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NONLINEAR OPTICS

New Mechanism of Solitons Formation at Diffraction
on a Periodic Inhomogeneity Induced in a Cubic Nonlinear Medium
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Abstract—Formation of solitons during the propagation of the initial Gaussian pulse in a Kerr medium
and its diffraction on the induced periodic layer structure are described using the computer simulation.
Dependence of the characteristics and the number of the resulting solitons on the parameters of the
structure is demonstrated.
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1. INTRODUCTION

In the last years propagation of optical signals in
photonic crystals has been extensively studied [1−8].
A photonic crystal is a medium with a periodically
changing refractive index and a typical scale of the or-
der of the wavelength [1]. This gives rise to a photonic
bandgap. Varying the characteristics of the periodic
inhomogeneity, one can control propagation of light
in these structures. Specifically, in photonic crystals
it was experimentally found that discrete multicol-
ored solitons can be formed in periodic structures
[9]. Periodic structures also allow propagation of a
train of one-dimensional solitons near the first Bloch
band [10]. In [11, 12] the authors proposed a new
approach that led to formation of high-intensity fil-
aments in periodic lattices due to regularization of
the nonlinear self-action mechanism by the lattice-
induced diffraction.

It is well known that in a cubic nonlinear medium
the Gaussian pulse undergoes self-focusing due to
self-action. However, it propagates with periodic os-
cillations [13] and does not evolve into solitons whose
properties are well studied [14−19].

In this work we investigate propagation of opti-
cal signals in a cubic nonlinear medium in which a
periodic inhomogeneity is induced, for example, by
a laser beam. This inhomogeneity occupies a rela-
tively small part of the medium, but conditions for
propagation of solitons in it differ from those in the
surrounding nonlinear medium. Due to bandgaps,
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there can be situations where the pulse fails to pass
through this induced photonic crystal as a whole. An
expectable result is its splitting into several pulses
propagating with different velocities, and their shape
will be similar to that of a soliton due to the self-action
mechanisms.

2. FORMULATION OF THE PROBLEM

In this work splitting of a pulse into several soli-
tons as it moves through a periodic inhomogeneity
in a cubic nonlinear medium is investigated using
mathematical simulation.

The complex amplitude A of an optical pulse prop-
agating along the z coordinate within time t was
described by the dimensionless equation

ε
∂A

∂t
+ iD

∂2A

∂z2
+ iβεA + iα|A2|A = 0, (1)

where ε is the permittivity, D = 1/4πχ is the disper-
sion coefficient, β = πχ, χ is the ratio of the optical
wave frequency to the periodic structure frequency,
and α is the cubic nonlinearity coefficient. Zero
boundary conditions were used. The width of the
calculated region was chosen such that the field near
the boundaries was close to zero during calculations.
At the initial moment of time the pulse was given in
the Gaussian form:

A(t = 0) = exp
[
−(z − z0)2

a2
z

+ i2πχ(z − z0)
]
, (2)

where z0 is the pulse center coordinate and az is the
pulse width. This pulse propagated rightward over
the calculated region, and its intensity was subject
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Fig. 1. Dependence of the permittivity on the z
coordinate.

to oscillation due to self-action [13]. The nonlinearity
coefficient α was constant in the entire medium. The
permittivity varied in the following way (Fig. 1): it
was equal to ε0 over the entire nonlinear medium
except the grating that began with the zgr coordi-
nate and consisted of N layers with ε = ε1 of length
l1 alternating with layers ε = ε0 of length l0. The
pulse approached the grating, passed through it, and
propagated further. However, due to the bandgaps,
the pulse shape changed. On leaving the grating,
the pulse was divided into several solitons that moved
with different velocities.

3. NUMERICAL SIMULATION
OF THE SOLITON SPLITTING

ON THE PERIODIC INHOMOGENEITY

To analyze soliton propagation, numerical simu-
lation of Eq. (1) was performed with different param-
eters. Its results with the parameters χ = 1, α = 10,
az = 1, z0 = 80, zgr = 100, N = 5, l0 = l1 = 1, ε0 = 1,
and ε1 = 1.01 are shown in Fig. 2: (a) the initial pulse,
(b) the moment of passing through the photonic crys-
tal, (c) after passing through the grating, the pulse
begins to split, (d) the pulse is divided into several
solitons moving with different velocities. The solitons
are labeled with Roman numerals I, II, III, and IV. It is
seen that even a small number of layers (N = 5) and a
small difference in values ε leads to the pulse splitting,
which begins in the grating and ends in the nonlinear
medium with constant ε.

As is known [14], solitons in a cubic nonlinear
medium have the form

A(z) =
A0 exp(ivz)
cosh(z/l)

, (3)

where A0, l, and v, respectively, are the soliton am-
plitude, length, and velocity. The correspondence of

the arising solitons with the solution (3) was analyzed
using the integral metric

M =

∫ ∣∣|Acalc|2 − |Aanal|2
∣∣ dz∫

|Acalc|2 dz

, (4)

where Acalc is the numerical solution and Aanal is the
analytic solution (3) with the amplitude and length
corresponding to the numerical solution. At M = 0,
the form of the numerical solution coincides with
the soliton form. Since after the passing through the
grating there are several solitons at each moment of
time, integration was performed not over the entire z
but in the vicinity of the soliton maximum, two its
half-widths away. For each of the solitons shown
in Fig. 2(d), the values of metric (4) were MI =
5.012×10−3, MII = 4.373×10−3, MIII = 6.448×10−3,
and MIV = 5.254×10−3. If we compare the Gaussian
shape of form (2) using this metrics on the same
interval, its value will be M ≈ 0.06. Consequently,
though the pulses formed after the passage through
the induced grating are not exact cubic solitons
of form (3), they are an order of magnitude closer
to it than the Gaussian pulse with the coinciding
amplitude and width.

Apart from the shape of the arising solitons, their
phase was analyzed. As is evident from (3), the
soliton phase linearly depends on the z coordinate.
To a first approximation, the phase of the calculated
solitons agrees to that, as is seen in Fig. 2. However,
a more detailed analysis reveals some phase devia-
tions. A derivative of the phase with respect to the
z coordinate was taken. It turned out that the instan-
taneous velocity at the center of a soliton differs from
the velocity at its periphery. For the first soliton, the
velocity at the center was vm = 5.91, two half-widths
away to the right it was vr = 5.07, and two half-widths
away to the left it was vl = 6.77. This means that the
right part of the soliton moves slower than its left part,
and the soliton broadens. The velocity analysis of the
other solitons shows that the second and the fourth
solitons also broaden while the third one narrows. It
is seen in Fig. 2(e) that the trajectories of the solitons
are not continuous but rather consist of a series of
maxima and minima, that is, solitons oscillate. This
means that the form of the arising solitons does not
completely coincide with the solution (3).

A series of numerical experiments was performed
with different values of the inhomogeneity ε1. The
number of the arising solitons and their velocities
were investigated. To find the velocities of the pulses,
the derivative of the phase with respect to the z coor-
dinate was averaged for each soliton in proportion to
the intensity:
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Fig. 2. Intensity and phase profiles of the pulse at χ = 1, α = 10, az = 1, z0 = 80, zgr = 100, N = 5, l0 = l1 = 1, ε0 = 1, ε1 = 1.01,
T = 0 (a), 20 (b), 30 (c), and 100 (d) and the pulse amplitude distribution (e). Roman numerals designate the arising solitons.

Fig. 3. Velocities of the arising solitons as a function of the inhomogeneity ε1 at χ = 1, α = 10, az = 1, z0 = 80, zgr = 100, N = 5,
l0 = l1 = 1, and ε0 = 1. The number of layers is N = 1 (◦) and 5 (Δ). Roman numerals correspond to the solitons as in Fig. 2.
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v =

∫
(∂ϕ/∂z)|A|2dz∫

|A|2dz

, (5)

and the integration was performed within two half-
widths from the maximum of the soliton.

Figure 3 shows velocities as a function of the in-
homogeneity ε1. The data are for the single inhomo-
geneity N = 1 and the periodic grating of N = 5 layers.
The velocity of the initial beam is v0 = 2πχ≈ 6.3.
When ε1 is not very different from ε0 = 1, the veloc-
ities of the arising solitons are close to v0, though
slightly different. Some solitons are faster than the
initial pulse, and some are slower. Because of this,
the solitons diverge from one another by a certain
distance with time. The number of solitons increases
with ε1 and their velocities become more and more
different. At a certain ε1 a soliton with a negative
velocity arises, which corresponds to reflection from
the grating.

The results can be experimentally verified. It is
reasonable to use a pulsed laser, e.g., an ytterbium
laser with a wavelength of 1064 nm, for producing the
initial pulse. This laser is capable of generating pulses
with the duration T0 ≈ 100 fs and the peak power den-
sity up to P0 ≈ 1 TW cm−2, which is enough for effec-
tive nonlinear action in various media. A reasonable
choice for the nonlinear medium is quartz glass with
its dispersion coefficient D≈ 200 fs2 cm−1 and dis-
persion length Ld = T 2

0 /D≈ 50 cm. The coefficient
of nonlinearity in quartz is γ ≈ 2 cm TW−1, and the
nonlinear length is Lnl = 1/γP0 ≈ 0.5 cm. The ratio of
these lengths is Ld/Lnl ≈ 100. In our numerical cal-
culation, the dimensionless nonlinear and dispersion
lengths are, respectively, Lnl ≈ 0.1 and Ld ≈ 12.5.
Their ratio is Ld/Lnl ≈ 125, which agrees with the
proposed experiment.

4. CONCLUSIONS

It is shown with computer simulation that con-
ditions for propagation of a self-focusing Gaussian
pulse in a cubic nonlinear medium are violated in a
periodic inhomogeneity. As a result, the pulse is di-
vided into several solitons propagating with different
velocities. It is found that the velocities of the arising
solitons depend on the value of the inhomogeneity.
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