be reformulated in
terms of material fields, analogous to those intro-
duced in classical mechanics. Let us focus on the
definition of the simplest material field in quantum
mechanics, which is the scalar field of concentration
(particle number density):

n(r, t) =
∑

S=s1,...,sN

∫
dR

×
∑

i

δ(r − ri)Ψ
†
S(R, t)ΨS(R, t), (1)

where dR =
∏N

i=1 dri is the volume element in the
3N-dimensional configuration space. Here, N is the
number of particles, and Ψ(R, t) is the wave function
of the particle system. Equation (1) explicitly includes
summation over spin variables (below, for the sake
of formula compactness, the summation over spin is
omitted

∑
S=s1,...,sN

).

The representation of quantum mechanics as the
evolution of material fields, whose dynamics follow
the evolution of the many-particle wave function, is
a general concept. However, along this path, it has
been possible to construct hydrodynamic models for
a variety of physical systems. Spin-polarized plasma-
like media can be described by a system of equations
known as quantum hydrodynamics, which consists of
equations for the evolution of concentration, velocity
fields, and spin density.

Alternatively, spin-polarized plasma-like media
can be described using quantum hydrodynamics with
separate spin evolutions. Another example is the
derivation of quantum hydrodynamics equations for
ultracold quantum gases. This includes both bosonic

systems (atoms with spin 0 or 1) and fermionic
systems (spin-1/2). The dynamics of spin in such
systems is studied, although the mechanisms of spin
polarization are only partially considered. One exam-
ple is the direct interaction of an external magnetic
field with the spins of particles. However, in magnet-
ically ordered materials, spontaneous magnetization
can occur. One of the simplest mechanisms for its
emergence in ferromagnetic and antiferromagnetic
materials is the exchange interaction, which can be
expressed at the microscopic level in the form of the
Heisenberg Hamiltonian: ĤH = −JŜ1 · Ŝ2, here,
Ŝ1 and Ŝ2 represent the spins of two interacting
particles, and J is the exchange integral associated
with the overlap of wave functions.

On the other hand, in the Landau–Lifshitz equa-
tion for the evolution of the magnetization M of a
medium, there is a contribution from the exchange
interaction, which can be phenomenologically derived
from symmetry considerations [14]: ∂tM = − g|e|

2mec
×

α[M,�M], here, g is the gyromagnetic ratio for the
ferromagnetic material, e is the charge of the electron,
me is the electron mass, and c is the speed of light.

The symmetric tensor α̂ is chosen in a diagonal
form, which corresponds to cubic crystals. In the lit-
erature, an estimation of the parameter α is presented
in terms of the Curie temperature Tc, lattice constant
a, and magnetization magnitude M : α ∼ Tc/(aM

2)
[14].

In this equation, the right-hand side is due to
the slow variation of the magnetization vector in a
medium with non-uniform magnetic moment density.
In fact, the Heisenberg Hamiltonian has already been
used to derive the model of a Bose–Einstein con-
densate for spin-1 atoms [15], where it is shown that
this Hamiltonian does not contribute to the evolution
equation of the magnetic moment and the nematic
tensor.

The standard theory of a Bose–Einstein conden-
sate is based on the Gross–Pitaevskii equation,
which arises in the first order of the interaction radius
for both spinless particles and particles with spin.
Therefore, in the work [15], the spin evolution equa-
tion is considered in the first order of the interaction
radius. The spin-dependent short-range interaction,
taken in the form of the Heisenberg Hamiltonian, is
examined in the third order of the interaction radius in
this study. This approach allowed for reproducing the
contribution of the inhomogeneous magnetization
distribution in the sample.

The following method of quantum hydrodynamics
exhibits similarities to many methods used to derive
hydrodynamic or kinetic equations in quantum phy-
sics (see, for example, the Wigner function method
for deriving the quantum generalization of the Vlasov
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equation in the book V.P. silin [16]). The main differ-
ence of the “quantum hydrodynamics method” lies in
the systematic development of the field representation
method of classical mechanics for quantum particle
systems. The derivation of quantum hydrodynamics
equations can also be considered as a generalization
of the works by Madelung and Takabayasi to sys-
tems with a large number of particles. In the case of
multi-particle systems, there is a need to project the
multidimensional configuration space onto the three-
dimensional physical space, whereas for a single par-
ticle, these spaces are equivalent to each other.

The simplest function that describes the dynamics
of a particle ensemble is the particle number concen-
tration. In classical physics, its definition has a clear
physical meaning as the number of particles per unit
volume. By considering identical volume elements
at different points in space, one can obtain a scalar
field of concentration. In quantum physics, where
the wave function has a probabilistic interpretation,
the particle concentration can be identified with the
total probability density of all particles in the system
located in the vicinity of a chosen point in space and
is given by: (1).

The formula (1) can be rewritten in the following
form:

n(r, t) =

N∑

i=1

∫
Ψ†(r1, ..., ri−1, r, ri+1, ..., rN , t),

Ψ(r1, ..., ri−1, r, ri+1, ..., rN , t)

× dr1...dri−1dri+1...drN , (2)

here, the coordinate of the i-th particle in the wave
function is represented by the coordinate without
an index, r. After implicit integration over the
coordinates of all particles except for the selected
one, we obtain the probability density of the i-th
particle projected into physical space as n(r, t) =∑N

i=1 ρi(r, t), where ρi(r, t) implicitly depends on
the state of other particles in the system through the
common wave function Ψ(r1, ..., rN ).

The evolution of the concentration is determined
by the evolution of the wave function, and its calcula-
tion requires an explicit form of the Hamiltonian of
the particle system. In this work, we will consider a
simple model Hamiltonian necessary for solving the
problem of constructing a hydrodynamic model of
ferromagnets. The key element of the Hamiltonian
is the exchange Coulomb interaction, which, for par-
ticles with spin 1/2, is described by the Heisenberg
Hamiltonian ĤH = −JŜ1 · Ŝ2 (see, for example, [17,
18]).

This article is structured as follows. Section II
provides the foundations of the quantum hydrodyna-
mics method. Section III discusses the derivation

of the equation of spin/magnetization evolution in a
medium under the influence of exchange interaction.
Section IV provides a brief discussion of the obtained
results.

1. FUNDAMENTAL PRINCIPLES
OF QUANTUM HYDRODYNAMICS METHOD

Let us write the non-stationary Schrödinger equa-
tion in the coordinate representation with a model
Hamiltonian that enables examining one of the fun-
damental properties of the magnetically ordered sys-
tems under investigation:

ı�∂tΨ =

(
N∑

i=1

p2
i

2m

− 1

2

N∑

i,j=1,j �=i

U(|ri − rj|)ŜiŜj

)
, (3)

here, pi = −ı�∇i is the momentum operator of the i-
th particle, � is the reduced Planck constant, m is the
mass of the particle, N is the total number of particles,
Ψ = Ψ(R, t) is the wave function of the particle sys-
tem, R = {r1, ..., rN} is the set of coordinates of the
N particles, forming a vector in the 3N-dimensional
configuration space, Ŝi is the spin operator of the i-th
particle.

The first (second) term on the right-hand side of
equation (3) represents the sum of kinetic energies
(the sum of potential energies of pairwise interac-
tions), where the potential energy is chosen in the
form of the Heisenberg Hamiltonian. It is assumed
that all the particles under consideration belong to
the same type, hence the mass m does not include
the particle index. In fact, we are restricting ourselves
to particles with spin 1/2, as for particles with larger
spins, a more general form of the exchange interaction
should be considered. However, the results obtained
below are part of a more general model that arises for
larger spins. Therefore, we do not specify the form of
the spin operator Ŝi.

The Heisenberg Hamiltonian arises as a result
of comparing the energy values of the exchange
Coulomb interaction for different mutual orientations
of the spins of two interacting particles. From the
perspective of further applications, the Heisenberg
Hamiltonian characterizes an effective short-range
spin-spin interaction. This makes it possible for us
to follow the method of expansion in terms of the
interaction radius, as presented in the works [15, 19,
20], which corresponds to an expansion in a small
dimensionless parameter formed by the ratio of the
action radius of the potential r0 (in our case, the
region of overlap of the wave functions of the valence
electrons of interacting atoms or ions, leading to
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exchange interaction) to the characteristic scale of
the system’s inhomogeneity, which can be chosen as
the wavelength, soliton width, or diameter of a vortex
structure.

The study of the evolution of particle concentration
(1) obviously leads to the continuity equation ∂tn+
∇ · j = 0, in which an explicit definition of the particle
flux (momentum density) emerges as j = nv (see [12,
15, 19], where the method of introducing the velocity
field v into the equations of quantum hydrodynamics
is also described).

The evolution of the particle flux leads to the Euler
equation:

m∂tj
α +m∂βΠ

αβ = Fα
int, (4)

here, the indices correspond to the projections of
three-dimensional vectors. The quantity Παβ repre-
sents the tensor of momentum flux, which is extensi-
vely discussed in other works (see [15, 19, 20]). The
quantity Fα

int represents the force density resulting
from particle interactions, which will be discussed
further after considering the spin density. For this
particular Hamiltonian, the interaction force density
can be expressed in terms of the two-particle func-
tion.

2. EQUATION OF SPIN DENSITY
EVOLUTION

Changes in magnetization can occur due to the
movement of spin-polarized particles over macros-
copic distances (spin current of quasifree particles),
local displacements of particles, or changes in the
spin projection of immobile particles (as in the Ising
model for stationary atoms located at the nodes of the
crystalline lattice). In particular, in the Ising model,
the particle concentration is constant and the velocity
field is zero.

Let us examine the evolution of the spin density
vector field without restrictions on the nature of par-
ticle motion, using the selected model Hamiltonian
(3). The definition of spin density in quantum hydro-
dynamics takes the following form [15]:

S(r, t)

=

∫
dR

∑

i

δ(r − ri)Ψ
†(R, t)ŜiΨ(R, t). (5)

Let us consider the time derivative of the function (5)
to determine the equation of spin density evolution.
The time derivatives of multi-particle wave functions
can be expressed in terms of the Hamiltonian accor-
ding to equation (3). By separating the contributions
from the kinematic terms and the interaction terms,

we obtain the equation of evolution for spin density in
the following form:

∂tS
α + ∂βJ

αβ = Nα
int, (6)

here, Jαβ represents the spin current density, and its
microscopic definition can be found in the works [15,
21]. The equation of spin evolution (6) also includes
the torque term:

Nα
int = εαβγ

∫
dr′U(|r− r′|)Sβγ

2 (r, r′, t), (7)

here

Sβγ
2 (r, r′, t) =

∫
dR

∑

i,j �=i

δ(r − ri)δ(r
′ − rj)

×Ψ†(R, t)Ŝβ
i Ŝ

γ
j Ψ(R, t) (8)

represents a two-particle/two-coordinate spin func-
tion. In most cases, the literature uses the concept
of the two-particle function. Consequently, the
concentration and spin density are referred to as one-
particle functions, despite the fact that they describe
many-particle systems. The term “two-coordinate
function” is also encountered in the literature since
the function describing the evolution of a many-
particle system depends on two coordinates, r and
r′.

During the derivation of the spin evolution equa-
tion (6), the commutation relations for spin operators
were utilized: [Ŝα

i , Ŝ
β
j ] = ı�δijε

αβγ Ŝγ
i .

It should be noted that in the self-consistent
field approximation, which is not generally applicable
to the short-range/contact interactions considered
here, the two-coordinate spin function has a multipli-
cative form (8): Sβγ

2 (r, r′, t) = Sβ(r, t)Sγ(r′, t). In
this formula, the structure of the considered two-
coordinate function is emphasized. It should also
be noted that the application of the radius expansion
in the Euler equation (4) in the main approximation
leads to an expression that is obtained later and bears
external similarity to the multiplicative approxima-
tion.

The main focus of the article is on the spin evo-
lution equation, so let us present the explicit form of
the kinematic part of this equation, following the work
[21],

n(∂t + v · ∇)sα − �

2m
εαμν∂β

(
nsμ∂βsν

)

+ �α = Nα
int, (9)

here s(r, t) = S(r, t)/n is the specific density of spin,
and � is the thermal component of the spin current.
The quantity � in equation (9) is analogous to pres-
sure. In the case of degenerate fermionic systems,
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where the distribution of particles among quantum
states is governed by the Pauli principle, the spin
current � takes a non-zero value, which can be re-
ferred to as the Fermi spin current. An example of
a systematic analysis of the thermal component of
spin current can be found in the work [21], although
it is not taken into account in most studies (see, for
example, [22–24]). The presented expression arises
when introducing the velocity field into the equations
of quantum hydrodynamics [21]. The term propor-
tional to the Planck constant reflects the contribution
of the Bohm potential to the spin evolution.

Let us consider the main steps of the radius-of-
interaction expansion method presented in the works
[19, 20]. For this, let us express the torque field
density (7) without using auxiliary two-coordinate
functions:

Nα
int = εαβγ

∫
dR

∑

i,j �=i

δ(r− ri)

× U(|ri − rj |)Ψ†(R, t)Ŝβ
i Ŝ

γ
j Ψ(R, t), (10)

where we explicitly highlight the contribution of the
coordinates of the i-th and j-th particles in the argu-
ment of the wave function and the
3N-dimensional differential: Ψ(R, t) = Ψ(r1, ..., ri,
..., rj , ..., rN , t) and dR = dridrjdRN−2. Let us int-
roduce the coordinates of the center of mass and the
relative motion for the i-th and j-th particles rij =
ri − rj , Rij = (ri + rj)/2, and make the correspon-
ding substitution in formula (10). Moreover, using
the symmetry of the integrand expression in formula
(10), the torque density can be rewritten in the
following form:

Nα
int =

1

2
εαβγ

∫
dR

∑

i,j

(δ(r − ri)− δ(r− rj))

× U(|ri − rj |)Ψ†(R, t)Ŝβ
i Ŝ

γ
j Ψ(R, t), (11)

where the symmetry/antisymmetry of the wave func-
tion under the interchange of coordinates is used. The
key property of the potential U(rij) is that it rapidly
decays as the relative distance between the particles
rij increases. Because of this, the entire integrand
expression tends to zero for large values of the rel-
ative distance between the particles rij . Therefore,
we can expand the integrand expression in a Taylor
series around the relative distance vector between the
particles, rij. The expansion of the difference of delta
functions yields odd powers of the projections of the
relative distance rαij . The lowest order of the expan-
sion that yields a non-zero contribution occurs when
we take the zeroth-order expansion of one wave func-
tion and the first-order expansion of the second wave
function. As a result, the integral over the relative

motion coordinates of the two particles separates and
gives us an interaction constant gM ∼

∫
dξξ2U(ξ).

The procedure described above allows for taking
into account the small range of the potential. In
further calculations, we treat the multi-particle wave
function as a product of single-particle wave functi-
ons:

n(∂t + v · ∇)s− �

2m
∂β[ns, ∂βs]

= gM [ns,�(ns)], (12)

here
gM ≡ 1

6

∫
dξξ2U(ξ). (13)

2.1. Interaction Force Density

The field of interaction force density, appearing in
the Euler equation, is expressed in terms of the two-
coordinate spin function (8):

Fα
int =

∫
dr′(∇αU(|r− r′|))Sββ

2 (r, r′, t). (14)

Similarly to the result obtained for the torque acting
on spin density, one can calculate the interaction
force density by considering the contribution from the
expansion of the force density in a series around the
interaction radius, focusing on the leading non-zero
term.

This corresponds to the first order in the expan-
sion around the interaction radius, and leads to the
following expression for the force density: Fα

int =

g0S
β∂αSβ , here, g0 =

∫
U(ξ)dξ is the interaction

constant different from (13).

2.2. On the Structure of Dispersion Dependence
of Magnons

Let us investigate the dispersion dependence of
spin waves within the proposed model. We will con-
sider an unbounded medium of neutral atoms whose
spins/magnetic moments are polarized in a single
direction (we choose the z-axis parallel to this di-
rection) and analyze small perturbations around the
equilibrium state, characterized by equilibrium values
of concentration n0 and specific spin density s0 =
s0ez . The velocity field in the equilibrium state is zero.
The dipole–dipole interaction, as evident from the
presented model, is assumed to be small compared to
the exchange interaction. This approximation holds
only in specific cases, but we aim to investigate the
chosen model scenario. The approximation mentio-
ned above is valid only in certain cases, but we are
focused on examining the chosen model case. Let
us represent dynamic quantities as the sum of equi-
librium values and small perturbations, for example,
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s = s0 + δs, in the spin evolution equation, neglecting
terms that are nonlinear in small perturbations. As a
result, we obtain a linearized spin evolution equation:

n0∂tδs−
�

2m
n0[s0,�δs]

− gMn2
0[s0,�δs] = 0. (15)

Note that the obtained equation is closed within the
considered approximation.

Let us investigate small perturbations in the form
of plane monochromatic waves |δs| ∼ exp(−ıωt+
ıkr), which propagate in an arbitrary direction k.
Their dispersion relation is obtained in the following
form:

ω = s0k
2

∣∣∣∣n0gM +
�

2m

∣∣∣∣. (16)

For the considered ferromagnets, the constant gM >

0 is positive, so we can omit the modulus sign.
The presented model, including the chosen form of
the equilibrium state, does not take into account
the periodic arrangement of atoms in the lattice.
Therefore, we obtain the long-wavelength limit of
the magnon dispersion relation in a crystal. Let us
compare the obtained result with the formulas arising
for a chain of classical magnetic moments (see,
for example, [17]), where the following expression
appears: ω = 2Js0(1− cos(ka)), transitioning to the
long-wavelength limit ω = Js0a

2k2, here, a is the

lattice period of the crystal given by a = n
−1/3
0 , and

for the magnetically ordered systems under consid-
eration J > 0. From the above formulas, it can be
seen that the lattice dispersion relation is expressed in
terms of the exchange integral, whereas the proposed
model leads to an integral involving the exchange
integral. A more comprehensive comparison can be
obtained by approximately calculating the interaction
constant (13) for model forms of short-range interac-
tion/exchange integral potentials.

Before presenting the result of the interaction con-
stant estimation, it is worth noting that the long-
wavelength dispersion relation (16) contains a quan-
tum contribution ∼ � compared to the classical chain
of magnetic moments. As a first example, let us
consider the exchange integral in the form of the
Heaviside function, where U(ξ) = J for ξ ≤ r0 and
U(ξ) = 0 for ξ > r0. Taking the lattice period as
the effective range of the potential, we have r0 = a,
resulting in gM = 2πJa5/15. The factor a3 = n−1

0
that appears here leads to the reduction of the cor-
responding coefficient in the dispersion relation.

This gives the following semiclassical limit of the
formula (16): ω = 2πs0k

2Ja2/15. The extra factor of

2π/15 can be compensated by an appropriate choice
of the potential range r0.

Let us consider a second model example of an
effective potential in the form of the delta function on
a sphere of radius a: U(ξ) = Jaδ(ξ − a). This leads
to the following expression for the interaction con-
stant: gM = 2πJa5/3, and the frequencies are given
by ω = 2πs0k

2Ja2/3. These examples demonstrate
a direct connection between the obtained frequency
expression and the dispersion relation for a chain of
classical magnetic moments.

Based on the analysis of the interaction constant,
let us focus on the corrections that arise in the fifth
order of the interaction radius in the spin evolution
equation. The corresponding expansion in equa-
tion (11) leads to an additional interaction constant
g2M ∼

∫
dξξ4U(ξ). For model potentials, this cons-

tant can be expressed in terms of the exchange inte-
gral J or the interaction constant gM (from equation

13), specifically g2M ∼ a2gM ∼ n
−2/3
0 gM .

The functional dependence can be expressed in
terms of derivatives of the amplitudes or phases of the
wave function. In the first case, which corresponds to
the aforementioned result, one can expect corrections
involving higher-order spatial derivatives. The sec-
ond case leads to contributions from the tensor of ki-
netic pressure or higher-rank kinetic functions. Such
examples are realized in certain types of fermionic
systems [20]. When considering particles with large
spins, additional terms arise in the Hamiltonian (3)
describing additional effective spin interactions. This
interaction is proportional to higher powers of the
scalar product of the spin operators of the interacting
particle pair. It contributes to the additional spin den-
sity of macroscopic functions and the corresponding
generalization of the spin evolution equation. For
small deviations from the equilibrium ferromagnetic
state, the additional functions can be approximated
in terms of the spin density, and the additional terms
take a form that coincides with the right-hand side
of the spin evolution equation (12). Let us consider
the influence of spin dynamics on sound waves de-
scribed by the Euler equation, taking into account the
spin-independent short-range interaction. We will
estimate the contribution of the effective spin-spin
interaction associated with the Heisenberg exchange
interaction in the Euler equation. The correspond-
ing force density takes the form F ∼ ∇(ns)2/2. In
the linear approximation, the spin density can be
represented as F ∼ n0s0∇(n0δs+ s0δn). It should
be noted that the spin evolution equation leads to
the expression s0δs = s0δsz = 0. In the end, the
additional term in the force density is nonzero and
is expressed in terms of the concentration perturba-
tion: F = g0n0s

2
0∇δn, which leads to a change in
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the square of the sound velocity, compared to the
analogous spinless system, by Δv2 = g0s

2
0n0/m.

The interaction constant g0 can also be expressed
in terms of the effective value of the exchange inte-
gral J when using a model dependence of the ex-
change integral on distance. As before, let us consider
the example of the exchange integral in the form
of the Heaviside function: U(ξ) = J for ξ ≤ r0 = a
and U(ξ) = 0 for ξ > r0. This gives the representa-
tion of the interaction constant as g0 = 4πr30J/3 =
4πJ/3n0, and the change in the square of the sound
velocity can be written as Δv2 = 4πJs20/3m.

Let us briefly mention ferrofluids and note that the
proposed model, despite its hydrodynamic form, is
developed to describe magnetically ordered media in
various aggregate states where exchange Coulomb
interaction plays a crucial role in spin dynamics.

CONCLUSIONS

The study demonstrates that the quantum hydro-
dynamic approach allows for deriving the evolution
equation for the magnetic moment in magnetically
ordered media, where the dynamic properties of the
magnetic moment are governed by exchange inter-
action. Such an approach includes the consideration
of multiferroics, although the magnetoelectric effect
that distinguishes them from other magnetically or-
dered media will be separately addressed. At the
microscopic level, for fermions with spin 1/2, the
exchange interaction is described by the Heisenberg
Hamiltonian. The paper demonstrates the transition
from the microscopic model to the macroscopic one.
It shows the emergence of a set of interaction con-
stants and their approximate representation in terms
of an effective value of the exchange integral.
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