The effects of confluency on cell mechanical properties

M.V. Lomonosov Moscow State University, Faculty of Biology, Department of Bioengineering, Leninskie Gory, 1/73, 111991 Moscow, Russia

Article info

Article history:
Accepted 21 January 2013

Keywords:
AFM
Vero cells
Viscoelasticity
Confluency
Actin cytoskeleton

Abstract

Mechanical properties of cells depend on various external and internal factors, like substrate stiffness and surface modifications, cell ageing and disease state. Some other currently unknown factors may exist. In this study we used force spectroscopy by AFM, confocal microscopy and flow cytometry to investigate the difference between single non-confluent and confluent (in monolayer) Vero cells. In all cases the stiffness values were fitted by log-normal rather than normal distribution. Log-normal distribution was also found for an amount of cortical actin in cells by flow cytometry. Cells in the monolayer were characterized by a significantly lower (1.4–1.7 times) Young's modulus and amount of cortical actin than in either of the single non-confluent cells or cells migrating in the experimental wound. Young's modulus as a function of indentation speed followed a weak power law for all the studied cell states, while the value of the exponent was higher for cells growing in monolayer. These results show that intercellular contacts and cell motile state significantly influence the cell mechanical properties.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Atomic force microscopy (AFM) is widely used in biological studies for visualization of biomolecules (Engel and Muller, 2000; Graham et al., 2010) and cells (Costa, 2006; Efremov et al., 2011; Rotsch and Radmacher, 2000) and for the assessment of their mechanical characteristics (Kuznetsova et al., 2007; Rico et al., 2008; Takai et al., 2005). Force spectroscopy of cells by AFM, along with other techniques like the optical stretcher (Guck et al., 2005), micropipette aspiration (Ward et al., 1991), magnetic twisting cytometry (Alenghat et al., 2000) and laser tracking microrheology (Hoffman et al., 2006), is an important source of information about cell mechanical properties. The data about cell mechanical properties combined with confocal microscopy data confirm that the cytoskeleton, mainly the actin network, contributes significantly to cell stiffness (Guck et al., 2005; Mackay et al., 2012; Rotsch and Radmacher, 2000). It has been shown, that changes in cell stiffness are closely related to cell type and various external and internal conditions, like substrate stiffness (Franze et al., 2009; Mackay et al., 2012; Solon et al., 2007) and surface modifications (Takai et al., 2012; Solon et al., 2007) and surface modifications, cell ageing and disease state. Some other currently unknown factors may exist. In this study we used force spectroscopy by AFM, confocal microscopy and flow cytometry to investigate the difference between single non-confluent and confluent (in monolayer) Vero cells. In all cases the stiffness values were fitted by log-normal rather than normal distribution. Log-normal distribution was also found for an amount of cortical actin in cells by flow cytometry. Cells in the monolayer were characterized by a significantly lower (1.4–1.7 times) Young's modulus and amount of cortical actin than in either of the single non-confluent cells or cells migrating in the experimental wound. Young's modulus as a function of indentation speed followed a weak power law for all the studied cell states, while the value of the exponent was higher for cells growing in monolayer. These results show that intercellular contacts and cell motile state significantly influence the cell mechanical properties.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Atomic force microscopy (AFM) is widely used in biological studies for visualization of biomolecules (Engel and Muller, 2000; Graham et al., 2010) and cells (Costa, 2006; Efremov et al., 2011; Rotsch and Radmacher, 2000) and for the assessment of their mechanical characteristics (Kuznetsova et al., 2007; Rico et al., 2008; Takai et al., 2005). Force spectroscopy of cells by AFM, along with other techniques like the optical stretcher (Guck et al., 2005), micropipette aspiration (Ward et al., 1991), magnetic twisting cytometry (Alenghat et al., 2000) and laser tracking microrheology (Hoffman et al., 2006), is an important source of information about cell mechanical properties. The data about cell mechanical properties combined with confocal microscopy data confirm that the cytoskeleton, mainly the actin network, contributes significantly to cell stiffness (Guck et al., 2005; Mackay et al., 2012; Rotsch and Radmacher, 2000). It has been shown, that changes in cell stiffness are closely related to cell type and various external and internal conditions, like substrate stiffness (Franze et al., 2009; Mackay et al., 2012; Solon et al., 2007) and surface modifications (Takai et al., 2012; Solon et al., 2007) and surface modifications, cell ageing and disease state. Some other currently unknown factors may exist. In this study we used force spectroscopy by AFM, confocal microscopy and flow cytometry to investigate the difference between single non-confluent and confluent (in monolayer) Vero cells. In all cases the stiffness values were fitted by log-normal rather than normal distribution. Log-normal distribution was also found for an amount of cortical actin in cells by flow cytometry. Cells in the monolayer were characterized by a significantly lower (1.4–1.7 times) Young's modulus and amount of cortical actin than in either of the single non-confluent cells or cells migrating in the experimental wound. Young's modulus as a function of indentation speed followed a weak power law for all the studied cell states, while the value of the exponent was higher for cells growing in monolayer. These results show that intercellular contacts and cell motile state significantly influence the cell mechanical properties.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Atomic force microscopy (AFM) is widely used in biological studies for visualization of biomolecules (Engel and Muller, 2000; Graham et al., 2010) and cells (Costa, 2006; Efremov et al., 2011; Rotsch and Radmacher, 2000) and for the assessment of their mechanical characteristics (Kuznetsova et al., 2007; Rico et al., 2008; Takai et al., 2005). Force spectroscopy of cells by AFM, along with other techniques like the optical stretcher (Guck et al., 2005), micropipette aspiration (Ward et al., 1991), magnetic twisting cytometry (Alenghat et al., 2000) and laser tracking microrheology (Hoffman et al., 2006), is an important source of information about cell mechanical properties. The data about cell mechanical properties combined with confocal microscopy data confirm that the cytoskeleton, mainly the actin network, contributes significantly to cell stiffness (Guck et al., 2005; Mackay et al., 2012; Rotsch and Radmacher, 2000). It has been shown, that changes in cell stiffness are closely related to cell type and various external and internal conditions, like substrate stiffness (Franze et al., 2009; Mackay et al., 2012; Solon et al., 2007) and surface modifications (Takai et al., 2012; Solon et al., 2007) and surface modifications, cell ageing and disease state. Some other currently unknown factors may exist. In this study we used force spectroscopy by AFM, confocal microscopy and flow cytometry to investigate the difference between single non-confluent and confluent (in monolayer) Vero cells. In all cases the stiffness values were fitted by log-normal rather than normal distribution. Log-normal distribution was also found for an amount of cortical actin in cells by flow cytometry. Cells in the monolayer were characterized by a significantly lower (1.4–1.7 times) Young's modulus and amount of cortical actin than in either of the single non-confluent cells or cells migrating in the experimental wound. Young's modulus as a function of indentation speed followed a weak power law for all the studied cell states, while the value of the exponent was higher for cells growing in monolayer. These results show that intercellular contacts and cell motile state significantly influence the cell mechanical properties.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Atomic force microscopy (AFM) is widely used in biological studies for visualization of biomolecules (Engel and Muller, 2000; Graham et al., 2010) and cells (Costa, 2006; Efremov et al., 2011; Rotsch and Radmacher, 2000) and for the assessment of their mechanical characteristics (Kuznetsova et al., 2007; Rico et al., 2008; Takai et al., 2005). Force spectroscopy of cells by AFM, along with other techniques like the optical stretcher (Guck et al., 2005), micropipette aspiration (Ward et al., 1991), magnetic twisting cytometry (Alenghat et al., 2000) and laser tracking microrheology (Hoffman et al., 2006), is an important source of information about cell mechanical properties. The data about cell mechanical properties combined with confocal microscopy data confirm that the cytoskeleton, mainly the actin network, contributes significantly to cell stiffness (Guck et al., 2005; Mackay et al., 2012; Rotsch and Radmacher, 2000). It has been shown, that changes in cell stiffness are closely related to cell type and various external and internal conditions, like substrate stiffness (Franze et al., 2009; Mackay et al., 2012; Solon et al., 2007) and surface modifications (Takai et al., 2012; Solon et al., 2007) and surface modifications, cell ageing and disease state. Some other currently unknown factors may exist. In this study we used force spectroscopy by AFM, confocal microscopy and flow cytometry to investigate the difference between single non-confluent and confluent (in monolayer) Vero cells. In all cases the stiffness values were fitted by log-normal rather than normal distribution. Log-normal distribution was also found for an amount of cortical actin in cells by flow cytometry. Cells in the monolayer were characterized by a significantly lower (1.4–1.7 times) Young's modulus and amount of cortical actin than in either of the single non-confluent cells or cells migrating in the experimental wound. Young's modulus as a function of indentation speed followed a weak power law for all the studied cell states, while the value of the exponent was higher for cells growing in monolayer. These results show that intercellular contacts and cell motile state significantly influence the cell mechanical properties.

© 2013 Elsevier Ltd. All rights reserved.
for human early round spermatids differentiation (Tanaka et al., 2009) and for the improvement of mouse (Lai et al., 1992) and human early embryo development (Menez et al., 1990). Vero are non-polarized epithelial cells, which have a typical fibroblastoid shape and form a well-defined flat monolayer. The mechanism by which Vero cells became immortal is still unknown. During tissue-culture passage (at the high passage levels, p > 200), Vero cells can develop the capacity to form tumors (Manohar et al., 2008).

Here, we determined the mechanical properties of single non-confluent Vero cells by AFM and compared it with the properties of fully confluent cells (in monolayer). The single cells were prepared either by seeding or by wound healing assay, when cells migrated into the scratch wound from monolayer (Valster et al., 2005). Confocal microscopy and flow cytometry were used to assess the changes in the actin cytoskeleton organization and actin amount.

2. Materials and methods

2.1. Cell culture and confocal microscopy

Vero cells were grown in DMEM medium (PanEco, Russia) supplemented with 10% fetal bovine serum (FBS) (HyClone, USA) at 37 °C in a humidified 5% CO2 atmosphere in an incubator (Sanyo, Japan). For AFM imaging and force spectroscopy, the cells were harvested from the subculture, seeded on sterile 35 mm Petri dishes and placed into the incubator. For the experiments with single non-confluent cells they were grown for 1–2 days, for the experiments with a monolayer—for 3–4 days. The monolayer wounding was used to examine cell elasticity during migration inside the wound (Valster et al., 2005). Two (or more) parallel scratch wounds of approximately 400 μm width were made with a blue pipette tip (Greiner Bio-one, Germany), the growth medium was replaced and cells were incubated for several hours before AFM measurements.

For the confocal fluorescence imaging, cells were seeded on sterile 35 mm glass bottom Petri dishes (Greiner Bio-one, Germany). The filamentous actin (F-actin) was labeled with rhodamine phalloidin (Molecular Probes, Europe). Fluorescence images were taken using a Zeiss LSM510 Meta inverted confocal microscope (Carl Zeiss, Germany).

2.2. Flow cytometry

Flow cytometric measurements for single non-confluent cells and cells in monolayer were performed on a Cytoomics FC500 flow cytometer (Beckman Coulter, USA). Cells were harvested by trypsinization, diluted to 1,000,000 cells/ml in PBS (Amresco, USA), fixed with 4% paraformaldehyde (Fluka, Germany), permeabilized with 0.1% Triton X-100 (Loba Chemie, Austria) in PBS and stained with rhodamine phalloidin (one set of experiments) or Alexa Fluor 488 phalloidin (Molecular Probes, Europe; two sets of experiments). Actin staining was checked by confocal microscopy.

Cells without staining were used as negative control. Integral (total signal per cell) forward and sideward scatter intensities and integral green fluorescence intensity for Alexa Fluor 488 phalloidin staining (FL-1 channel) or integral red fluorescence intensity for rhodamine phalloidin staining (FL-3 channel) of the samples were measured. Near 20,000 cells/sample were analyzed.

2.3. Atomic force microscopy and force spectroscopy

The AFM measurements were performed at room temperature using a commercial atomic force microscope Solver Bio (NT-MDT, Russia) combined with an inverted optical microscope (Olympus, Japan). Just before the AFM measurements the growth medium was replaced by PBS. We used silicon nitride triangular cantilevers MSCT-AUHW (former Veeco Instruments, now Bruker, USA) in contact mode for imaging of living cells. The typical curvature radius of the tips is 10 nm, the length, width, and thickness of the cantilevers are 310, 15, and 0.55 μm, respectively, and force constant k = 0.01 N/m. For the force spectroscopy experiments we used the tipless AFM probes CSG11 (NT-MDT, Russia) glued with a 9 μm diameter polystyrene bead. To measure Young's modulus (elastic modulus, stiffness, E) 3–5 force were taken at 1 Hz rate on each of the studied cells near its center, where the cell height is large enough to apply the Hertz model for data processing. The elastic moduli obtained from these curves were averaged to give the E value for each cell. For each of the non-confluent cell states (formed by seeding or by wound healing assay) three independent experiments were conducted. 15–25 cells were analyzed in each experiment. During experiments with the cell monolayer 15–20 force curves were taken on each of 4–5 areas (400–500 μm diameter), because of the rather small cell projection area. Hertz’s contact model was applied for data processing (see Supplementary information for details). To compare the mechanical properties of cells in different states, E was measured at fixed indentation speed (1 μm/s) and at fixed indentation depth (500 nm).

2.4. Analysis of cell viscoelastic properties

To characterize the viscoelastic behavior of cells we measured their mechanical response at varying indentation rates (0.25–8 μm/s), as described in the work by Nawaz et al. (2012). Due to significant difference between the cantilever spring constant and the cellular spring constant we admitted that the cell indentation speed is identical to the piezo movement speed.

Besides, we measured the loss tangents (or hysteresivity) of cells. Sinusoidal perturbation with small amplitude (less than 20 nm) and low frequency (0.3 Hz) was added to the vertical scan control voltage after indentation to 500 nm depth. The cantilever deflection (stress) and scanner Z position (strain) were sampled at ~200 Hz for 50 s. The Fast Fourier transform analyses were used to determine phase shift between stress and strain (Alcaraz et al., 2003; Rico et al., 2005). When calculated this way, η does not depend on k, v and R and other uncertainties associated with Hertzian contact mechanics (Alcaraz et al., 2003). The calculated loss tangent (tangent of the phase shift) provides a measure of solvolidike (η < 1) or fluidlike (η > 1) behavior of the cell. Given the low oscillatory frequency applied (0.3 Hz), we neglected the hydrodynamic drag influence (Alcaraz et al., 2002). At least 10 cells in each state were analyzed to obtain the indentation rate dependences of E and η. Data were processed with Origin software (OriginLab Corp., Northampton, MA, USA). All AFM experiments were performed during a 30–40 min period. Cell detachment and viability decrease started only after 3–4 h as determined by the trypan blue exclusion test (Strobe, 2001).

2.5. Statistical analysis

The non-parametric Mann-Whitney U test was used to determine if differences existed between the groups. The Shapiro-Wilk test was used for the normality test. Analysis was performed using Statistica software, version 8.0 (StatSoft, USA). Young's modulus values were log-normally distributed (meaning that the logarithms were normally distributed) and thus were described using geometric means and multiplicative standard deviations (see below).

3. Results

3.1. Morphology and cytoskeleton structure of Vero cells in different states

The single cells were prepared either by seeding or by wound healing assay, when cells migrated into the scratch wound from...
monolayer (Valster et al., 2005). The bright field and AFM images of non-confluent single cells, cells in a monolayer and cells in the experimental wound are compared in Fig. 1. The overall cytoskeleton structure was quite similar in all studied cell states: the majority of stress fibers were located at the basal part of the cell just above the substrate (Fig. 1c, f, and i). Cells being cultivated in the monolayer.

![Typical force curves at 1 μm/s speed obtained on single non-confluent (a), migrating in wound (b) and cells in monolayer (c). The first 500 nm of indentation were fitted with the Hertz model’s equation (red line—after the contact point, green line—the non-contact region).](image)

![Indentation dependences of E, estimated from the Hertz model’s equation for these force curves. (g), (h), and (i)—Indentation dependences of E for the same experiments, estimated from force curves fitting as a function of indentation depth.](image)

![Histograms of Young’s modulus E for Vero cells with log-normal fitting. (a) single cells; (b) cells in wound; and (c) cells in monolayer.](image)
sometimes can form a second layer after the prolonged cultivation, which was also observed on confocal images (data not shown).

3.2. Measured Vero cells stiffness depends on the indentation depth

The indentation range for fitting force curves with the Hertz model was selected to minimize contributions of the substrate effect (Li et al., 2008). The typical force curves for different cell states (non-confluent, migrating in wound and cells in monolayer) are presented in Fig. 2a–c; all measurements were conducted at the same 1 μm/s loading rate. The estimated Young’s modulus depended on the indentation depth (Fig. 2d–f). At 500–1000 nm indentation the increase of Young’s modulus started due to a substrate effect. The 500 nm value is shown to be a sufficient penetration depth for the application of the Hertz model in several studies (Lekka et al., 2011; Li et al., 2008; Takai et al., 2005). On the other hand, if the indentation was less than 100 nm, we observed rather large and scattered values of E (Fig. 2d–f). Such indentation dependence has been presented in many studies on mechanical properties of living cells by AFM (Mahaffy et al., 2000; Rico et al., 2005; Takai et al., 2005), so it could be an intrinsic cell property, rather than an experimental error. E values obtained by force curve fitting as a function of indentation depth (limit of fitting) have a similar indentation dependence, but the graph is smoother (Fig. 2g–i). So, we used E values, obtained from fitting the first 500 nm of indentation at the force curve to reduce the errors, generated by random deflection fluctuations.

3.3. Distributions of Young's modulus values are log-normal

Young’s modulus data in experiments, done using all cell states (approximately 50 cells in each state were analyzed), were well fitted by a log-normal distribution (Fig. 3). We checked the normality of the log-transformed data using the Shapiro–Wilk test. The p-values 0.24, 0.056, and 0.28 were obtained for confluent, single and migrating cells respectively. This indicates that the examined data are distributed normally (0.05 significance level) and the raw data are distributed log-normally. Thus we analyzed not only the arithmetic means but also the geometric means of the discussed distributions. The mean of the log-transformed is equal to the geometric mean of the primary data. The exponentiated standard deviation of the log-transformed data gave us multiplicative log-normal standard deviation.

3.4. Confluency affects Vero cell Young’s modulus

The geometric mean of elastic modulus of Vero cells in the monolayer was 1.4–1.7 times lower than that of single non-confluent cells and cells migrated in the experimental wound (Table 1). Based on the Mann–Whitney test, the population of cells in monolayer was significantly distinguishable from the two others ($p < 0.0001$), while the latter ones were not significantly distinguishable from each other ($p = 0.14$). The multiplicative standard deviations for all cell types were similar ($\sim 1.6 \times$).

Fig. 4. Actin cytoskeleton in suspended Vero cells, confocal microscopy sections near the middle planes of cells. (a) Non-confluent cells and (b) cells in monolayer. The scale bars represent 10 μm. Mainly cortical actin (layer underneath the plasma membrane) is stained.

Fig. 5. Flow cytometric measurements of cortical actin amount and the histogram plots. (a) Non-confluent cells, and (b) cells in monolayer. Alexa Fluor 488 phalloidin staining, green fluorescence channel, integral signal. Solid lines represent log-normal fitting curves. The inset shows the distributions of normalized cortical actin amount.
Although arithmetic mean is not an adequate parameter to describe log-normally distributed data, it is commonly used in data processing and thus worth discussing. The difference between the arithmetic means of elastic modulus of single, migrating in experimental wound and confluent cells was the same (1.4–1.6 times) (Table 1). For measurements conducted on the same cell (3–5 random force curves in the area near the center of the cell) standard deviation is rather small, typically less than 100 Pa, which is not more than 20% of the arithmetic mean.

3.5. Actin distribution in Vero cells in different states measured by flow cytometry

To further investigate the impact of the F-actin amount on the obtained Young's modulus values we conduct the flow cytometric measurements on the resuspended confluent and non-confluent Vero cells. The confocal microscopy images showed (Fig. 4), that suspended Vero cells retain the cortical actin network, while they lack stress fibers. Similar results have been obtained previously for other cells in suspension (Guck et al., 2005). Thus the amount of F-actin measured by the flow cytometry in terms of fluorescence intensity mainly reflects the amount of the cortical actin in the cells. Fig. 5 shows the distribution of fluorescence intensity for non-confluent cells and cells in monolayer. In consistent with the force spectroscopy data, the distributions were log-normal (p = 0.39 and 0.25), while the geometric mean was significantly lower (1.8 times, p < 0.001, the Mann–Whitney test) for cells in monolayer, than that for non-confluent cells. We also found, that integral forward scatter intensities, that are proportional to the cell size, were also log-normally distributed. The distributions, for both investigated cell states, were very similar (p = 0.79, the Mann–Whitney test). This means that the overall cell size (volume) was not modulated by the cell state. The log-normal distribution shape was also retained (p = 0.12 and 0.17) for fluorescence intensities values divided by forward scatter intensities (see insets in Fig. 5).

3.6. Vero cell viscoelastic properties are modulated by confluency

Viscoelastic behavior of cells was characterized by measuring their Young's modulus at varying indentation rates (0.25–8 μm/s). We found, that for all three cell states E values increased significantly at higher indentation rates. The observed increase in the apparent modulus followed a weak power law (the equation $k(v) = Av^p$, v—the piezo speed), with exponents $\alpha = 0.08 \pm 0.02, 0.1 \pm 0.03$, and 0.15 ± 0.03 for single non-confluent, migrating in the experimental wound cells and cells in monolayer respectively. The difference between the α values for cells in monolayer and other cell states is statistically significant (p < 0.05). Typical indentation rate dependences are shown in Fig. 6. We also measured loss tangents (η) by applying low-amplitude sinusoidal perturbations with 0.3 Hz frequency to the scanner Z-electrodes, when the cantilever was at ~500 nm indentation. We obtained very similar η values for all cell states: 0.17 ± 0.06, 0.20 ± 0.07, and 0.18 ± 0.06 (single non-confluent, migrated in the experimental wound cells and cells in monolayer respectively). Thus, all cells in their studied states demonstrated a mostly solid behavior.

4. Discussion

Young's modulus measurement by AFM has been suggested as a powerful method to study processes that involve cytoskeleton reorganization, for example, for distinguishing the cancerous cells (Cross et al., 2007; Lekka et al., 2011, 2012). However, numerous factors, like substrate stiffness, surface modifications and cell ageing, may interfere with the measured stiffness values of the cultivated cells, and therefore result in incorrect prognoses. Many factors that potentially influence the cell Young's modulus are still unknown.

In this study we investigated the effects of confluency on cell mechanical properties. We compared the elastic properties of Vero cells, growing in monolayer to that of single non-confluent cells and cells migrating in the experimental wound (Table 1). We found that the stiffness of cells growing in monolayer is

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Single non-confluent</th>
<th>Migrating in wound</th>
<th>In monolayer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric mean (Pa)</td>
<td>650</td>
<td>730</td>
<td>460</td>
</tr>
<tr>
<td>Multiplicative standard deviation</td>
<td>1.63</td>
<td>1.67</td>
<td>1.63</td>
</tr>
<tr>
<td>Arithmetic mean (Pa)</td>
<td>730</td>
<td>840</td>
<td>510</td>
</tr>
<tr>
<td>Standard deviation (Pa)</td>
<td>370</td>
<td>490</td>
<td>270</td>
</tr>
</tbody>
</table>
The difference in Young’s modulus of cells in a motile state (single non-confluent and migrating in wound) and cells in monolayer measured by AFM may be a consequence of differences in cortical actin network structure. Indeed, our flow cytometry experiments reflected the differences in the amount of cortical actin in confluent and non-confluent Vero cells (Fig. 5), in good agreement with our force spectroscopy data (Fig. 3). In several recent works it has been shown that at small indentations (500 nm and less) actin cortex is the major contributor to the measured cell elasticity (Nawaz et al., 2012; Pogoda et al., 2012; Solon et al., 2007). Our results agree with those obtained in a prior study (Kole et al., 2005). Mechanical stiffening of migrating Swiss 3T3 fibroblasts was shown in this work with the use of intracellular microrheology and scratch-wound assay.

The migrating cells are polarized and complex regulatory pathways spatially and temporally determine the migration process (Ridley et al., 2003). Cytoskeleton reorganization is an essential part of motility. Presumably, actin polymerization and the formation of an entangled cortical network, detected as stiffening of migrating cells by AFM, facilitate migration by providing mechanical stability to cellular protrusions (Kole et al., 2005). Cells in monolayer remain immobile and constantly receive signals (mechanical and molecular) from neighbor cells, which lead to changes in cytoskeleton structure (Holle and Engler, 2011; Yeung et al., 2005). Also, these cells have comparable contact area with both hard substrate and soft neighboring cells. So, the relative influence of substrate, leading to stiffening of the cells (Solon et al., 2007), may be reduced.

Young’s modulus values for all the studied cell states (single, migrating in wound and confluent) were well fitted by the log-normal distribution (Limpert et al., 2001). Similar results were previously obtained in several works with not only AFM measurements of mechanical properties (Cross et al., 2007; Hiratsuka et al., 2009; Ketene et al., 2011; Mizutani et al., 2008), but also magnetic tweezers assay (Alenghat et al., 2000; Swaminathan et al., 2011), magnetic twisting cytometry (Fabry et al., 2001), laser tracking microrheology and two-point microrheology (Hoffman et al., 2006). We suppose that the observed log-normal distribution of Young’s modulus values may result from the log-normal distribution of cortical actin network density or its level of crosslinking. Our flow cytometry data confirm the former suggestion (Fig. 5). Indeed, the concentrations of many cell mRNAs, proteins, and metabolites are distributed close to log-normal (Furusawa et al., 2005; Lu and King, 2009). It was shown by laser scanning cytometry that the distribution of F-actin concentration in fibroblasts is also fitted by log-normal distribution (Guck et al., 2005). Log-normal distribution has some features distinct from normal distribution. For characterization and comparison of log-normally distributed data it is appropriate to use mean geometric and multiplicative standard deviation, rather than arithmetic mean and regular standard deviation (Limpert et al., 2001).

For elastic materials the measured response does not depend on the deformation rate. We found that the measured cell stiffness depends on the loading rate, according to a weak power law. The exponent α value for cells in monolayer (0.15) was greater than α value for non-confluent (0.08) and migrating in wound cells (0.1). All the values were in good agreement with the published data for small deformations (Nawaz et al., 2012). This difference apparently indicates that for a monolayer the observed decrease in elastic modulus is accompanied by an increase in contribution of viscous response. However we obtained very similar loss tangent values (at 0.3 Hz) for all cell states, showing mostly solid behavior ($\eta < 1$), like many other mammalian cells (Alcaraz et al., 2003).

The interconnection between cell confluency and stiffness is of special interest particularly for Vero cells. Vero cells passaged at sub-confluence level have a less aggressive tumorigenic phenotype with the increase in passage levels, than randomly passaged cells (without confluence control) (Manohar et al., 2008). The latter ones are able to form a monolayer during their growth which, as we have shown here, decreases their Young’s modulus. It is also known, that in many cases cancer cells are characterized by significantly lower stiffness than normal cells, reflecting changes in the actin cytoskeleton structure (Cross et al., 2007; Lekka et al., 2012). So, presumably remaining in monolayer with a relatively low Young’s modulus could be connected with the enhancement of tumorigenicity of randomly passaged Vero cells.

In summary, we demonstrated that the viscoelastic properties of cells are modulated by their motility and intercellular interactions in confluent monolayer. In line with previous studies we demonstrated that Young’s modulus values of cells are well fitted by the log-normal distribution, which may be a fundamental property of living cell biomechanics. Additionally, we demonstrated that the amount of cortical actin in cultivated cells is also distributed log-normally (Fig. 4). Thus, for characterization and comparison of log-normally distributed data it is appropriate to use mean geometric and multiplicative standard deviation, rather than arithmetic mean and regular standard deviation (Limpert et al., 2001). In future it would be interesting to examine the impact of confluence on mechanical properties for cells growing on soft substrates and substrates coated with extracellular matrix proteins.

Conflict of interest statement

The authors have no conflicts of interest to declare.

Acknowledgments

The authors thank Ms. Olga Vorontsova for help with obtaining confocal microscopy data and Ms. Lisa Trifonova for proofreading the manuscript. This work was supported by the Russian Ministry of Education and Science (Contract 16.740.11.0373, K.S.) and a Knowledge Avant-garde Award from AstraZeneka (O.S.) and partially supported by RFBR Grant 13-04-01570 (K.S.).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jbiomech.2013.01.022.

References

