
ISSN 1064�5624, Doklady Mathematics, 2014, Vol. 89, No. 1, pp. 128–133. © Pleiades Publishing, Ltd., 2014.
Original Russian Text © A.V. Kraev, 2014, published in Doklady Akademii Nauk, 2014, Vol. 454, No. 2, pp. 152–157.

128

1. STATEMENT OF THE PROBLEM

The inversion problem for linear dynamical
MIMO systems has been studied and partly solved ear�
lier [1, 3, 4] in the following setting. We consider a lin�
ear (without loss of generality, discrete) dynamical
“square” MIMO system of generic form:

(1)

with variables xt ∈ �n, yt ∈ �l, ξt ∈ �l and with constant
matrices А, В, С of appropriate sizes. We assume that
the matrices В and С have full rank. The inversion
problem is to find the unknown input signal ξ (proba�
bly with a delay), using its output y and constant
parameters of the system, but making no use of the ini�
tial state vector values.

We study “square” systems, that is, systems with
equal numbers of inputs and outputs because, on the
one hand, the condition that the number of outputs is
greater than or equal to the number of inputs is a nec�
essary condition for invertibility, and in this sense the
coincidence of these numbers is the most complicated
case in the class of invertible systems. On the other
hand, some of the definitions used below make sense
only for square systems.

Note that invertible systems are those for which the
inversion problem is well�posed, implying that the
existence of a unique (in the sense of asymptotic con�
vergence) solution can be established. Referring to
some of the published results leads to the conclusion
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that the class of invertible systems contains a subset of
multiple systems for which the inversion algorithms
[3] are not applicable. Such systems we defined as
“invertible”, but not “constructively invertible” sys�
tems [4]. This set of systems is formed by invertible
systems that do not meet the Isidori relative degree
definition. It is natural to investigate the question of
solving the inversion problem for such systems.

In a number of cases, the inversion problem can be
reduced to the case of constructively invertible systems
[4], regarding that a nonsingular linear transformation
of only outputs of the system (the matrix C) may con�
vert an invertible system to the Isidori relative degree
compliant form. The algorithm of such transformation
has been suggested by the author earlier. As an example,
for any MIMO 3�d order linear system with 2 inputs and
2 outputs a possibility of such transformation has been
proved [5]. Here we’ll show that this is not the case in
general. Also one of possible workarounds will be sug�
gested.

A significant term for the following considerations
is the term of relative degree, introduced by the follow�
ing definition.

Definition 1 (Isidori). A vector r = (r1, r2, …, rl) is
referred to as the vector of relative degree of system (1)
if the following conditions are satisfied simulta�
neously:

(1) CiA
jB = 0, j = 1, 2, …, ri – 2; Ci B ≠ 0, for

all i = 1, 2, …, l.

(2) detH(r1, r2, …, rl) = det  ≠ 0,

where the Ci are the rows of the matrix С.
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Note that assumptions 1 and 2 in Definition 1 may
be inconsistent; therefore, there exist systems for
which this definition is not satisfied (examples can be
found, e.g., in [1]). It is these systems that are consid�
ered in the present paper from the viewpoint of their
constructive invertibility.

Definition 2. The Rosenbrock matrix of system (1)
is the following block matrix depending on the param�
eter z:

(2)

Definition 3. The invariant zeros of system (1) are
all values of z for which the Rosenbrock matrix (2) of
the system is not of full rank.

As it follows from [4], invertibility criteria for
square systems is the absence of unstable invariant
zeros. Invertible systems for which the definition of
Isidori relative degree is satisfied can be inverted with
the use of algorithms [3].

Remark 1. A nonsingular linear transformation of
state vector doesn’t affect invariant zeros and relative
degree. A nonsingular linear transformation of only
outputs may affect the Isidori relative degree definition
compliance.

As it was stated above, for a 3�d order MIMO sys�
tem, i.e. system (1) under n = 3, l = 2 a nonsingular
outputs transformation may reduce the system to the
Isidori relative degree compliant form [5]. Let us show
that this is not the general case.

Proposition 1. A nonsingular linear output transfor�
mation, reducing a system to the Isidori relative degree
compliant form, is unavailable for some LTI systems.

In order to prove this, it is sufficient to consider the
following 4�dimensional LTI system with 2 inputs and
2 outputs reduced to the canonical controllability
form [1]:

(3)

So it is an actual problem how to invert such sys�
tems.

2. COLUMN�WISE RELATIVE 
DEGREE DEFINITION

One of possible approaches is to consider an ana�
logue of the Isidori relative degree definition that we
shall introduce here as the column�wise relative
degree.
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Definition 4. A vector r = (r1, r2, …, rl) is referred to
as the vector column�wise relative degree of system (1)
if the following conditions are fulfilled simultaneously:

(1) CAjBi = 0, j = 1, 2, …, ri – 2; C Bi ≠ 0, for
all i = 1, 2, …, l.

(2) detH(r1, r2, …, rl) = det(C B1…C Bl) ≠ 0,
where the Bi are the columns of the matrix В.

Note that assumptions of this definition also may
be inconsistent for some systems similarly to the case
of the Isidori definition, and it is easy to prove this by
constructing examples. Besides, there are examples of
systems for which the Isidori relative degree definition
is not satisfied, but the columnwise relative degree def�
inition still holds. To confirm this fact, consider the
following 4�dimensional system with 2 inputs and 2
outputs as a special case of the above example (3):

(4)

which Rosenbrock determinant equals to

(5)

This system doesn’t have invariant zeros, and there�
fore is invertible. As it was proved above, the system
can not be transformed to satisfy the Isidori definition.
On the other hand, it is easy to derive that the column�
wise relative degree exists and equals to r = (3, 1).

3. INVERSION PROBLEM IN THE CASE 
OF ABSENT ZERO DYNAMICS

Let us consider the inversion problem for n�dimen�
sional system with l inputs and l outputs. Assume that
its column�wise relative degree equals to r = (r1, r2, …, rl).
Then the following assertion (similar to derived in [1,
pp. 88–89] for the Isidori definition) is correct.

Proposition 2. For a system (1) under rankB =
rankC = l with column�wise relative degree vector r =
(r1, r2, …, rl) the columns AjBi, j = 0, 1, …, ri – 1, i = 1,
2, …, l are linearly independent.

This assertion is proved similarly to the analogous
statement in [1, pp. 88–89].
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Applying Proposition 2, one may take |r| = r1 +
r2 + … + rl linearly independent columns [B1, AB1, …,

B1, B2, …, B2, …, Bl, …, Bl] as a part of
the transformation matrix M for a state space transfor�
mation z = М–1х. The n – |r| columns of this matrix
can be taken from the kernel of С to satisfy nonsingu�
larity of M. Of |r| fixed above columns |r| – l already
belong to the kernel of С, the dimension of which is
n – l. It follows from here that kernel of С contains
(n – |r|)�dimensional linear subspace, independent
with earlier fixed columns to provide n – |r| linearly
independent vectors, which will be added to the trans�
formation matrix. One may check that this is always
possible.

Definition 5. Columns of the matrix М, containing

Bi, i = 1, 2, …, l, are referred to as the axial group
of the matrix М. The corresponding columns of the

matrices  = СМ and  = М–1АМ also are referred to

as the axial. The remaining columns (for the matrix 
as well) are referred to as the non�axial. State�space
variables corresponding to the axial columns, are also
referred to as the axial.

Remark 2. After mentioned above linear transfor�

mation in the transformed output matrix  = СМ its
l axial columns contain columns of the matrix Н,
occurred in Definition 4. Its other columns are zeros
due to a transformation construction, so we may consider

that the measured output у provides l axial states ,

computed as  = Н–1у.

Definition 6. Columns of the matrix М, containing
the vectors Вi = 1, 2, …, l, are referred to as the termi�
nal group of the matrix М. The remaining columns of
the matrix М are referred to as the non�terminal. The
corresponding to the terminal columns of the matrix

M rows of the matrices  = М–1В and  = М–1АМ
also are referred to as the terminal. The remaining
rows are referred to as the non�terminal. The same
terms we shall use for the corresponding to the matrix
rows equations of the system.

Remark 3. After mentioned above linear transfor�

mation the transformed input matrix  = М–1В con�
tains the identity l�dimensional submatrix in the ter�
minal rows. Its remaining rows are zeros. This follows
from the equality М–1М = I and the fact that l terminal
columns of the matrix М are formed by the columns of В.
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Consider the matrix  = М–1АМ. First, assume that
n = |r |. The column�wise equality is the following:

(6)

Note that left multiplying by the matrix А of the
matrix М causes a left shift of the non�terminal col�
umns. Applying this to the equality М–1М = I we
derive that in the product М–1АМ at new positions of
shifted columns one will find the columns of the iden�
tity matrix with ones in the rows, corresponding to the
old (before shift) positions of the columns. Those are

n – l non�terminal rows of the matrix . Thus, at the

intersection of n – l non�terminal rows of  and its
n – l non�axial columns one will find the identity sub�

matrix. Generic structure of the matrices ,  and 
is given below (here the stars are placeholders for
probably nonzero elements):

(7)
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Ã

Ã
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Ã11 Ã12 … Ã1 l
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(10)

The non�axial states are unknown, but can be eas�
ily found by solving (with a delay) n – l non�terminal
equations. As it follows from the block structure of the

matrices , , , transformed system breaks down
into l block subsystems, terminated by the terminal
equations. Note that the axial states can be found by
inverting outputs (see Remark 2) and their gain prod�

ucts can be computed while non�terminal rows of 
are zeros, which eliminates the influence of the
unknown input in all equations of this block except the
first one (terminal). Gain coefficients near the non�
axial states form the identity submatrix. For each of
these block subsystems the left�hand side of the last
equation is formed by the axial state, so it can be com�
puted.

As an example, consider one of those subsystems
(with index i). It contains ri equations (from which ri – 1

are non�terminal), starting from j + 1 where j =

 and ending at j + ri, and can be represented in

a form of table.
The top line are the state variables, which correspond
to the coefficients of the matrix and one of the input
components (last column), which is important for the
current block. The left column presents the left�hand
side variables. In the coefficients' matrix the stars are
placeholders for certain, but probably nonzero values.
They correspond to the axial states (in bold) and are
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available at the moment t. For example, the last line of
the table corresponds to the following equation:

(12)

where all parameters except  are available.

Reverse iterations are performed diagonally from
bottom to top in the following way. After solving the
last block equation (its left�hand side is defined) one

obtains the second to last unknown state ( )

(near the unity element of a submatrix), thus making
possible to compute the left�hand side for the second
to last equation at the preceding moment of time.
Solving it, in turn, provides one more non�axial state
(with a growing time delay), and so on. After reaching
the first block equation the process successfully termi�
nates and provides all the non�axial states due to the
shifted identity form of the block submatrix. It is worth
noting that the non�axial state variable that appears in
the left�hand side of the equation k in block i, can be
found with a delay ri – k.

This allows to formulate the following result.

Proposition 3. In this reasoning subsystem of the
non�terminal equations can be solved with respect to the
non�axial states.

From the way of transformation construction it fol�

lows that size of the block  equals to a component
of the vector r with the same index. Since the left�hand
side of the last block equation is formed by the axial
state and the first block equation is terminal, the fol�
lowing assertion is correct.

Proposition 4. If under the considered conditions the
left�hand side of the terminal equation is formed by axial
state variable, then the corresponding block is one�
dimensional and its vector relative degree component
equals to 1.

Corollary 1. Component of the state vector, display�
ing the left�hand side of the kth equation in ith block, can
be found with a delay ri – k.

zj ri+
t 1+ Aj ri r1,+ zr1

t … zj ri 1–+
t Aj ri+ j ri+,

zj ri+
t+ + +=  …

… Aj ri+ n, zn
t
,+

zj ri 1–+
t

zj ri 1–+
t
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To obtain the unknown input one need to know
states near nonzero coefficients and the left�hand side
of the terminal equations in two gradual moments of
time. The terminal equation is the first one in block.
As it follows from the block structure of the matrices

, , , nonzero coefficients of the matrix  in the
terminal rows belong only to the axial columns with
defined state variables. Its left�hand side value is a
component of the state vector, and according to the
previous considerations it can be computed with a
delay ri – 1. Consequently, the ith input component
can be computed with a delay ri. Thus, the following
assertion is correct.

Proposition 5. Under the discussed conditions the
system is constructively invertible with respect to the
unknown input. Moreover, the ith input component is
computed with a delay ri.

Let us note that the considered case of n = |r| cor�
responds to the systems with the absence of zero
dynamics.

4. INVERSION PROBLEM FOR SYSTEMS 
WITH STABLE ZERO DYNAMICS

Now we shall consider the case n > |r|. Here some
additional columns for the matrix M are taken from
the kernel of С. We shall place those vectors in the last
n – |r| columns of M.

Definition 7. The mentioned above columns of the
matrix М, as well as the corresponding columns of the

matrices  and  are referred to as the additional. The

last n – |r| equations of the system with the matrix 
are also referred to as the additional. The remaining
(not additional) equations are referred to as the basic,

as well as the remaining columns of the matrices М, 

and . Analogously, the first |r| states are referred to as
the basic, and the remaining as the additional.

Remarks 2 and 3 under such transformation are
kept correct, therefore n – |r| equations are kept non�ter�
minal. Let’s investigate what happens to the matrix А.

(13)

Here, q1, q2, …, qn – |r| are additional columns of the
matrix М. Left multiplication by А causes a left shift of
the basic non�terminal columns of М. Taking account
of М–1М = I we derive that in the product М–1АМ at
new positions of shifted columns one will find the col�
umns of the identity matrix with ones in the basic non�

terminal rows of . Thus, at the intersection of the

basic non�terminal rows of  and its basic non�axial
columns one will find the identity submatrix. In addi�
tional equations, which are non�terminal, non�zero

coefficients of the matrix  are only in the axial and
additional columns. By the way, axial and additional
columns in all the equations may contain non�zero
coefficients. Thus, additional equations can be rewrit�
ten as the following subsystem:

(14)

where z' are the additional states, the matrix  ∈
R(n – |r|) × (n – |r|) is a submatrix in the additional columns

and additional rows of ,  is a submatrix in the axial

columns and additional rows of , and  is a subvector
of the computed axial states (see Remark 2).

As nonsingular transformation does not affect
invariant zeros, so let us consider the Rosenbrock
matrix for the transformed system. Expanding the
Rosenbrock determinant at first by the last l rows
(marking out the axial columns), then by the last l col�

umns (marking out the terminal rows), then by the
additional rows (marking out the additional columns),
in the absolute values we shall obtain

(15)

It follows from here the correctness of the assertion
below.

Proposition 6. The invariant zeros of the considered

system coincide with the eigenvalues of the matrix .
Thus, if the system is invertible and its invariant

zeros are stable, then the matrix  is stable, the states
subvector z' is asymptotically or finitely observable
(the observer (14) is convergent), and it can be approx�
imated asymptotically or finitely. In this case, the con�
verging approximation of all the non�axial states is also
available according to the discussion, pertained earlier
for the case n = |r| (implying that additional states are
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approximated and axial states are computed). This
allows to approximate the unknown inputs and solve
the inversion problem.

Note that although the argument is carried out for
the discrete case, the results remain valid for continu�
ous systems.
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