
GAIT RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORKS

A. Sokolovaa, A.Konushina, b

a National Research University Higher School of Economics, Moscow, Russia - ale4kasokolova@gmail.com, akonushin@hse.ru
b Lomonosov Moscow State University, Moscow, Russia anton.konushin@graphics.cs.msu.ru

Commission II, WG II/10

KEY WORDS: Gait Recognition, Biometrics, Convolutional Neural Networks, Optical Flow

ABSTRACT:

In this work we investigate the problem of people recognition by their gait. For this task, we implement deep learning approach using
the optical flow as the main source of motion information and combine neural feature extraction with the additional embedding of
descriptors for representation improvement. In order to find the best heuristics, we compare several deep neural network architectures,
learning and classification strategies. The experiments were made on two popular datasets for gait recognition, so we investigate their
advantages and disadvantages and the transferability of considered methods.

1. INTRODUCTION

Gait recognition has always been a challenging problem. It is
shown in medical and physiological studies that human gait is a
unique identifier. Unlike other biometrical indices such as finger-
prints, face, or iris recognition, it has a very important advantage:
it can be measured at a large distance without any interaction with
the human. This feature makes gait recognition applicable to in-
telligent video surveillance problems used, for example, in the
security field. However, there are many factors affecting gait per-
formance such as viewpoints, various carrying conditions, cloth-
ing, physical and medical conditions, etc. Due to these factors,
gait recognition became a difficult problem of computer vision.

Formally the problem statement is similar to face or fingerprint
recognition, but as the input, we use video sequences where per-
son’s full height walk is recorded. This problem can also be con-
sidered as action recognition, but actually, the human walking
styles are usually much closer to each other than different ac-
tivities that are included in popular datasets. It is worth noting
that unlike many other problems of computer vision this one is
difficult even for a human because the walking styles of people
often look very similar to each other and the difference is hardly
noticed.

The main goal of this work is not only to construct a classifier
that can solve the problem for certain set of people but to build a
feature extractor to be able to recognize new people not included
in the initial dataset. In addition, since all the datasets available
for gait recognition are not very large, the problem of transfer
learning becomes really important.

Most of the approaches to gait recognition proposed in recent
years are based on a model of motion using silhouette masks or
pose estimations. Unlike these methods, we extract gait features
from motion itself training convolutional neural network (CNN).
CNN models are very successful in many computer vision prob-
lems, but their first application to gait recognition was made not
long ago in (Castro et al., 2016). And we are going to push the
performance further.

Note that most of the characteristics of appearance (such as the
color or contrast) do not influence the gait properties, only the

movements of human body points matter. So, we suppose that
optical flow contains all the information about motion needed for
gait recognition and therefore we use only the maps of optical
flow to solve this problem.

2. RELATED WORK

The overwhelming majority of the state-of-the-art approaches to
gait recognition are based on hand-crafted features of body mo-
tion: pose estimations or just silhouettes. One of the most pop-
ular descriptors based on silhouette is Gait Energy Image (GEI)
(Han and Bhanu, 2006), the average image of the binary silhou-
ette masks of the subject over the gait cycle. After the GEI was in-
vented many authors began proposing computation various pop-
ular descriptors from these images, for example, HOG descriptor
in (Liu et al., 2012). In (Chen and Liu, 2014) the modification of
GEI is proposed – frame difference energy image (FDEI). Instead
of averaging all normalized silhouettes over the gait cycle, they
take the difference between every pair of consecutive frames and
combine it with ”denoised” GEI. Due to their report, such mod-
ification improves the metrics of quality. Zheng in (Zheng et al.,
2011) applies a special feature selection algorithm called Partial
Least Square regression to GEI in order to learn optimal vectors
representing gait. One more approach is based on the inner model
of gait computed using various measurements of human body and
motion. (Yang et al., 2016) proposes to measure relative distances
between joints, their mean and standard deviation, make a feature
selection and then train a classifier based on selected descriptors.

Another approach to gait recognition is based on deep learning
and does not use any handcrafted features. All features are trained
inside the neural network on their own. Convolutional neural net-
works are now very popular in different problems concerned with
video recognition and achieve the highest results. In (Simonyan
and Zisserman, 2014) it is proposed to construct a two-stream
convolutional neural network for action recognition. The first
stream, similarly to many other approaches, is fed by distinct
frames to get the spatial presentation of video, and the second
stream gets blocks of optical flow maps as input and extracts the
temporal information from the video. A lot of researchers con-
tinue the investigation of such multistream approach and consider

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W4, 2017 
2nd International ISPRS Workshop on PSBB, 15–17 May 2017, Moscow, Russia

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W4-207-2017 207



different methods of stream fusion and feature extraction. For
example, in (Feichtenhofer et al., 2016) authors propose various
functions for stream fusion and locations of fusing layers in net
architecture. Ng in (Ng et al., 2015) uses blocks of raw frames
as well as optical flow maps and deals with them as equals. Ad-
ditionally to common feature pooling recurrent neural network
is proposed to aggregate gait descriptors. Unlike all these meth-
ods (Wang et al., 2015) proposes to get temporal information not
from the optical flow, but from the trajectories computed from
the video. Combining these trajectories with spatial features ex-
tracted from neural network gives enough information for gait
recognition.

Our approach is based on the idea from (Simonyan and Zisser-
man, 2014). As the appearance is not important in the gait recog-
nition problem we get rid of the spatial stream and investigate
only temporal one.

3. PROPOSED METHOD

Let us describe the approach we use to classify the gait video
sequence. As we have already mentioned it is based on CNN
that is used to compute motion features of gait. The algorithm
consists of three main parts:

1. Preparing the data to be used as input to neural network;

2. Extracting neural features;

3. Classification of found features.

Let us observe these three steps in details.

3.1 Preparing the input data

Since the appearance (color, brightness, etc.) is not important
when we consider the gait, we use the maps of optical flow for
human classification. In order to use not only instantaneous but
continuous motion, we concatenate several consecutive maps of
optical flow and use such blocks as network input. Specifically,
we cut a square containing the human figure from the whole op-
tical flow block and feed the network with it. Let {It}Tt=1 be the
video sequence such that there is a human figure on each frame.
Firstly we compute the sequence of optical flow (OF) maps for
every consecutive pair of frames: {(FV

t , FG
t )}T−1

t=1 , where FV
t

and FG
t are vertical and horizontal components of the optical flow

between It and It+1 frames, respectively. We then decrease the
resolution of the maps to 88× 66 not to make the network input
too large and make a linear transformation of all maps, all the
values of OF to lie in the interval [0, 255] similarly to common
RGB frames.

In addition we find the bounding boxes {Bt}Tt=1 containing the
figure for every frame. It is convenient to encode each box by
the coordinates of its upper left and lower right vertices Bt =
(xl

t, y
u
t , x

r
t , y

l
t). Having the bounding box for each frame we

construct the outer box that contains all the boxes in block in-
side. So, for block that will consist of the OF maps for frames
Ik, Ik+1, . . . , In, the box coordinates are xl = mint=k,...,n (xl

t),
yu = mint=k,...,n (yu

t ), xr = maxt=k,...,n (xr
t ),

yl = maxt=k,...,n (yl
t).

These two computational steps are made beforehand. Immedi-
ately before putting the data into the network the certain number

Figure 1. Input block. The square box cropped from 10
consecutive frames of horizontal (the first and the second rows)
and vertical (the third and the fourth rows) components of OF

maps linearly transformed to the interval [0, 255].

L of consecutive horizontal and vertical components of OF maps
are concatenated to one block and the square 60× 60 containing
the outer bounding box is cropped from the block. So, we get a
block of size 60× 60× 2L.

We considered various values of L and arrangement of the blocks
but the best results were received having L = 10 and 5 frame
overlap of the blocks. So, k-th block consists of the maps
{(FV

t , FG
t )}5k+5

t=5k−4, k > 1. An example of the frames in one
cropped block is shown in Figure 1.

3.2 Extracting neural features

We consider few architectures of convolutional neural networks
and compare them. Before describing these architectures let us
explain the training and testing process. During the training pro-
cess, we construct the blocks by random cropping a square con-
taining the bounding box of the figure. If both sides of the box are
less than 60 pixels we uniformly choose the left and upper sides
(x and y, respectively) of the square so that x is between the left
border of the frame and the left side of the box and x+ 60 is be-
tween the right side of the box and the right border of the frame.
The upper bound y of the square is chosen similarly. If any of the
box sides is greater than 60 pixels we crop the square with the
side equal to the maximum of height and width of the box and
then resize it to 60. In addition, we flip all frames of the block
simultaneously with probability 50% to get the mirror sequence.
These two transformations help us to increase the amount of the
training data and to reduce the overfitting of the model. Besides,
before inputting the blocks into the net we subtract the mean val-
ues of horizontal and vertical components of optical flow over all
training dataset.

When the net is trained it is used as a feature extractor. We re-
move its dense layers and use the outputs of the last convolutional
layers as gait descriptors. To get the descriptor corresponding to
certain block we do not flip any frames and make a crop choosing
the mean values of the domains of left and upper bounds.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W4, 2017 
2nd International ISPRS Workshop on PSBB, 15–17 May 2017, Moscow, Russia

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W4-207-2017

 
208



CNN architectures and training methods

Several CNN architectures were considered. We started from
the architecture used in (Castro et al., 2016) that is based on
the CNN-M architecture from (Chatfield et al., 2014) and used
model based on this architecture as a baseline. The only modi-
fication we made is using Batch Normalization layer (Ioffe and
Szegedy, 2015) instead of Local Response Normalization used
initially. The architecture is described in the following table.

C1 C2 C3 C4 F5 F6 SM
7x7 5x5 3x3 2x2
96 192 512 4096 4096 2048 soft-

Norm stride 2 stride 2 - d/o d/o max
pool 2 pool 2 pool 2 -

Table 1. The baseline architecture

The first four columns correspond to convolutional layers. The
first one has filters 7× 7, the second one 5× 5, the third one has
3 × 3 filters and the last layer has the filters of size 2 × 2. The
next row shows the size of each layer (the number of filters) and
the last two rows correspond to additional transformations such
as normalization (batch normalization after the first convolution),
max-pooling and stride. The last three layers are fully-connected.
The fifth and sixth layers consist of 4096 and 2048 units, respec-
tively, and they both are followed by dropout layers with param-
eter p = 0.5. The first six layers are followed by ReLU non-
linearity. The last one is a predictional layer with the number of
units equal to the number of subjects in the training set and soft-
max non-linearity. The model with such architecture was trained
by Nesterov Momentum gradient descent method with starting
learning rate equal to 0.1 reducing by a factor of 10 each time the
error became constant.

Despite not very large size of the whole net, it was trained in
four steps. Starting with the fourth, fifth and sixth layers of size
512, 512 and 256, respectively, we doubled the sizes of these
layers when the loss function stopped decreasing. We consid-
ered two ways of widening the layers: adding random values of
new parameters and net2net method (Chen et al., 2016). The
latter method really does not lose any information, and the vali-
dation quality of the net before widening and after it is the same.
However, it turns out, that such a saving of information got from
previous training steps increases the overfitting and worsens the
quality. And when we add randomly initialized new weights the
random component works as a regularization and improves the
classification accuracy.

The first modification of the CNN architecture is a slow fusion of
several branches of the same net (similar to the idea from (Karpa-
thy et al., 2014)). Instead of one big block taken as an input, we
use 4 consecutive blocks of the smaller size. In more detail, we
get 4 blocks of OF maps, each one consisting of 5 pairs of maps,
and pass them through distinct branches of convolutional layers
with shared weights. After the fourth convolutional layer, the
outputs of the first two branches and the last two ones are con-
catenated so that we get two streams instead of four. These two
outputs are passed through the fully-connected fifth layer after
which two outputs are concatenated to one and continue passing
through the net. This approach allows us to take a larger period of
walking into account without losing instantaneous features. This
net was trained stage-by-stage, as well.

The third architecture we have experimented with is similar to
the architectures from VGG family (Simonyan and Zisserman,

B1 B2 B3 B4 F5 F6 SM
3x3,64 3x3,128 3x3,256 3x3,512
3x3,64 3x3,128 3x3,256 3x3,512 4096 4096 soft-

3x3,256 3x3,512 d/o d/o max
pool 2 pool 2 pool 2 pool 2

Table 2. The VGG-like architecture

2015). Because of the small sizes of the databases available for
gait recognition, deep networks, such as VGG-16 are difficult to
train without overfitting, so, we removed the last block of convo-
lutions from VGG-16 architecture and trained such network. The
details are described in Table 2.

The first four columns correspond to blocks of convolutional lay-
ers. All the convolutions have 3× 3 filter, the first block consists
of two layers of size 64, the second one consists of two layers
with 128 filters each, and the third and the fourth blocks con-
tain three layers with 256 and 512 filters, respectively. All the
convolutional blocks are followed by a max-pooling layer. Af-
ter convolutional blocks, there are three dense layers. Two of
them consist of 4096 units and are followed by dropout with pa-
rameter p = 0.5, and the last one is softmax layer. All layers
except the last one are followed by ReLU non-linearity. This net
was also learned step by step, starting from the size of two fully
connected layers equal 1024 and doubling it when the validation
error stopped decreasing.

In all the architectures we added L2 regularization to loss func-
tion in order to avoid too large weights and overfitting. The regu-
larization parameter increased step by step from 0.02 to 0.05.

3.3 Classification methods

After the network is trained we use the last hidden layer outputs
as gait descriptors and construct a classifier on these descriptors.
We consider several ways of doing it.

The most trivial case is when the subjects from the training set
are the same as the subjects from the testing one. In this case,
the softmax classifier is trained simultaneously with the features
and the outputs of the network can be used as the vectors of the
probability distribution over all the subjects. Another way to clas-
sify the descriptors extracted from the net is the Nearest Neigh-
bour (NN) classifier. This method, one of the simplest in machine
learning, gives better results and can be generalized for the case
when subjects from the training and testing sets differ from each
other. In this case, the network is used to extract features and the
classifier is fitted on the part of videos for testing subjects and
tested on the rest of videos. This way of classification is much
more general because unlike the previous one, we do not have to
retrain or fine-tune the net if we get new subjects that were not
included in the training set. We use new labeled data only to fit
a classifier based on neural features which is much quicker than
retraining.

Additionally to the classical NN approach, when we measure the
Euclidian distance between vectors, we considered NN classifier
based on Manhattan distance. It turns out that this metrics is more
stable and appropriate for measuring the similarity of gait de-
scriptors and shows a better result in the majority of experiments.

Construction of NN classifier on network outputs is a baseline
which was modified in several ways to improve the quality of the
classification.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W4, 2017 
2nd International ISPRS Workshop on PSBB, 15–17 May 2017, Moscow, Russia

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W4-207-2017 209



Figure 2. CASIA Gait Dataset B. Frames are captured from the
side view under the angle 90°. Different conditions are shown in

each column: normal walk in the first one, carrying bag in the
second one, and wearing outdoor clothing in the third column.

First of all, principal components analysis (PCA) algorithm can
be made to reduce the dimensionality of feature vectors and get
rid of any noise they contain. Besides, shortening of vectors ac-
celerates the fitting of any classifier.

The further recognition improvement can be made by Triplet
Probability Embedding (TPE) (Sankaranarayanan et al., 2016).
It is low-dimensional discriminative embedding learned using
triplet probability. This method uses PCA transformation as start-
ing data and solves an optimization problem that improves the
discriminative ability of data. This optimization problem can be
formulated as follows: we define a function SW of similarity be-
tween two vectors, so that for each triplet t = (vi, vj , vk), where
vi and vj belong to the same class, and vk is from a different
class

SW (vi, vj) > SW (vi, vk) (1)

The function SW can be parametrized by the embedding matrix
W : Sw(v, u) = (Wv)T (Wu). Hence, the problem of finding
SW reduces to finding W using Stochastic Gradient Descent. We
changed this approach a bit using the Euclidian distance instead
of the scalar product and the distance function so that the distance
between the embeddings of vectors from the same class is less
than from the different classes.

Additionally to improved performance, this embedding maintains
the advantages of dimensional reduction such as memory and
time effectiveness.

Let us now describe how we find the final result for requested
video. Having the video sequence separated into blocks of OF
maps, we get a descriptor for each of these blocks. We fit a clas-
sifier based on distinct blocks, so, we get a vector of distribution
over all the subjects for every block. To get the distribution for a
whole video we compute an average of all these vectors. We con-
sidered the voting method, as well, but averaging gives higher
accuracy of classification, thus we have chosen this method.

4. DATA AND EXPERIMENTS

4.1 Datasets

We have evaluated the described methods on two most popular
and challenging gait databases: CASIA Gait Dataset B (CASIA
gait database., 2001) and ”TUM Gait from Audio, Image and
Depth” (TUM-GAID) dataset (Hofmann et al., 2014).

Figure 3. TUM-GAID Dataset. People are walking from left to
right (top row) and from right to left (bottom row) with different
conditions: normal walk (the first column), carrying a bag (the
second column), and wearing coating shoes (the third column).

CASIA Dataset is a large database consisting of videos for 124
captured from 11 different viewing angles (from 0° to 180° with
the step 18°). The videos have length 3-5 seconds, the frame rate
about 25 fps, and the resolution 320 × 240 pixels. All the tra-
jectories are straight and recorded indoor in the same room for
all people. Besides the variety of the viewpoints, different cloth-
ing and carrying conditions are presented: wearing a coat and
carrying a bag. In total, we have 10 video sequences for each
person captured from each view: 6 normal walks without extra
conditions, two walks in an outdoor clothing and two walks with
a bag. Some examples of the frames are shown in Figure 1. CA-
SIA dataset is very popular due to the fact that it is multiview.
Nevertheless, there are too few subjects to train even small neural
network to recognize gait from all views without overfitting. In
the most of the experiments made with this database by other re-
searchers (for example, (Chen and Liu, 2014)) the subjects were
not split in training and testing parts, only videos for each person
were. In this case, we have 124 classes and training and testing
sets are equal. Experiments with such split show high classifi-
cation accuracy, but they are not general and can not be used in
real life without regular retraining. In order to get general results
comparable with other datasets, we have renounced almost all
viewpoints and used only 90° angle recordings. We used videos
for 60 subjects for training the net and the rest 64 subjects for
evaluating.

The second database we evaluated all the methods on is TUM-
GAID dataset. It contains videos for 305 subjects going from
left to right and from right to left captured from the side view.
The frame rate of videos is about 30 fps and the resolution of
each frame is 320 × 240. Similarly to the first database, TUM-
GAID contains videos with different walking conditions: 6 nor-
mal walks, 2 walks carrying a backpack, and 2 walks wearing
coating shoes for each person. Although there are recordings
only from one viewpoint, the number of subjects allows us to
take around a half of the people as training set and another half
for evaluation. The authors of the database have provided the split
into training, validation, and testing sets, which we used uniting
training and validation sets into one so that the net was trained
using the data for 150 subjects and tested with the other 155.
Hence, no randomness influenced the result.

In our experiments with both datasets, we split the testing set into
fitting and evaluating parts. The fitting part consists of the first
4 videos of normal walks for each person and is used for fitting
the classifier and training TPE, and the evaluating part consists
of the rest 6 videos and is used only to compute the accuracy of

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W4, 2017 
2nd International ISPRS Workshop on PSBB, 15–17 May 2017, Moscow, Russia

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W4-207-2017

 
210



classification. It is worth noting that although the NN classifier
is fitted using only fitting videos of testing subjects, the TPE is
trained much quicker and better if we train it by both training
and fitting sequences (all the information that is supposed to be
known in the algorithm).

4.2 Performance evaluation

All the algorithms have a classifier on their top that returns the
vector of the distribution of the requested video sequence over all
testing subjects. We use Rank-k metrics equaled the ratio of sam-
ples for which the correct label belongs to the set of k most prob-
able answers to evaluate the results. Rank-1 metric is accuracy,
that defines the ratio of the correctly classified videos. Besides
the accuracy, we measure Rank-5 metrics.

4.3 Experiments and results

We evaluated all the methods described above on two considered
datasets. All the experiments can be divided into three parts.

1. Distinct learning and evaluating on each of the datasets;

2. Learning on one dataset and evaluating on both of them;

3. Joint learning on two datasets and evaluating on both of
them.

These experiments aim to estimate the influence of different
methods on the quality of classification and to learn how general
all these methods are. Ideally, the algorithm should not depend
on the background conditions, the illumination, or anything other
than the walking style of a person. So, it is worth evaluating how
the algorithm learned on one dataset works on the other one.

The first set of the experiments is made to evaluate the proposed
approach. We trained a net from scratch with the top layer of size
equal the number of training subject. Then we trained a classifier
on the learned descriptors using training and fitting data. The
results of the experiments are shown in Table 3.

Method Evaluation
Architecture and Metrics Rank1 Rank5
CNN (PCA 1100), L1 93,22 98,06
CNN (PCA 1100), L2 92,79 98,06
CNN (PCA 600), L1 93,54 98,38
CNN+TPE (PCA 450), L2 94,51 98,70
fusion CNN (PCA 160), L1 93,97 98,06
fusion CNN (PCA 160), L2 94,40 98,06
fusion CNN +TPE (PCA 160), L1 94,07 98,27
fusion CNN +TPE (PCA 160), L2 95,04 98,06
VGG (PCA 1024), L1 97,20 99,78
VGG (PCA 1024), L2 96,34 99,67
VGG+TPE (PCA 800), L1 97,52 99,89
VGG+TPE (PCA 800), L2 96,55 99,78
(Castro et al., 2016) CNN+SVM, L2 98,00 99,60

Table 3. Results on TUM-GAID dataset

Although the accuracy of our method does not exceed Castro’s
Rank-1, the second metrics is higher in our method. So, the cor-
rect label is more often among the most probable ones.

The experiments show that training TPE having fewer dimen-
sions always increases the accuracy as compared to common NN

classifier with L2 metrics. Nevertheless, L1 metrics often turns
out to be more successful. Despite the fact that TPE was trained
as optimization of Euclidean similarity, the best result is achieved
on the NN classifier based on L1 distance between the embed-
dings of the descriptors. Let us show the Table 4, where it is
written in details what quality we get with different conditions.

Normal Backpack Shoes Avg
Method R1 R5 R1 R5 R1 R5 R1 R5
VGG-like, L1 99,7 100 96,5 99,7 96,5 100 97,5 99,8
CNN+SVM, L2

(Castro et al.,
2016)

99,7 100 97,1 99,4 97,1 99,4 98,0 99,6

Table 4. Results for different conditions on TUM-GAID dataset

Knowing that VGG-like architecture gives the best result, we
evaluated it on CASIA dataset. The accuracy on this dataset
turned out to be much lower: 71, 80% of correct answers using
L2 distance and a bit more – 74, 93% when L1 is used.

Having the nets trained on each of the datasets we made the sec-
ond set of the experiments investigating the generality of the algo-
rithm – the experiments on transfer learning. TUM-GAID videos
and the side view of CASIA look similar, so, we checked if one
algorithm can be used for both datasets. Despite good results of
the algorithms on TUM-GAID dataset, it turns out that the accu-
racy of the same algorithm with the same parameters on CASIA
dataset is very low. The same happens on the other side when the
net trained on CASIA is used for extracting features for videos
from TUM. These experiments were made using the best of con-
sidered architectures – cropped VGG and the NN classifier based
on L1 metric without any extra embedding. Table 5 shows the
accuracy of such transfer classification.

Training Set
Testing Set

CASIA TUM

CASIA 74,93 67,41
TUM 58,20 97,20

Table 5. Results of transfer learning

All the results on CASIA are lower than on TUM-GAID and
transfer of the network weights noticeably worsens the initial
quality.

The third part of experiments aims to investigate if the union of
all available data improves the recognition. All subjects in two
databases are distinct, so, we can unite them to one dataset and
train the net on this union. The evaluation of the algorithm was
made individually for each dataset.

Result on TUM Result on CASIA
Method Rank1 Rank5 Rank1 Rank5
VGG + NN, L1 96,45 99,24 72,06 84,07
balancing learning
VGG + NN, L2 96,02 99,35 70,75 83,02
balancing learning

Table 6. Results of join learning

Because of the difference in sizes of two datasets we use, we had
to balance the input batches while training the net. Combining the
batch of OF blocks we use the same number of blocks from both
datasets, so, the net sees samples from the small dataset more
frequently than from the large one. Despite such joint learning,
the quality of the algorithm is lower than the quality of distinct

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W4, 2017 
2nd International ISPRS Workshop on PSBB, 15–17 May 2017, Moscow, Russia

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W4-207-2017 211



algorithms for each dataset. It means the overfitting in latter ones
and the presence of dropout and regularization does not prevent
it.

5. IMPLEMENTATION DETAILS

We prepare the data using OpenCV library. The silhouette masks
and bounding boxes were found by background subtraction,
and the maps of optical flow were computed using Farneback
(Farneback, 2003) method implemented in OpenCV. For CNN
training Lasagne and Theano libraries were used. All the exper-
iments were performed on a computer with 12 cores, 32 GB of
RAM and a GPU Nvidia GTX 1070. The most successful of con-
sidered architectures, the VGG-like one, was trained from scratch
on TUM-GAID dataset in about 16 hours. When the net is trained
it takes approximately 0.43 seconds to calculate all block descrip-
tors for one four-second video and to classify it (including 0.14
seconds of preprocessing).

6. CONCLUSIONS AND FURTHER WORK

The experiments show that available datasets are too small and
not enough for training general stable algorithm even for one cer-
tain viewpoint. Having 155 subjects in the testing set and 6 test-
ing videos for each of them we get only 930 testing samples (and
even fewer for a smaller database). It means that one correct an-
swer changes the accuracy by about 0.1%, so the few percent
difference may be not significant.

Therefore the most important step for further improvements is to
collect new large gait dataset in order to have enough data for
training complex deep models. Having appropriate database it is
worth considering new CNN architectures and training methods.

REFERENCES

CASIA gait database., 2001. Online available:
http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp.

Castro, F., Marin-Jimenez, M. and Guil, N.and Perez de
la Blanca, N., 2016. Automatic learning of gait signatures for
people identification. http://arxiv.org/abs/1603.01006.

Chatfield, K., Simonyan, K., Vedaldi, A. and Zisserman, A.,
2014. Return of the devil in the details: Delving deep into con-
volutional nets. In: Proc. BMVC.

Chen, J. and Liu, J., 2014. Average gait differential image based
human recognition. Scientific World Journal.

Chen, T., Goodfellow, I. and Shlens, J., 2016. Net2net: Acceler-
ating learning via knowledge transfer. in international conference
on learning representation. In: ICLR.

Farneback, G., 2003. Two-frame motion estimation based on
polynomial expansion. In: Proc. of Scandinavian Conf. on Im-
age Analysis, Vol. 2749, p. 363370.

Feichtenhofer, C., Pinz, A. and Zisserman, A., 2016. Convolu-
tional two-stream network fusion for video action recognition. In:
CVPR.

Han, J. and Bhanu, B., 2006. Individual recognition using gait
energy image. In: IEEE PAMI, Vol. 28(2), p. 316322.

Hofmann, M., Geiger, J., Bachmann, S., Schuller, B. and Rigoll,
G., 2014. The tum gait from audio, image and depth (gaid)
database: Multimodal recognition of subjects and traits. J. of
Visual Com. and Image Repres. 25(1), pp. 195 – 206.

Ioffe, S. and Szegedy, C., 2015. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift.
In: ICML.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R.
and Fei-Fei, L., 2014. Large-scale video classification with con-
volutional neural networks. In: CVPR.

Liu, Y., Zhang, J., Wang, C. and Wang, L., 2012. Multiple hog
templates for gait recognition. In: Proc. ICPR, pp. 2930–2933.

Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O.,
Monga, R. and Toderici, G., 2015. Beyond short snippets: Deep
networks for video classification. In: CVPR.

Sankaranarayanan, S., Alavi, A., Castillo, C. and R., C., 2016.
Triplet probabilistic embedding for face verification and cluster-
ing. arXiv preprint arXiv:1604.05417.

Simonyan, K. and Zisserman, A., 2014. Two-stream convo-
lutional networks for action recognition in videos. In: NIPS,
p. 568576.

Simonyan, K. and Zisserman, A., 2015. Very deep convolutional
networks for large-scale image recognition. In: ICLR.

Wang, L., Qiao, Y. and Tang, X., 2015. Action recognition
with trajectory-pooled deep-convolutional descriptors. In: CVPR,
p. 43054314.

Yang, K., Dou, Y., Lv, S., Zhang, F. and Lv, Q., 2016.
Relative distance features for gait recognition with Kinect.
https://arxiv.org/abs/1605.05415.

Zheng, S., Zhang, J., Huang, K., He, R. and Tan, T., 2011. Robust
view transformation model for gait recognition. In: Proc. IEEE
International Conference on Image Processing (ICIP), pp. 2073–
2076.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W4, 2017 
2nd International ISPRS Workshop on PSBB, 15–17 May 2017, Moscow, Russia

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W4-207-2017 212




