
218

ISSN 1064-2307, Journal of Computer and Systems Sciences International, 2017, Vol. 56, No. 2, pp. 218–226. © Pleiades Publishing, Ltd., 2017.
Original Russian Text © V.A. Kostenko, 2017, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2017, No. 2, pp. 48–56.

Combinatorial Optimization Algorithms Combining Greedy
Strategies with a Limited Search Procedure

V. A. Kostenko
Moscow State University, Moscow, Russia

e-mail: kostmsu@gmail.com
Received September 8, 2016; in final form, October 4, 2016

Abstract—The proposed algorithms basically follow a greedy strategy, and a limited search procedure
is invoked only at the steps at which the greedy choice cannot lead to the optimal solution. The prin-
ciple of these algorithms design are illustrated using the problem of finding the maximum number of
compatible jobs as an example. The results of applying the proposed algorithms for scheduling com-
putations in distributed systems are described.

DOI: 10.1134/S1064230717020137

INTRODUCTION
The majority of combinatorial optimization problems are nondeterministically polynomial time hard

(NP-hard). By a (general) optimization problem [1], we mean a general question that should be given an
answer. The problem is determined by the following data:

—a list of all its parameters (input data),
—formulation of conditions that must be satisfied by the answer (solution) to the problem.
An instance of an optimization problem [1] is obtained from the general problem by assigning specific

values to all its parameters.
A subproblem (or a particular problem) is an optimization problem [1] in which the same question as

in the general problem is formulated on a subset of the set of problem instances; i.e., in the particular prob-
lem, some constraints are imposed on the values of the parameters.

Some subproblems of an NP-hard problem are often polynomially solvable. For example, the general
problem of finding the maximum number of compatible jobs for a single-machine system that processes
without interruptions a given set of jobs with individual prescribed processing intervals is NP-hard. How-
ever, the particular problem in which the processing time of each job is equal to the length of its prescribed
processing interval can be exactly solved using a greedy algorithm of the complexity O(nlog n) [2]. In this
particular problem, the following constraint on the feasible values of the parameters is imposed: the length
of the prescribed processing interval of each job is equal to its processing time.

The most widespread techniques for solving combinatorial optimization problems are as follows:
—the dynamic programming method [2–4];
—greedy strategies [2, 5];
—the branch-and-bound method [2, 5];
—iterative techniques [6], such as a random search [7], simulation annealing [8, 9], and genetic and

evolutionary approaches [10–12];
—ant colony algorithms [13–16];
—algorithms based on finding the maximum flow in a transportation network [17–20].
In applications, it is typically required to develop and algorithm for solving a particular problem, but

this algorithm must provide a prescribed accuracy and its complexity must not exceed a prescribed limit.
In other words, the algorithm is not required to find an optimal solution; rather, it should find an accept-
ably accurate solution in an acceptable amount of time.

The main difficulty in using iterative algorithms is the adjustment of their parameters for the particular
problem to guarantee a required compromise between the accuracy and the computational complexity of
the algorithm [21]. Presently, there are no theoretical results for resolving this difficulty. In applications,

DISCRETE
SYSTEMS

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 56 No. 2 2017

COMBINATORIAL OPTIMIZATION ALGORITHMS 219

the values of the algorithm parameters are fitted experimentally. In addition, the accuracy and computa-
tional complexity of such algorithms can be estimated only statistically. This implies that there can be
instances of the particular problem for which the prescribed accuracy requirements and constraints on the
computational complexity are not satisfied.

The main difficulty in using the dynamic programming method and the bound-and-branch technique
is the fact that the upper bound on the computational complexity of the majority of general combinatorial
optimization problem is nonpolynomial. This is due to the features of these methods. For example, in the
case of the bound-and-branch technique, the properties of the lower bound function and the function
used to choose the best solution do not guarantee that at least one subset different from the basis one will
be cut off. For this reason, the algorithm applied to an instance of the problem can in the worst case exam-
ine all solutions.

Greedy algorithms are based on the optimality property for subproblems. If the optimal solution of a
problem includes the optimal solution of its subproblems, then this problem is said to possess the optimal-
ity property for subproblems. Greedy algorithms make a locally optimal choice at each step (solve a sub-
problem) assuming that finally the optimal solution of the whole problem will be obtained. Greedy algo-
rithms have a low computational complexity, but the domain where they can be used is restricted to the
particular problems that possess the optimality property for subproblems. It is not trivial to prove that a
particular problem possesses the optimality property for subproblems; most often, this property is proved
using the approach discussed in [2]. In greedy algorithms, constraints on the feasibility of solution can be
easily verified, which is especially important for practical problems. For example, in scheduling data
exchange via a bus with centralized control, there can be from three to seven additional constraints on the
feasibility of the schedule [16] depending on the bus controller compared with the classical problem of
finding the maximum number of compatible jobs.

Ant colony algorithms can automatically adjust themselves to the instance of the problem to be solved
in the process of their operation. To use ant colony algorithms, the problem to be solved must be reduced
to a problem of finding a route that has certain properties in a graph. In addition, as in iterative algorithms,
there is the problem of adjusting the algorithm parameters to a particular problem.

Algorithms based on finding the maximum flow in a transportation networks have a pseudopolynomial
complexity. However, the field of their application is limited to the class of problems that can be reduced
to finding the maximum flow in a transportation network. Moreover, in the design of such algorithms,
there is the problem of taking into account additional constraints on the feasibility of the solution.

The algorithms proposed in this paper, which combine greedy strategies and limited search, are based
on the following basic principles:

—at each step of the algorithm operation, a locally optimal choice according to a greedy strategy is
made;

—at each step, it is checked whether the greedy choice closes the way to the optimal solution;
—if the greedy choice closes the way to the optimal solution, then a limited search procedure is

invoked.
In Section 1, the proposed method for designing algorithms combining greedy strategies and limited

search is described, two schemes for designing such algorithms are presented, and their properties are jus-
tified. In Sections 2 and 3, respectively, the applications of this method for designing algorithms for sched-
uling data exchange via a channel with centralized control and for planning computations in data process-
ing centers are described.

1. A METHOD FOR DESIGNING ALGORITHMS COMBINING GREEDY STRATEGIES
AND A LIMITED SEARCH PROCEDURE

We will consider the method for designing algorithms combining greedy strategies and a limited search
procedure using the problem of finding the maximum number of compatible jobs as an example. In the
general case, this problem can be formulated as follows. Let a set of jobs and a set of resources on which
these jobs can be executed be given. Each job has a set of requirements for the quality of its execution. Each
resource has a set of characteristics. Moreover, a set of constraints on the feasible assignment of jobs to
resources is specified. The parameters of these constraints are the characteristics of the resources and the
requirements for the quality of the execution of jobs. It is required to assign the maximum number of jobs
to the given resources while satisfying the constraints on the feasible assignment of jobs. If we deal with a
single-machine system, then we should only find a place for each job in the execution schedule.

220

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 56 No. 2 2017

KOSTENKO

The principle of designing algorithms combining greedy strategies and a limited search procedure is as
follows. At each step, the algorithm selects a job from the set of not scheduled jobs and a place where it
can be scheduled using a greedy criterion. In the first approach to designing the algorithm, the limited
search procedure is invoked if the selected job cannot be scheduled at the next step. In the second
approach, the limited search procedure is invoked if, after the tentative scheduling of a job at the next step,
jobs that cannot be scheduled appear in the set of unscheduled jobs. For the limited search procedure, the
maximal search depth that sets the maximum number of jobs that can be involved in the search is speci-
fied.

Below, we outline the algorithms corresponding to these two approaches.

Schemee of Algorithm 1
1. According to the greedy criterion, select a job from the set of unscheduled jobs.
2. According to the greedy criterion, select a resource (a place in the schedule) for this job:
—if no such resource is found, go to Step 3;
—if such a resource is found, then assign the job to it, remove this job from the set of unscheduled jobs

and, if this set in not empty, go to Step 1; otherwise, stop the algorithm.
3. Call the limited search (or heuristic) procedure:
—if this procedure is completed successfully, then save the assignment, remove this job from the set of

unscheduled jobs and, if this set in not empty, go to Step 1; otherwise, stop the algorithm;
—if this procedure fails, then remove this job from the set of unscheduled jobs and, if this set in not

empty, go to Step 1; otherwise, stop the algorithm.

Scheme of Algorithm 2
1. According to the greedy criterion, select a job from the set of unscheduled jobs.
2. According to the greedy criterion, select a resource for this job assignment (at least one resource

always exists), make a tentative assignment, and check the optimality of the greedy choice:
—if the set of unscheduled jobs contains jobs that cannot be scheduled after scheduling the chosen job,

then cancel the tentative assignment and go to Step 3;
—if the set of unscheduled jobs contains no jobs that cannot be scheduled after scheduling the chosen

job, then remove the chosen job from this set and, if this set is not empty, go to Step 1.
3. Call the limited search (or heuristic) procedure:
—if this procedure is completed successfully, then save the assignment, remove this job from the set of

unscheduled jobs and, if this set in not empty, go to Step 1; otherwise, stop the algorithm;
—if this procedure fails, then remove the current job from the set of unscheduled jobs and, if this set in

not empty, go to Step 1; otherwise, stop the algorithm.
Consider properties of the proposed schemes of algorithms combining greedy strategies and the limited

search procedure. A function is said to be separable [22] into f1 and f2 if it can be represented in the form

.
A function is said to be decomposable [22] into f1 and f2 if it is separable into f1 and f2 and the func-

tion f1 is monotonically nondecreasing with respect to the last argument.
The optimality theorem for decomposable functions [22] claims that

.

Proposition. Ifthe objective function f(x1, x2,… xn) of the problem is decomposable into f1, f2, … fn; the
index of the function is used as the greedy criterion for the choice of the next variable (job) to be opti-
mized; the global minimum of the corresponding function is used as the greedy criterion for the choice of
the value of the variable (the place to assign the job to; and there exists a solution containing all jobs from
the initially specified set; then Algorithms 1 and 2 produce the optimal solution and the limited search
procedure will never be called.

The validity of this proposition follows from the optimality theorem for decomposable functions and
the existence of a solution containing all the jobs. Since the optimality theorem implies that all jobs can
be scheduled using the greedy strategy and there are no jobs that cannot be scheduled in the final solution,

= 1 2(,) (, ())f x y f x f y

=1 2 1 2
(,) () ()
min (, ()) min (,min ())

x y x y
f x f y f x f y

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 56 No. 2 2017

COMBINATORIAL OPTIMIZATION ALGORITHMS 221

then the check of the need to call the limited search procedure will always be negative. In other words, the
solution will be obtained using only the greedy strategy, and the complexity of obtaining the solution will
be equal to the lower bound on the computational complexity of the algorithm.

We illustrate this fact using the particular problem of finding the maximum number of compatible jobs
in a single machine system processing without interruptions the given set of jobs with individual pre-
scribed processing intervals for which the processing time of each job equals the length of its prescribed
processing interval.

The general optimization problem can be formulated as follows:

The parameters of the problem are the set of jobs that must be executed in the system; here

Ngiven is the number of the given jobs; the set processing times of the jobs , the set of prescribed

processing intervals such that .
The schedule of the job processing is an ordered (by the starting time of the job processing) set

. Here k is the ordinal number of the job j in the schedule, is the starting time

of the job j processing in the schedule , and is the completion time of processing the job j.
The set of feasible schedules is defined by the following set of constraints:

The constraints g1, g2, and g3 imply, respectively, that
(1) the interval of each job processing is within its prescribed processing interval;
(2) no interruptions of processing are allowed;
(3) the processing intervals of jobs do not overlap.
A solution of the problem is defined as a feasible job processing schedule containing the maximum

number of jobs from the given set :

In scheduling theory, this problem is known as the problem of finding the maximum number of com-
patible jobs; it is known to be NP-hard.

The particular problem of the general optimization problem of the maximum number of compatible
jobs for which the processing time of each job is equal to the length of its prescribed processing interval
has the same parameters and solution but has additional constraints on the relations between the process-
ing time of the jobs and their prescribed processing intervals: .

Suppose that the right endpoint of the job’s prescribed processing interval (deadline) is used as the
greedy criterion of the job choice, and let the greedy rule of scheduling the next job be to put it at the end
of the list of jobs scheduled at the preceding steps. In the algorithm designed according to scheme 1, each
job will always be scheduled. This follows from the fact the there exists a solution containing all jobs from
the given set and from the constraint on the feasible values of the problem parameters ().
These conditions imply that the jobs’ prescribed processing intervals do not overlap. Therefore, the lim-
ited search procedure will never be called in the solution of this particular problem.

In the algorithm designed according to scheme 2 with the same greedy criteria, the limited search pro-
cedure will never be called because after the tentative scheduling of a job, each job in the remaining set can
be scheduled. This is implied by the fact that the jobs’ prescribed processing intervals do not overlap.

Scheme 1 has a lower computational complexity for the problems in which the majority of jobs can be
optimally scheduled using the greedy criterion. If the greedy criteria used in an algorithm designed for the
particular problem make it possible to obtain the optimal solution, then the computational complexity of
this algorithm applied for the particular problem is equal to the computational complexity of the algorithm
based on scheme 2. If the greedy criteria are badly suitable for the particular problem, then the accuracy

{ } == given

1
N
jJ j

{ } => given

10 N
j j

t

{ } =
given

1[,) N
j j j

s f ∀ − ≥: j j jj f s t

{ }
=

= ∈
1

*, ,
HN

k j
k

H j s j J *js

H = +* *j j jf s t
' *H

()
()

()

∀ ∈ ⇒ ≥ ∧ ≤

∀ ∈ ⇒ − =

∀ ∈ ≠ ⇒ < ∨ ≥ ∧ ≤ ∨ >

1

2

3

* *: () () () ,

* *: () ,

* * * * * * * *: ((,) ,) (() ()) (() ()) .

j j j j

j j j

j l j l j l j l

g j H s s f f

g j H f s t

g j l H j l s s s f f s f f

{ } == given

1
N
jJ j

∈ * '
.max

H H
H

∀ = −: j j jj t f s

∀ = −: j j jj t f s

222

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 56 No. 2 2017

KOSTENKO

of the algorithm designed according to scheme 1 will be lower than that of the algorithm designed accord-
ing to scheme 2.

2. APPLICATION OF THE PROPOSED APPROACH FOR DESIGNING COMPUTATION
SCHEDULING ALGORITHMS

In this section, we consider algorithms designed according to scheme 1 for resource distribution in data
processing centers [23, 24] and an algorithm designed according to scheme 2 for scheduling data
exchanges via a bus with centralized control [25].

2.1. An Algorithm for Scheduling Data Exchanges via a Bus with Centralized Control
Suppose that a limited set of terminal devices are connected to a bus; these devices are sources or

receivers of data passed through the bus. One of these devices is the bus controller that controls the data
exchange according to a preliminarily established schedule and controls the states of the other terminal
devices. These terminal devices only execute the commands sent to them by the controller. The data
exchange is performed asynchronously by the command–response principle. The data are transmitted in
the form of messages that can consist of command words, data words, and response words [26].

The problem of designing the data exchange via a bus with centralized control can be considered as a
problem of finding the maximum number of compatible jobs for a single-machine system that executes a
given set of jobs with individually prescribed processing intervals without interruptions (see Section 2); it
is assumed that in this problem, in addition to the constraints g1, g2, and g3, the following constraints are
imposed on the feasibility of the schedule:

—g4: the number of jobs in every chain does not exceed a prescribed value;
—g5: the total processing time of all the jobs in every chain does not exceed the prescribed value;
—g6: the time interval between the adjacent chains must be not shorter than the prescribed value.
These constraints are due to the features of the bus controller implementation. A chain of jobs is a

sequence of jobs that continuously follow each other; i.e., .

The data exchange scheduling algorithm [25] is designed according to scheme 2. As the greedy crite-

rion for selecting the next job from the list of still unscheduled jobs, we use , which is the ear-
liest possible job completion time. At each step, the optimality of the greedy choice is checked. It consists
of a tentative scheduling of the next job in the list and then checking that no jobs that cannot be scheduled
appear in the list of remaining jobs.

At each step of the algorithm, the selected job is scheduled without violating the schedule feasibility
and the nearest bus cycle beginning at which the next job can be executed is calculated. The nearest bus
cycle is found taking into account the additional constraints on the schedule feasibility and on the execu-
tion time of the scheduled job. Next, the prescribed processing intervals of the unscheduled jobs are
updated, and, at the next step, a job is chosen according to the greedy criterion.

The limited search procedure forms a list of jobs whose prescribed processing intervals overlap with the
processing interval of the job considered at the current step of the algorithm. The size of this list is a
parameter of the algorithm—it determines the search depth. The search algorithm produces a set of com-
patible jobs of the maximum length. If there are more than one such sets, the one with the earliest bus
release time is chosen, and the first job in this set is scheduled at the current step.

The selection of a job J with the minimum possible completion time makes it possible to avoid the
search when the additional constraints are checked. Indeed, if the job selected according
to this rule violates these constraints, then the set of unscheduled jobs cannot contain a job that can be
scheduled without violating these constraints.

It turned out that, for the particular data exchange scheduling problems for on board aviation systems,
more than 90% of all jobs are scheduled using the greedy criterion, i.e., no limited search procedure is
called for them. For these problems, the complexity of the algorithm is on average 10% of the upper bound
on the complexity of the algorithm. The upper bound on the complexity of the algorithm is

, where is the complexity of the limited search of depth L. In [25], various algo-
rithms for such a search were proposed and investigated. If the processing time of every job in the given
set equals the length of its prescribed processing interval, then the algorithm produces an exact schedule.

){ }
=

⎡=
⎣ 0

* *, ,
k

i i
i

TaskChain s f −= = 1* *1, : i ii k s f

= +'i i if s t

∈{ , (4,5,6)}ig i

+2(())j jO N N F L ()F L

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 56 No. 2 2017

COMBINATORIAL OPTIMIZATION ALGORITHMS 223

2.2. Resource Distribution Algorithms in Data Processing Centers

We consider data processing centers (DCs) providing Infrastructure-as-a-Service (IaaS). The task of
scheduling computations in a DC is to map requests for creating virtual machines and virtual data storage
systems connected by virtual data exchange channels to computing servers and data storage servers and in
designing routes for the virtual data exchange in the data exchange network of the DC. If the DC operates
in the IaaS mode, the customer and the service provider should be able to set a Service Level Agreement
(SLA) for all types of resources—data storage systems, computing, and network resources. The computing
resources, data storage systems, and network resources should be considered as allocatable resources and
they should be allocated consistently in the sense of satisfying the service level agreement. The resulting
mappings of the virtual resources to the DC physical resources must meet the service level agreement.
Below we will use the mathematical statement of the problem described in [23].

The model of the DC physical resources is described by the labeled graph , where
Р is the set of computing nodes, М is the set of data storages, K is the set of commutation elements of the
DC communication network, and L is the set of physical data transmission channels. On the sets P, M, K,
and L, vector functions of a scalar argument that determine, respectively, the characteristics of the com-
puting nodes, data storages, commutation elements, and data transmission channels are defined. In what
follows, they are called the labeling functions of the graph H. For example, for a computing node, the
number of cores and the amount of main and disk memory can be specified.

Every resource request is described by a labeled graph , where W is the set of virtual
machines, S is the set of virtual data storage systems (storage elements), and E is the set of virtual data
transmission channels. On the sets W, S, and E, vector functions of a scalar argument specifying the char-
acteristics of the requested virtual element (the required quality of service) are defined.

By the resource request assignment, we mean the mapping

.

There are three types of relations between the request characteristics and the corresponding physical
resource characteristics. We denote by x the characteristics of a request element and by y the correspond-
ing characteristic of the physical resource. Then, these relations can be written as follows.

1. The physical resource capacity must not be overloaded:

;

here Rj is the set of requests assigned to the physical resource j.
2. The types of the physical and virtual resources must match: x = y.

3. The physical resource must have the requested characteristics: .
A mapping A is called correct if relations 1–3 hold for all physical resources and all their characteristics.
The residual graph of available resources Hres is defined as the graph H in which the values of the func-

tions are redefined such that they satisfy relation 1. The value of each characteristic of the physical
resource is decreased by the sum of the values of the corresponding characteristic of the virtual resources
mapped to this physical resource.

The input of the algorithm is the residual graph of available resources Hres and the set of resource
requests {Gi}. The set {Gi}, in addition to the newly arrived requests, may include running virtual resources
that are allowed to migrate. If {Gi} contains virtual resources, then, for the elements of the graph Hres asso-
ciated with virtual resources, the values of the labeling functions of H are redefined (increased) for the
characteristics that must satisfy relation 1.

It is required to satisfy the maximum number of requests from the set {Gi} such that the mappings
 are correct. The virtual resources associated with the physical ones and included

in the set {Gi} must not be removed.

The output of the algorithm is a set of mappings of the resource requests to physical resources
 and a set of replications , of storage elements.

= ∪ ∪(,)H P M K L

= ∪(,)G W S E

→ = → → →: { , , { , }}A G H W P S M E K L

∈

≤∑
j

i j

i R

x y

≤х y

→ ={ : , 1, }i iA G H i n

→ ={ : , 1, }i iA G H i n = …{ }, 0,1,iR i

224

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 56 No. 2 2017

KOSTENKO

The most complete survey of the available algorithms for scheduling computations in DCs can be
found in [27]. In practice, greedy algorithms are mainly used because they have low computational com-
plexity. A drawback of the greedy algorithms is that their accuracy can be significantly different on differ-
ent particular problems. In [23, 24], DC scheduling algorithms based on a combination of greedy strate-
gies and limited search were proposed. They are designed according to scheme 1 described above, and
they allow one to specify a balance between the computational complexity and the algorithm accuracy. In
[24], an algorithm with the sequential scheduling of requests was proposed (according to a greedy crite-
rion, a request to be scheduled is chosen, and then physical resources are allocated to all its elements).
This algorithm ensures a compact mapping of requests to the DC physical resources with respect to the
total length of the routes for the request’s virtual channels. In [23], an algorithm with the sequential con-
sistent scheduling of different types of resources was proposed (first, the virtual machines of all requests
are mapped to physical resources, then the storage elements are mapped, and finally routes for the virtual
channels are constructed). This algorithm is more accurate than the first algorithm in the case when the
critical resources are computing servers and data storage servers.

This algorithm involves three steps.
Step 1. Mapping the virtual machines to the computing servers.
Step 2. Mapping the virtual data storage systems of the data storage servers.
Step 3. Constructing virtual channel routes in the DC data exchange network for the mappings of vir-

tual machines and virtual data storage systems to physical resources.
The outline of the procedure of executing Steps 1 and 2 is as follows (see [23]).

1. Select the next request Gi from the set of resource requests {Gi} using the greedy criterion .

2. Select the next element e (a virtual machine or a storage element)
using the greedy criterion .

3. Form the set of physical resources Ph (or , respectively) to which the selected ele-
ment e can be mapped, i.e., the set of resources for which the mapping of e to them is correct.

3.1. If the set Ph is empty, then call the limited search procedure. If the procedure fails (returns false),
then the request Gi cannot be mapped. Remove the earlier mapped elements of Gi and redefine the values
of the physical resource characteristics, which must satisfy relation 1. If the set {Gi} is not empty, then go
to Step 1; otherwise, stop the algorithm.

3.2. If the set Ph is not empty, then select a physical element for mapping using the greedy cri-
terion , map the request element e to the physical element , and redefine the values of its character-
istic. If there are unmapped elements of the request, then go to Step 2. If the set {Gi} is not empty, then go
to Step 1; otherwise, stop the algorithm.

The principle of the limited search procedure is illustrated in the figure.

GK

∈ ∈()ie W W G ∈ ∈, ie S S G

eK

⊆hP P ⊆hP M

∈h hp P

phK hp

Example of an execution of a limited search procedure.

4

3

5

2

3

5

2

4

4

1
1

R1 R2 R3

5
n = 2 (R1, R2)
R1: 5, 5
R2: 3, 3, 4
R3: 4, 4, 1

n = 3 (R1,R2, R3)
R1: 5, 5
R2: 3, 3, 4
R3: 4, 1, 5

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 56 No. 2 2017

COMBINATORIAL OPTIMIZATION ALGORITHMS 225

The search depth is limited by the given number n that sets the maximum number of physical elements
among which reassignment (remapping) may be made (e.g., for n = 2, the mapped elements can be
removed and remapped not more than from two physical servers). The left part of the figure illustrates the
situation in which a virtual machine requesting four cores cannot be mapped to any of the physical servers
even though the total number of free cores is sufficient for mapping. The virtual machines mapped to the
servers R1, R2, and R3 are shaded, and the number of occupied cores is shown; the unshaded box shows
the number of free cores on each server. If we remap the virtual machines assigned to the servers R1 and
R2, the fragmentation is decreased, and the virtual machine can be mapped; i.e., in this case, the search
depth n = 2 is sufficient. The right part of the figure illustrates the situation in which the virtual machine
requests five cores. In this case, the virtual machine cannot be mapped if the search depth is two. How-
ever, if the search depth is n = 3, then the virtual machine can be assigned. Therefore, the accuracy can be
improved by increasing the search depth; however, the computational complexity of the algorithm also
increases. For a particular problem, the computational complexity of the algorithm can be reduced by
choosing appropriate greedy criteria , , and , which reduces the number of calls of the limited
search procedure.

CONCLUSIONS
The proposed method for designing algorithms that combine greedy strategies and a limited search

procedure makes it possible to specify the balance between the computational complexity and the algo-
rithm accuracy by choosing the maximal allowed depth of the search. The method can be fine-tuned for
a particular problem by choosing the appropriate greedy criteria. The use of the proposed method for
designing algorithms for scheduling computations in real-time systems and data processing centers
showed that, for the majority of problems, more than 90% of all jobs are scheduled using the greedy cri-
terion; i.e., no limited search procedure is called for them; for these algorithms, the run time insignifi-
cantly exceeds the run time of the corresponding greedy algorithm, but they can find an optimal solution
more often than purely greedy algorithms.

ACKNOWLEDGMENTS
This work was supported by the Russian Foundation for Basic Research, project no. 16-07-01237.

REFERENCES
1. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Series

of Books in the Mathematical Sciences (W. H. Freeman, New York, 1979).
2. T. Cormen, Ch. Leiserson, and R. Rivest, Introduction to Algorithms (MIT, Cambridge, MA, 2001).
3. M. Minoux, Programmation mathématique: Théorie et algorithmes (Tec & Doc Lavoisier, 2007; Nauka, Moscow,

1990) [in French].
4. R. Bellman, Dynamic Programming (Princeton Univ. Press, Princeton, NJ, 1957).
5. Computer and Job-Shop Scheduling Theory, Ed. by E. G. Coffman (Wiley, New York, 1976; Nauka, Moscow,

1984).
6. V. A. Kostenko, “Scheduling algorithms for real-time computing systems admitting simulation models,” Pro-

gram. Comput. Software 39, 255–267 (2013).
7. L. A. Rastrigin, Statistical Search Methods (Nauka, Moscow, 1968) [in Russian].
8. A. V. Kalashnikov and V. A. Kostenko, “A parallel algorithm of simulated annealing for multiprocessor sched-

uling,” J. Comput. Syst. Sci. Int. 47, 455 (2008).
9. D. A. Zorin and V. A. Kostenko, “Algorithm for synthesis of real-time systems under reliability constraints,”

J. Comput. Syst. Sci. Int. 51, 410 (2012).
10. J. N. Holland, Adaptation in Natural and Artificial Systems (Univ. of Michigan Press, Ann Arbor, Michigan,

1975).
11. Yu. A. Skobtsov, Fundamentals of Evolutional Computations (Donetsk. Nath. Tech. Univ., Donetsk, 2008)

[in Russian].
12. D. I. Batishchev, E. D. Gudman, I. P. Norenkov, and M. Kh. Prilutskii, “Combining heuristics method for solv-

ing combinatorial problems of resouce ordering and allocation,” Inform. Tekhnol., No. 2, 29–32 (1997).
13. M. Dorigo, “Optimization, learning and natural algorithms,” PhD Thesis (Politech. di Milano, Milano, 1992).

GK eK phK

226

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 56 No. 2 2017

KOSTENKO

14. V. A. Kostenko and A. V. Plakunov, “An algorithm for constructing single machine schedules Based on ant col-
ony approach,” J. Comput. Syst. Sci. Int. 52, 928 (2013).

15. S. D. Shtovba, “Ant algorithms: theory and application,” Programmirovanie, No. 4, 1–15 (2005).
16. C. Blum and M. Sampels, “Ant colony optimization for FOP shop scheduling: a case study on different phero-

mone representation,” in Proceedings of the Congress on Evolutionary Computation (IEEE Comput. Soc. Press,
Los Alamitos, CA, 2002), Vol. 2, pp. 1558–1563.

17. A. Federgruen and H. Groenevelt, “Preemptive scheduling of uniform machines by ordinary network f low tech-
nique,” Manage. Sci. 32 (3) (1986).

18. T. Gonzales and S. Sanhi, “Preemptive scheduling of uniform processor systems,” Assoc. Comput. Machin. 25
(1) (1978).

19. D. S. Guz and M. G. Furugyan, “Computation scheduling in multiprocessor real-time automatic control sys-
tems with constrained processor memory,” Autom. Remote Control 66, 295 (2005).

20. E. O. Kosorukov and M. G. Furugyan, “Some algorithms for resource allocation in multiprocessor systems,”
Moscow Univ. Comput. Math. Cybernet. 33, 202 (2009).

21. V. A. Kostenko and A. V. Frolov, “Self-learning genetic algorithm,” J. Comput. Syst. Sci. Int. 54, 525 (2015).
22. N. M. Novikova, Principles of Optimization, Course of Lectures (Mosk. Gos. Univ., Moscow, 1998) [in Russian].
23. P. M. Vdovin and V. A. Kostenko, “Algorithm for resource allocation in data centers with independent sched-

ulers for different types of resources,” J. Comput. Syst. Sci. Int. 53, 854 (2014).
24. I. A. Zotov and V. A. Kostenko, “Resource allocation algorithm in data centers with a unified scheduler for dif-

ferent types of resources,” J. Comput. Syst. Sci. Int. 54, 59 (2015).
25. V. A. Kostenko and E. S. Gur’yanov, “An algorithm for scheduling exchanges over a bus with centralized control

and an analysis of its efficiency,” Program. Comput. Sci. 31, 340–346 (2005).
26. GOST (State Standard) 26765.52-87: Main serial interface of electronic modules system.
27. Jiangtao Zhang, Hejiao Huang, and Xuan Wang, “Resource provision algorithms in cloud computing: A sur-

vey,” Network Comput. Appl. C 64, 23–42 (2016).

Translated by A. Klimontovich

