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Abstract: This article completes our studies on the formal construction of asymptotic approximations

for statistics based on a random number of observations. Second order Chebyshev–Edgeworth ex-

pansions of asymptotically normally or chi-squared distributed statistics from samples with negative

binomial or Pareto-like distributed random sample sizes are obtained. The results can have applica-

tions for a wide spectrum of asymptotically normally or chi-square distributed statistics. Random,

non-random, and mixed scaling factors for each of the studied statistics produce three different limit

distributions. In addition to the expected normal or chi-squared distributions, Student’s t-, Laplace,

Fisher, gamma, and weighted sums of generalized gamma distributions also occur.

Keywords: second order Chebyshev–Edgeworth expansions; negative binomially distributed sample

sizes; Pareto-like distributed sample sizes; asymptotically normally distributed statistics; asymptotically

chi-square distributed statistics; scaled Student’s t-distribution; normal distribution; discrete Pareto

distribution; generalized Laplace distribution; weighted sums of generalized gamma distributions
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1. Introduction

To improve the convergence properties of sums of independent identically distributed
random variables in the Central Limit Theorem, asymptotic expansions of distribution
functions of normalized sums were considered. The history of asymptotic expansions
in nonparametric statistics is presented in detail in Wallace [1], Bickel [2], and Hall [3],
among others. Chebyshev–Edgeworth expansions, with which we are concerned here,
are presented in great detail in Bhattacharya and Rao [4] for random vectors and in
Petrov [5] for one-dimensional random variables. For instance, in Pfanzagl [6] and Bentkus
et al. [7], the authors emphasize that asymptotic expansions can provide more effective
approximations for asymptotic studies in statistical theory. Second order approximations
of distribution functions of sums of random variables are of great importance because
they take into account the skewness and kurtosis of the random variable in addition to the
expected value and the variance, as in the Central Limit Theorem. In Burnashev [8], second
order expansions are proved for the asymptotically normally distributed sample median
Mm on a sample of size m and its MSE. Based on this, for a Laplace population with density
e−|x|/2, the actual MSE with exact data is compared numerically with approximations
data. For the normal approximation, the influence of the remaining term is below 10%
only for m > 250, while for the approximation with the second order expansion, the
influence of the remaining term is below 10% already from m = 8. For a Cauchy population
with smooth and heavy tailed density 1/(π (1 + x2)), for the normal approximation, the
influence of the remaining term is below 10% for m ≥ 23, while for the approximation
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with the second order expansion, the influence of the remaining term is below 10% already
from m = 11. Consequently, as Burnashev [8] pointed out, asymptotic expansions can
significantly improve the exactness of statistical conclusions, even in the case of a small
number of observations. The results in the abovementioned papers are based on non-
random sample sizes or non-random number of observations.

When planning statistical studies, situations often arise where the sample sizes are
unknown in advance and they are modeled as realizations of random variables. Many
models from medicine, finance, risk theory, physics, and reliability lead to samples with
random dimensions. For instance, in the papers by Nunes et al. [9,10,11], different models
in medical research random size samples were investigated in order to prevent false
conclusions. In Esquível et al. [12], the authors give an informative overview of statistical
inference with a random number of observations and some applications. Results for
mean and variance for normally distributed samples, calculation of quantiles, and interval
estimates with random sample size were also proved. Döbler [13] gives a detailed review
of the literature on random sums as well as recent results on approximation in various
metrics. In Schluter and Trede [14] (Theorem 1, Proposition 1), the authors show, using
the convergence of a negative binomial random sum, that the growth rate of cities is
Student t-distributed with 2 degrees of freedom. Their empirical investigations verify the
result. The references in the above-cited papers provide further applications for random
dimension sampling.

Bening et al. [15,16] proved convergence rates and asymptotic expansions for distri-
butions of statistics TNn based on samples with random dimension Nn ≥ 1. Here, Tm is a
statistic based on a non-random number m ≥ 1 of independent observations. The random
variables size Nn ≥ 1 form a sequence of integer random sample sizes that depends on
a natural parameter n with Nn → ∞ in probability for n → ∞. Inequalities with a con-
vergence rate are assumed for the approximations of the distribution functions of both
the normalized statistics Tm and the normalized random sample sizes Nn. As examples,
convergence rates and first order asymptotic expansions are derived for the statistics TNn ,
where Tm is an asymptotically normal statistic and the random sample size Nn is either
negatively binomial or Pareto-like distributed.

In Christoph et al. [17], inequalities for the second order approximations of the distri-
bution functions of normalized negative binomial and Pareto-like sample sizes were proved.
Consequently, second order Chebyshev–Edgeworth approximations and the correspond-
ing Cornish–Fisher expansions could be obtained for the distribution of the normalized
arithmetic mean of a sample with normalized negative binomial or Pareto-like sample sizes
where the remainders are of order n−3/2.

The present work provides a supplement to our paper, Christoph and Ulyanov [18],
where we have developed a formal second order design for asymptotic Chebyshev–
Edgeworth approximations. We considered asymptotically normal statistics with sample
size having negative binomial distribution as well as asymptotically chi-squared statistics
with Pareto-like distributed sample sizes. In addition to the distributions of statistic Tm

and random sample size Nn, three scaling factors for TNn are also introduced, leading
to different expansions. It is the first paper to consider approximations for asymptotic
chi-square statistics based on random sample sizes. Some more applications of random
sample size sampling were also mentioned.

In the present paper, we provide similar results for asymptotically normal statistics
of samples with Pareto-like distributed sample sizes and for asymptotically chi-squared
statistics with sample size having negative binomial distribution.

For better reader convenience, we list in Section 2 some notations, conditions, and
statements that were also used in Christoph and Ulyanov [18]. Section 3 states the necessary
approximations for the statistics Tm and the sample sizes Nn. The dependence of the
limit distributions of the scaled statistic TNn on the distributions of the statistic Tm and
the sample size Nn, as well as the scaling factors, is discussed in Section 4. Section 5
then presents the main results. As examples, we consider the same statistic Tm as in
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Christoph and Ulyanov [18] (Corollaries 1 and 2), but with changed sample sizes. Section 6
provides the proofs of the main results, leaving three auxiliary lemmas to Appendix A.
Conclusions are presented in Section 7.

2. Notation and Preliminaries

Let (Ω,A,P) be a probability space on which all occurring random variables are given.
Set positive numbers, real axis, integer part [y] of real y, and indicator function

as follows:

N+ = {1, 2, ...}, R = (−∞ , ∞), y − 1 < [y] ≤ y and IA = IA(x) =

{

1, x ∈ A ⊂ R

0, x /∈ A ⊂ R
.

Let X1, X2, X3 . . . ∈ R be independent identically distributed random variables. Define
the statistic

Tm := Tm(X1, . . . , Xm) with m ∈ N+,

based on the random sample {X1, X2, . . . , Xm} with a non-random sample size m ∈ N+.
Consider the sequence of discrete random variables N1, N2, . . ., depending on an

integer parameter n ≥ 1. This integer Nn ≥ 1 indicates the random dimension of the
observations X1, . . . , XNn . Let us assume that the sample size Nn does not depend on
X1, X2, X3 . . ., where Nn → ∞ in probability when n → ∞. Define for each n ∈ N+ the
statistic TNn obtained from a random sample {X1, X2, . . . , XNn} by

TNn(ω) := TNn(ω)

(

X1(ω), X2(ω), . . . , XNn(ω)(ω)
)

for each ω ∈ Ω. (1)

It follows from Esquível et al. [12] (Theorem 2.1.1) that the statistic TNn is well-defined
in (1).

Since we want to prove second order approximations for the statistic TNn in form
of inequalities, we need the corresponding assumptions for the statistic Tm and for the
random sample size Nn as well.

For the statistic Tm with ETm = 0 and the random sample sizes Nn ∈ N+ we sup-
pose conditions on the structure of the approximating functions as well as on the conver-
gence rate:

Assumption 1. There are a distribution function F(x), bounded functions f1(x), f2(x) which are
differentiable for all x 6= 0, γ ∈ {−1,−1/2, 0, 1/2, 1}, a > 1/2 as well as 0 < C1 < ∞ such that

supx

∣

∣

∣P
(

mγTm ≤ x
)

− F(x)− m−1/2 f1(x)− Ia>1(a)m−1 f2(x)
∣

∣

∣ ≤ C1 m−a, m ≤ 1. (2)

Assumption 2. There exists a distribution function H(y) with H(0+) = 0, a bounded variation
function h2(y), a sequence of numbers 0 < gn ↑ ∞, b > 0, and 0 < C2 < ∞ such that for n ∈ N+

supy≥0

∣

∣P
(

g−1
n Nn ≤ y

)

− H(y)
∣

∣ ≤ C2n−b, for 0 < b ≤ 1,

supy≥0

∣

∣P
(

g−1
n Nn ≤ y

)

− H(y)− n−1h2(y)
∣

∣ ≤ C2n−b, for b > 1.







(3)

Remark 1. Assumptions 1 and 2 require inequalities for the approximations of Tm and Nn for
all m, n ∈ N+, leading to inequalities for the approximations of TNn . See also Remark 5 below on
Poisson and binomial random variables Nn. For these sample sizes, we are so far only aware of
estimates of the remaining terms with small-o or large-O convergence rates. About the differences
between inequalities and O order bounds, see, e.g., Fujikoshi and Ulyanov [19] (Chapter 1).

Remark 2. In Bening et al. [16], these conditions are formulated more generally. Assumption 1
requires the existence of f1,. . . , fl with a > l/2 and Assumption 2 that of h1,. . . ,hk with b > k/2.
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We restrict ourselves here, as in Christoph and Ulyanov [18], to the required approximation
functions.

Assumptions 1 and 2 lead to the approximations for the distribution functions of
statistics TNn :

Proposition 1. (Christoph and Ulyanov [18], Proposition 1) Let γ ∈ {−1,−1/2, 0, 1/2, 1}.
The statistic Tm and the sample size Nn are supposed to satisfy Assumptions 1 and 2, respectively.
Then,

supx∈R
∣

∣

∣
P

(

g
γ
n TNn ≤ x

)

− Gn(x, 1/gn)
∣

∣

∣
≤ C1 E

(

N−a
n

)

+ (C3Dn + C4) n−b, (4)

where a > 0, b > 0 are the convergence rates in (2) and (3),

Gn(x, 1/gn) =
∫ ∞

1/gn

(

F(x yγ) +
f1(xyγ)√

gny
+

f2(xyγ)

gny

)

d
(

H(y) +
h2(y)

n

)

, (5)

Dn = sup
x

∫ ∞

1/gn

∣

∣

∣

∣

∂

∂y

(

F(xyγ) +
f1(xyγ)√

gny
+

f2(xyγ)

ygn

)∣

∣

∣

∣

dy, (6)

and f1(z), f2(z), h2(y) are given in (2) and (3). The constants C1, C3, C4 do not depend on n.

Bening et al. [16] proved general transfer theorems under the conditions indicated in
Remark 2 only for case γ ≥ 0. Therefore, the proof is repeated in Christoph and Ulyanov [20]
(Appendix A.1).

3. Second Order Estimates for Both the Statistics Tm and the Sample Sizes Nn

First we consider the following statistics Tm with non-random sample size m and
ETm = 0 with the corresponding second order approximations. Let the asymptotically
normal statistic Tm satisfy the following inequality:

∣

∣

∣P(
√

mTm ≤ x)− Φ(x)−
(

m−1/2(p0 + p2x2) + m−1(p1x + p3x3 + p5x5)Ia>1(a)
)

ϕ(x)
∣

∣

∣ ≤ C m−a (7)

with a > 0 and Φ(x) refers to the standard normal distribution function with density
function ϕ(y):

Φ(x) =
∫ x

−∞
ϕ(y)dy, x ∈ R, and ϕ(y) =

1√
2π

e−y2/2, y ∈ R.

Asymptotically chi-squared distributed statistics Tm satisfy the following inequality:

∣

∣

∣P(mTm ≤ x)− Gd(x)− m−1(q1x + q2x2)gd(x)
∣

∣

∣ ≤ C m−2 , (8)

where Gd(x), d ∈ N+, denotes the chi-squared distribution function with d degrees of
freedom and the density function gd(y):

gd(y) =
1

2d/2 Γ(d/2)
y(d−2)/2 e−y/2, y > 0, and Gd(x) = P(χ2

d ≤ x) =
∫ x

0
gd(y)dy, x > 0.

In Christoph and Ulyanov [18] (Sections 3.1 and 3.2), some examples of such statistics Tm

are given that satisfy (7) or (8) and consequently, Assumption 1.

As already announced, we consider the following random sample sizes Nn with the
corresponding second order approximations.

The Pareto-like random sample sizes Nn(s) are defined as follows:
Let Yj(s) ∈ N+, j = 1, 2, . . . be independent discrete Pareto II random variables with

parameter s > 0, which are discretized from continuous Lomax (Pareto II) random variables
on N+, for a review, see, e.g., Buddana and Kozubowski [21]. For s > 0, there are defined
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P
(

Yj(s) ≤ k
)

=
k

s + k
, Nn(s) = max

1≤j≤n
Yj(s) and P(Nn(s) ≤ k) =

(

k

s + k

)n

, n, k ∈ N+. (9)

Proposition 2. (Christoph and Ulyanov [18], Proposition 4) Let Nn(s) be the discrete Pareto-
like random variable whose distribution function is given in (9); then, for all integers n ≥ 1 and
fixed positive s > 0, we have

supy>0

∣

∣

∣

∣

P

(

Nn(s)

n
≤ y

)

− Ws(y)−
h2;s(y)

n

∣

∣

∣

∣

≤ C2(s)

n2
(10)

Ws(y) = e−s/y y > 0, h2;s(y) =
s e−s/y

2 y2

(

s − 1 + 2Q1(n y)), y > 0, (11)

with jump correcting function Q1(y) = 1/2 − (y − [y]) and C2(s) > 0 does not depend on n.
Furthermore,

E
(

Nn(s)
)−a ≤ C(a, s) n−min{a,2}, (12)

with optimal bound in (12) for 0 < a ≤ 2 , where a is the convergence rate in (7).

Remark 3. The inverse exponential random variable W(s) with distribution function Hs(y) =
P(W(s) ≤ y) = e−s/yI(0 , ∞)(y) and rate parameter s > 0 is “heavy tailed” with shape parameter 1
as is P(Nn(s) ≤ y). Thus, the expected values of these two random variables do not exist.

Suppose the positive integer Nn(r) has a (shifted by 1) negative binomial distribution
with probability of success 1/n, n ∈ N+, parameter r > 0, probabilities

P(Nn(r) = j) =
Γ(j + r − 1)

Γ(j) Γ(r)

(

1

n

)r(

1 − 1

n

)j−1

, j ∈ N+ and gn = E(Nn(r)) = r (n − 1) + 1. (13)

In statistical studies, for counting models, the negative binomial and Poisson distributions
are the two most important ones. In Schluter and Trede [14] (Section 2.1), the authors
emphasize that the negative binomial distribution with its two parameters can typically
observe over-dispersion in count data, while this is not the case with the one-parameter
Poisson distribution. They proved in a more general framework

limn→∞ supy|P(Nn(r)/gn ≤ y)− Gr,r(y)| = 0, (14)

while Gr,r(y) denotes the gamma distribution that has identical scale and shape parameters
r > 0, whose density is

gr,r(y) =
rr

Γ(r)
yr−1e−ry

I(0 , ∞)(y), y ∈ R.

In Bening and Korolev [22] (Lemma 2.2), the result (14) was also obtained.

Proposition 3. (Christoph and Ulyanov [18], Proposition 3) Let r > 0. The discrete random
variable Nn(r) has probabilities and expected value gn given in (13). Then, for all n ∈ N+:

supy≥0

∣

∣

∣

∣

P

(

Nn(r)

gn
≤ y

)

− Gr,r(y)−
h2;r(y)

n

∣

∣

∣

∣

≤ C2(r) n−min{r,2}, (15)

where C2(r) > 0 does not depend on n and with the jump correcting function Q1(y) = 1/2 −
(y − [y]),

h2;r(y) =

{

0, f or r ≤ 1,
gr,r(y)

2 r

(

(y − 1)(2 − r) + 2Q1(gn y)
)

, f or r > 1.
(16)
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Moreover, negative moments E(Nn(r))−a satisfy the estimation for all r > 0, α > 0

E
(

Nn(r)
)−α ≤ C(r)

{

n−min{r, α}, r 6= α
ln(n) n−α, r = α

(17)

and the convergence rate in case r = α cannot be improved.

Remark 4. Second order Chebyshev–Edgeworth expansions (10) and (15) with r > 1 were first
proved in Christoph et al. [17] (Theorems 4 and 1). Approximations in (10) and (15) with remainder
estimations Cs/n or Cr n−min{r,1} are given, e.g., in Bening et al. [16] and Gavrilenko et al. [23].
In Christoph et al. [24] (Corollaries 5.4 and 6.5), leading terms for the negative moments of Nn(r)
and Nn(s) are derived that lead to (17) and (12).

Remark 5. The negative binomial distribution belongs to the class of Panjer distributions, which
also includes the Poisson and binomial distributions. Samples with binomial or Poisson distributed
sample sizes were studied among others in the above-cited papers [9–12]. Convergence rate bounds
for statistics based on such samples are given in Döbler [13], Korolev [25], Bulinski and Slepov [26].
Döbler [13], Korolev and Shevtsova [27], Sunklodas [28] obtained Berry–Esseen bounds for sums
based on samples with binomial and Poisson sample sizes. To the best of the authors’ knowledge,
Chebyshev–Edgeworth expansions for these lattice distributed random variables have only been
proven so far with bounds of small-o or large-O rates, see, e.g., Petrov [29] (Chapter 6, Theorem 6)
or Kolassa and McCullagh [30]. Therefore, inequality (3) in Assumption 2 is not fulfilled.

4. Limit Distributions of Statistics with Random Size Samples using Different
Scaling Factors

We now consider the statistics Tm and the sample sizes Nn, which are supposed to
satisfy the inequalities (2) and (3) in Assumptions 1 and 2, respectively. Let us investigate

the scaled statistics g
γ
n N

γ∗−γ
n TNn with the sequence gn ↑ ∞ as n → ∞. We analyze the two

cases Φ and Gu as limiting distributions F in Assumption 1 with respect to the exponents
γ∗ and γ: If F = Φ, then γ∗ = 1/2 and γ ∈ {−1/2, 0, 1/2}, while if F = Gu, then γ∗ = 1
and γ ∈ {−1, 0, 1}. Then, conditioning on Nn and using (2) and (3), we have

P

(

g
γ
n N

γ∗−γ
n TNn ≤ x

)

=P

(

N
γ∗
n TNn ≤ x (Nn/gn)

γ
)

=
∞

∑
m=1

P

(

mγ∗
Tm ≤ x(m/gn)

γ
)

P(Nn = m)

(2)
≈ E

(

F(x(Nn/gn)
γ)
)

=
∫ ∞

1/gn

F(xyγ)dP(Nn/gn ≤ y)
(3)
≈
∫ ∞

1/gn

F(xyγ)dH(y). (18)

Consequently, the limit distribution of the scaled statistic g
γ
n N

γ∗−γ
n TNn is a scale mixture of

underlying F with mixing distribution H: P
(

g
γ
n N

γ∗−γ
n TNn ≤ x

)

→
∫ ∞

0 F(xyγ)dH(y), as

n → ∞. Refer to, e.g., Choy and Chan [31], Fujikoshi et al. [32] (Chapter 13), and Fujikoshi
and Ulyanov [19] (Chapter 2) and the references therein.

The limiting distributions
∫ ∞

1/gn
F(xyγ)dH(y) therefore only arise from the leading

distributions F(x) and H(y) in the inequalities (2) and (3) and also depend on the parame-
ter γ.

In Christoph and Ulyanov [18] (Sections 5 and 6), the cases F(x) = Φ(x) with H(y) =
Gr,r(y) as well as F(x) = Gu(x) with H(y) = Ws(y) were considered. Now, we interchange
the distributions of random sample sizes Nn. We first study the limiting distributions of
asymptotically normally distributed statistics with Pareto-like distributed sample sizes
Nn(s) and also asymptotically chi-squared distributed statistics with negative binomial

distributed sample sizes Nn(r). Since Ws(1/n) = e−s n and Gr,r(1/gn) ≤ rr−1

Γ(r)
g−r

n hold,

the integral range in the last integral in (18) can be extended from (1/gn, ∞) to (0, ∞) for
further investigations.
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4.1. The Case F(x) = Φ(x) and H(y) = Ws(y)

In Christoph and Ulyanov [20,33], asymptotically normally distributed statistics Tm

for samples of m-dimensional normally distributed vectors were considered: correlation
coefficient as well as the three geometric features: the length of a vector, the distance, and
the angle between two vectors. Inequalities for second order approximations for statistic Tm

are derived when the dimension m is replaced by Pareto-like distributed random dimension
Nn(s). For the median of a sample with random sample size Nn(s) analogous results are
shown in Christoph et al. [24] (Section 6). All these asymptotically normally distributed
statistics TNn(s) with Pareto-like random dimensions or sample sizes have the same limiting
distribution.

Let γ ∈ {1/2, 0, −1/2}. Since ENn(s) = ∞, we choose as gn = n. Then, the limit
laws for

P

(

nγNn(s)
1/2−γTNn(s) ≤ x

)

are Vγ(x, s) =
∫ ∞

0
Φ(x yγ)dHs(y) =

∫ ∞

0
Φ(x yγ)

s

y2
e− s ydy.

with corresponding densities

vγ(x, s) =
s√
2 π

∫ ∞

0
yγ−2e−(x2 y2 γ/2+s/y)dy =



























l1/
√

s(x) =

√
2 s
2 e−

√
2 s|x|, γ = 1

2 ,

ϕ(x) = 1√
2 π

e−x2/2, γ = 0,

s∗2(x;
√

s) = 1
2
√

2 s

(

1 + x2

2 s

)−3/2
, γ = −1

2 ,

. (19)

Therefore, the limit distributions Vγ(x, s) are the Laplace law L1/
√

s(x) with density l1/
√

s(x)

and scale parameter λ = 1/
√

s for γ = 1/2, the standard normal law Φ(x) and density ϕ(x)
for γ = 0 and for γ = −1/2 the scaled Student’s t-distribution S∗

2(x;
√

s) with 2 degrees of
freedom and density s∗2(x;

√
s). These mixed scale distributions Vγ(x, s) are discussed in

more detail in Christoph and Ulyanov [20] (Section 4.2).

4.2. The Case F(x) = Gd(x) and H(y) = Gr,r(y)

Asymptotically chi-squared distributed statistics of samples with random sample size
were considered for the first time in Christoph and Ulyanov [18] in case of H(y) = Ws(y) =
e−s/y, y > 0.

Now, negatively binomial distributed sample sizes Nn(r) are considered. With γ ∈
{1, 0, −1} and gn = ENn(r) = r(n − 1) + 1, the limit distributions for

P

(

g
γ
n Nn(r)

1−γTNn(r) ≤ x
)

are Vγ(x; d, r) =
∫ ∞

0
Gd(x yγ)dGr,r(y) =

∫ ∞

0
Gd(x yγ)

rr

Γ(r)
yr−1 e− r ydy.

The corresponding densities are

vγ(x; d, r) =
rr xd/2−1

Γ(r) 2d/2 Γ(d/2)

∫ ∞

0
yr+γ d/2−1 e−(x yγ/2+r y)dy

=



























f ∗(x; d, 2 r) =
Γ(d/2 + r) xd/2−1

Γ(d/2) Γ(r) 2d/2 rd/2

(

1 + x
2r

)−(d+2 r)/2
, γ = 1,

gd(x) = 1
2d/2 Γ(d/2)

xd/2−1 e−x/2, γ = 0,

wr−d/2(x; d, r) = r
Γ(r) Γ(d/2)

(

x r
2

)r/2+d/4−1
Kr−d/2(

√
2 r x). γ = −1.

(20)

We prove (20) for γ = ±1 in Section 6 in the proof of Theorem 2.
The scale mixtures Vγ(x; d, r) are the (scaled by d) F-distribution F∗(x; d, 2 r) =

F(x/d; d, 2 r) with parameters d ∈ N+ and r > 0 and density f ∗(x; d; 2 r) = 1
d

f ( x
d

; d; 2 r)

for γ = 1, the chi-squared distribution Gd(x) with d degrees of freedom and density gd(x)
for γ = 0 and a gamma distribution of generalized type Wr−d/2(x; d, r) occurs with density
wr−d/2(x; d, r) for γ = −1. The modified Bessel function of the third kind or Macdonald
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functions Kλ(u) also occurred in Christoph and Ulyanov [18,20] in generalized gamma and
Laplace densities.

Remark 6. The Macdonald function satisfying order-reflection formula K−λ(u) = Kλ(u) and
Kλ(u) may be expressed for λ = m + 1/2 with integer m in closed forms. In Oldham et
al. [34] (Formulas 51:4:1 and 26:13:3), the Macdonald functions K−λ(u) = Kλ(u) for λ =
1/2, 3/2, 5/2, 7/2, 9/2 are explicitly given. Using Prudnikov et al. [35] (Formulas 2.3.16.1-3),
the densities wr−d/2(x; d, r) = wm+1/2(x; d, r) can be calculated:

wm+1/2(x; d, r) =
rr xd/2−1

Γ(r) 2d/2 Γ(d/2)











(−1)m
√

π ∂m

∂rm

(

r−1/2 e−
√

2 r x
)

, m = 0, 1, 2, . . . ,

(−2)−m
√

π
r

∂−m

∂x−m e−
√

2 r x, m = 0,−1,−2, . . .
(21)

Example 1. Some densities wm+1/2(x; d, r) for m = r − (d + 1)/2 = −2,−1, 0, 1, 2:

m = −2 d = 7, r = 2 w−3/2(x; 7, 2) = 4 x
15

(1 +
√

4 x) e−
√

4 x

m = −1 d = 4, r = 3/2 w−1/2(x; 4, 3/2) = 3
4

√
3 x e−

√
3 x

m = 0 d = 4, r = 5/2 w1/2(x; 4, 5/2) = 1
12

√
25 x e−

√
5 x

m = 0 d = 3, r = 2 w1/2(x; 3, 2) =
√

4 x e−
√

4 x

m = 1 d = 3, r = 3 w3/2(x; 3, 3) = 3
8 (6 x +

√
6 x) e−

√
6 x

m = 2 d = 3, r = 4 w5/2(x; 3, 4) = 1
12

(

(8 x)3/2 + 24 x + 3
√

8 x
)

e−
√

8 x.

Remark 7. If m = r − (d + 1)/2 is an integer, the distribution functions Wm+1/2(x; d, r) of the
densities wm+1/2(x; d, r) can also be calculated explicitly by substitution and partial integration.

Example 2. Distribution functions Wλ(x; d, r) for given densities wλ(x; d, r) with λ = ±1/2:

w−1/2(x; 4,
3

2
) =

3

4

√
3 x e−

√
3 x and W−1/2(x; 4,

3

2
) = 1 − 1

2

(

2
√

3 x + 3 x + 2
)

e−
√

3 x (22)

w1/2(x; 4,
5

2
) =

25x

12
e−

√
5 x and W1/2(x; 4,

5

2
) = 1 −

(

(5x)3/2

6
+

5 x

2
+

√
5 x

6
+ 1

)

e−
√

5 x (23)

w1/2(x; 3, 2) =
√

4 x e−
√

4 x and W1/2(x; 3, 2) = 1 − (2x + 2
√

x + 1) e−
√

4 x. (24)

Remark 8. The generalized gamma distribution G∗(x; β, α, λ) has two shape parameters α and β,
a scale parameter λ, and the density

g∗(x; β, α, λ) =
|α| λβ

Γ(β)
xαβ−1 e−λxα

, x ≥ 0, |α| > 0, β > 0, λ > 0. (25)

The density (25) is given in Korolev and Zeifman [36] and Korolev and Gorshenin [37] and
summarizes many known densities. Generalized gamma distributions are defined in many different
ways, but they do not correspond to the ones that occur above.

Remark 9. The densities wm+1/2(x; d, r) with integer m = r − (d + 1)/2 are generalized gamma
densities g∗(x; β, α, λ) given in formula (25) or may be represented as linear combinations of such
densities. The parameters α = 1/2 and λ =

√
2 r apply in all densities g∗(x; β, α, λ). The

parameter β also depends on the number of derivatives m = r − (d + 1)/2 in the densities (21).

Example 3. Some linear combinations of generalized gamma densities:
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w1/2(x; 3, 2) = g∗(x; 3, 1/2,
√

4)

w3/2(x; 3, 3) = 3
4

g∗(x; 4, 1/2,
√

6) + 1
4

g∗(x; 3, 1/2,
√

6)

w5/2(x; 3, 4) = 1
2 g∗(x; 5, 1/2,

√
8) + 3

8 g∗(x; 4, 1/2,
√

8) + 1
8 g∗(x; 3, 1/2,

√
8).

5. Main Results

Inequalities for approximations to scaled statistics P

(

g
γ
n N

γ∗−γ
n TNn ≤ x

)

for γ ∈
{0,±1/2,±1} will be presented. Here, γ∗ = 1/2 and γ ∈ {0,±1/2} when the statistic Tm

is asymptotically normally distributed, or γ∗ = 1 and γ ∈ {0,±1} when normalized Tm

has chi-squared limit distribution.

5.1. Asymptotically Normal Statistics Tm and Pareto-like Sample Sizes Nn(s)

Let asymptotically normal statistic Tm satisfy inequality (7) with coefficients pk and the
rate of convergence a > 0. The Pareto-like sample size Nn = Nn(s), s > 0, is given in (9),
which fulfills the inequality (10). For the scaling factors, select γ∗ = 1/2 and γ ∈ {0,± 1/2}
in formula (18).

Theorem 1. Under the conditions given above, the following approximations apply:

i: Let γ = 1/2. The non-random scaling factor
√

n for the statistic TNn(s) leads to approxi-
mations by the Laplace distribution L1/

√
s(x) with the density l1/

√
s(x) stated in (19) for

γ = 1/2:

supx

∣

∣

∣
P

(√
n TNn(s) ≤ x

)

− L1/
√

s ;n(x)
∣

∣

∣
≤ Cs n−min {a,2}

where a > 0 is the rate of convergence in (7) and

L1/
√

s;n(x) = L1/
√

s(x) + l1/
√

s(x)

(

I{a>1/2}(a)
√

n

[

p2 x2 + p0

( |x|√
2 s

+
1

2 s

)]

+
I{a>1}(a)

n

[

p5 x3 |x|
√

2 s + p3 x3 +

(

p1 +
s − 1

4

)

x

( |x|√
2 s

+
1

2 s

)]

)

.

ii: Let γ = 0. The random scaling factor
√

Nn(s) with TNn(s) leads to the normal approximation
Φ(x):

supx

∣

∣

∣

∣

P

(

√

Nn(s) TNn(s) ≤ x

)

− Φ(x)− ϕn,2(x)

∣

∣

∣

∣

≤ Cs n−min {a,2},

where a > 0 is the rate of convergence in (7) and

ϕn,2(x) =ϕ(x)

(√
π(p0 + p2 x2)

2
√

s n
I{a>1/2}(a) +

p1 x + p3 x3 + p5 x5

s n
I{a>1}(a)

)

.

iii: Let γ = −1/2. The mixed scaling factor n−1/2 Nn(s) at TNn(s) results in Scaled Student’s

t-distribution S∗
2(x;

√
s) with density s∗2(x;

√
s) given in (19) for γ = −1/2:

supx

∣

∣

∣P

(

n−1/2 Nn(s) TNn(s) ≤ x
)

− S∗
n;2(x)

∣

∣

∣ ≤ Cs n−min {a,2},
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where a > 0 is the rate of convergence in (7) and

S∗
n;2(x;

√
s) = S∗

2(x;
√

s) + s∗2(x;
√

s)

(

I{a>1/2}(a)
√

n

[

p0 +
3p2x2{a > 1}(a)

(x2 + 2s)

]

+
I{a>1}(a)

n

[

3p1x

x2 + 2s
+

15p3x3

(x2 + 2s)2
+

105p5x5

(x2 + 2s)3
+

3 (s − 1) x

4 (x2 + 2s)

])

.

As applications of the Theorem 1, we now examine the Student t-distribution, the
Student t-test statistic, and the sample mean as asymptotically normal statistics Tm consid-
ered in Christoph and Ulyanov [18] (Section 3.1 and Corollary 1) for the case of negative
binomial sample sizes Nn = Nn(r).

Corollary 1. Let the conditions of Theorem 1 be satisfied:

i: Let γ = 1/2. In case of the Student’s t-statistic Tm = Z/
√

χ2
m with m degrees of freedom

estimated in [18] (Formula (18)), inequality (7) is valid with p0 = p2 = p5 = 0, p1 = p3 =
1/4 and a = 2. The non-random scaling factor

√
n and Pareto-like Nn(s) sample sizes lead to:

supx

∣

∣

∣

∣

∣

∣

P





√
n Z

√

χ2
Nn(s)

≤ x



− L1/
√

s(x)−
l1/

√
s(x)

8 n

(

2 x3 + x (1 + |x|
√

2 s
)

∣

∣

∣

∣

∣

∣

≤ Cs n−2

ii: Let γ = 0. Let Tm = (Xm − µ)/σ̂m be the Student’s t-statistic with sample mean Xm and
sample variance σ̂m, which was considered in [18] (Formulas (21) and (20)). The first order
approximation (7) with p0 = λ3/6, p2 = λ3/3, a = 1, the Pareto-like random sample sizes
Nn(s) and the random scaling factor

√

Nn(s) result in:

supx

∣

∣

∣

∣

P

(

√

Nn(s) TNn(s) ≤ x

)

− Φ(x)− ϕ(x)

√
π(λ3 + 2 λ3 x2)

12
√

s n

∣

∣

∣

∣

≤ Cs n−1,

iii: Let γ = −1/2. Considering sample mean Tm = Xm estimated in [18] (Formulas (15) and

(16)), one has (7) with p0 = −p2 = λ3/6, p1 = λ4/8 − 5λ2
3/24, p3 = −λ4/24 +

5λ2
3/36, p5 = −λ2

3/72, a = 3/2, Pareto-like random sample sizes Nn(s) and mixed scaling
factor n−1/2 Nn(s), then

supx

∣

∣

∣P

(

n−1/2 Nn(s) TNn(s) ≤ x
)

− S∗
2(x;

√
s)− s∗n;2(x;

√
s)
∣

∣

∣ ≤ Cs n−3/2,

with

s∗n;2(x;
√

s) = s∗2(x;
√

s)

(

1√
n

(

λ3

6
− λ3x2

2(x2 + 2s)

)

+
1

n

(

(3λ4 − 5λ2
3)x

8(x2 + 2s)
− 5(3λ4 − 10λ5)x3

24(x2 + 2s)2
− 35λ2

3x5

24(x2 + 2s)3
+

3 (s − 1) x

4 (x2 + 2s)

))

.

5.2. Asymptotically Chi-Squared Distributed Tm with Negative Binomially Distributed Sample
Sizes Nn(r)

Let the asymptotically chi-squared distributed statistics Tm satisfy inequality (8) with
coefficients q1, q2 and the rate of convergence a = 2. The negative binomially distributed
sample sizes Nn = Nn(r) with parameter r > 0 and success probability 1/n are given
in (13) and fulfill the inequality (15). For the scaling factors, choose γ∗ = 1 and γ ∈ {0,±1}
in formula (18).

Theorem 2. Under the conditions given above, the following approximations apply.
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i: Let γ = 1. The non-random scaling factor gn = ENn(r) = r(n − 1) + 1 at statistics TNn(r)

leads to approximations by the scaled F-distribution F∗(x; d, 2 r) = F(x/d; d, 2 r) having

parameters d ∈ N+ and r > 0 and density f ∗(x; d; 2 r) = 1
d

f ( x
d

; d; 2 r) given in (20) with
γ = 1:

supx

∣

∣

∣
P

(

gn TNn(r) ≤ x
)

− F∗(x; d, 2 r)− f ∗n (x; d, 2 r)
∣

∣

∣
≤ Cr

{

n−min {r,2}, r 6= 2,

n−2 ln n, r = 2,

where

f ∗n (x; d, 2 r) =
f ∗(x; d, 2 r)

gn
I{r>1}(r)

(

(

q1 −
2 − r

2

)

x (2 r + x)

2 r + d − 2
+ q2 x2 +

x(2 − r)

2

)

. (26)

ii: For γ = 0 and random scaling factor Nn(r) at TNn(r), the approximation Gd(x) does not
change:

supx

∣

∣

∣P

(

Nn(r) TNn(r) ≤ x
)

− Gd(x; n)
∣

∣

∣ ≤ Cr

{

n−min {r,2}, r 6= 2,

n−2 ln n, r = 2,

where

Gd(x; n) = Gd(x) +
gd(x)

gn
I{r>1}(r)(q1 x + q2 x2)

r

r − 1
.

iii: Let γ = −1 and r ≥ 2. The mixed scaling factor g−1
n N2

n(r) at TNn(r) results in a gamma
distribution of generalized type Wr−d/2(x; d, r) with density wr−d/2(x; d, r) given in (20) for
γ = −1:

sup
x

∣

∣

∣

∣

P

(

N2
n(r)

gn
TNn(r) ≤ x

)

− Wr−d/2; n(x; d, r)

∣

∣

∣

∣

≤ Cr

{

n−2, r > 2,

n−2 ln n, r = 2,
,

where

Wr−d/2; n(x; d, r) = Wr−d/2(x; d, r) +
wr−d/2(x; d, r)

gn
I{r>1}(r)

(

2 q2 r x +
(r − 2) x

2

+

√
2rx

2

(

2 q1 + 2 q2(d + 2 − 2 r) + 2 − r
)Kr−d/2−1(

√
2rx)

Kr−d/2(
√

2rx)

)

.

The restriction r ≥ 2 in Theorem 2(iii) has a purely proof-technical character. In
Proposition 4, a result is shown with r = 3/2.

Remark 10. The function R(u; d, r) =
Kλ−1(u)

Kλ(u)
can be calculated explicitly for λ = m + 1/2

with integer m = r − (d + 1)/2. Then, for example, R(
√

3 x; 4, 3/2) = 1 + 1√
3 x

and

R(
√

4 x; 3, 2) = 1.

Example 4. Let γ = −1 in (20), r = 2 and d = 3. Then, for an asymptotically chi-squared

distributed test variable Tm satisfying (8), with scale factor
N2

n(2)
2n − 1

, the estimation holds:

sup
x>0

∣

∣

∣

∣

P

(

N2
n(2)

2n − 1
TNn(2) ≤ x

)

− W1/2(x; 3, 2) +
w1/2(x; 3, 2)

4 (2n − 1)

(√
4x (q2

√
4 x + q1 + q2)

)

∣

∣

∣

∣

≤ C2
ln n

n2
,

where W1/2(x; 3, 2) and w1/2(x; 3, 2) are specified in (24).

As applications to Theorem 2, we now examine Hotelling’s T2
0 distribution and nor-

malized quotients of two independent chi-square distributions as asymptotic chi-square
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distributions, considered in Christoph and Ulyanov [18] (Section 3.2 and Corollary 2) where
the sample sizes Nn = Nn(s) had Pareto-like distribution.

Corollary 2. The conditions of the Theorem 2 shall be fulfilled:

i: Let γ = 1. Consider Hotelling’s generalized T2
0 -statistic T2

0 = Tm = tr
(

SqS−1
m

)

with
independently distributed random matrices Sq and Sm having Wishart distributions Wp(q, Ip)
and Wp(m, Ip), respectively. Then, inequality (8) holds with limit distribution Gd(x),
d = p q, q1 = (p + 1 − q)/2 and q2 = (p + 1 + q)/(2d + 4). The non-random scaling
factor gn = ENn(r) by TNn(r) leads to

supx

∣

∣

∣P

(

gn TNn(r) ≤ x
)

− F∗(x; p q, 2 r)− f ∗n (x; p q, 2 r)
∣

∣

∣ ≤ Cr

{

n−min {r,2}, r 6= 2,

n−2 ln n, r = 2,
(27)

where the scaled F-distribution F∗(x; p q, 2 r) with density f ∗(x; p q, 2 r) is given in (20) for
γ = 1

f ∗n (x; p q, 2 r) =
f ∗(x; p q, 2 r)

gn
I{r>1}(r)

(

(

p + 1 − q

2
− 2 − r

2

)

x (2 r + x)

2 r + p q − 2

+
(p + 1 + q) x2

(2p q + 4
+

x(2 − r)

2

)

. (28)

ii: Let γ = 0, χ2
d and χ2

m be independent and Tm = χ2
d/χ2

m be scale mixtures satisfying
inequality (8) with coefficients q1 = (d − 2)/2 and q2 = −1/2. Random degrees of freedom
Nn(r) instead of m and random scaling factor Nn(r) lead to

sup
x>0

∣

∣

∣
P

(

Nn(r) TNn(r) ≤ x
)

− Gd(x; n)
∣

∣

∣ ≤ Cr

{

n−min {r,2}, r 6= 2,

n−2 ln n, r = 2,

where

Gd(x; n) = Gd(x) +
gd(x)

2 gn
I{r>1}(r)((d − 2) x − x2)

r

r − 1
.

iii: Let γ = −1. The statistics Tm = χ2
4/χ2

m satisfy the inequality (8) with the limiting distribu-

tion G4(x) and the coefficients q1 = 1 and q2 = −1/2. The mixed scaling factor g−1
n N2

n(r)
at TNn(r) results in a limiting gamma distribution of generalized type Wr−d/2(x; d, r). Only

if r − (d + 1)/2 = m is an integer, the involved Macdonald functions Kr−d/2(
√

2 r x) may
be explicitly calculated. Since d = 4, we choose r = 5/2 and find r − (d + 1)/2 = 0. Then,
uniformly in x > 0:

∣

∣

∣

∣

∣

P

(

N2
n(5/2)

(5n − 3)/2

χ2
4

χ2
Nn(5/2)

≤ x

)

− W1/2(x; 4, 5/2) +
w1/2(x; 4, 5/2)

2 (5n − 3)

(

9 x −
√

5 x
)

∣

∣

∣

∣

∣

≤ C3/2

n3/2
,

where W1/2(x; 4, 5/2) and w1/2(x; 4, 5/2) are specified in (23).

Remark 11. In the paper Monahkov [38], an analogous to (27) estimation is shown, but with
11 approximation terms in corresponding formula (28). Instead of (8) with q1 = (p + 1 − q)/2,
q2 = (p + 1 + q)/(2d + 4) and d = p q, the following equivalent inequality is used; see Fujikoshi
et al. [39] (Theorem 4.1(ii)):

supx

∣

∣

∣

∣

P

(

m tr
(

SqS−1
m

)

≤ x
)

− Gd(x)− d

4 m

(

a0Gd(x) + a1Gd+2(x) + a2Gd+4(x)
)

∣

∣

∣

∣

≤ C

m2

where a0 = q − p − 1, a1 = −2q, a2 = q + p + 1 with a0 + a1 + a2 = 0 and
d = p q.
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Proposition 4. Let γ = −1. Consider the statistics Tm = χ2
4/χ2

m, satisfying the inequality (8)
with the limiting distribution G4(x), the coefficients q1 = 1 and q2 = −1/2 and the mixed scaling
factor g−1

n N2
n(r) at TNn(r). If r = 3/2 and d = 4, then r − (d + 1)/2 = −1, gn = (3n − 1)/2

and, uniformly in x > 0:

∣

∣

∣

∣

∣

P

(

N2
n(3/2)

(3n − 1)/2

χ2
4

χ2
Nn(3/2)

≤ x

)

− W−1/2(x; 4, 3/2) +
w−1/2(x; 4, 3/2)

2 (3n − 1)

(

7 x +
√

3 x + 1
)

∣

∣

∣

∣

∣

≤ C3/2

n3/2
,

where W−1/2(x; 4, 3/2) and w−1/2(x; 4, 3/2) are specified in (22).

6. Proofs

For the proofs of Theorems 1 and 2, we use Proposition 1. The statistics Tm and the
sample size Nn are either asymptotically normally and discretely Pareto-like distributed (i.e.,
F = Φ and H = Ws) or asymptotically chi-squared and negatively binomially distributed
(i.e., F = Gd and H = Gr,r). In both cases, the size Dn defined in (6) is uniformly bounded
for all n ∈ N+, see Christoph and Ulyanov [18] (Lemma A1). Next, the bounds that
are required in (4) for the negative moments of sample sizes ENn(s)−a and ENn(r)−a

are provided by (12) and (17). Furthermore, it follows from Christoph and Ulyanov [18]
(Proposition 2 and Lemma A2) that in both cases the domain of integration of the integrals
in the function Gn(x, 1/gn) defined in (5) can be extended from (1/gn, ∞) to (0, ∞):

supx

∣

∣Gn(x, 1/gn)− Gn,2(x)
∣

∣ ≤ C g−b
n ,

where b = 2 if F = Φ and H = Ws or b = min{r, 2} if F = Gd and H = Gr,r, respectively,
and

Gn,2(x) =



















∫ ∞

0 F(x yγ)dH(y), for 0 < b ≤ 1/2,
∫ ∞

0

(

F(x yγ) +
f1(x yγ)√

gny

)

dH(y) =: Gn,1(x), for 1/2 < b ≤ 1,

Gn,1(x) +
∫ ∞

0
f2(x yγ)

gny dH(y) +
∫ ∞

0
F(x yγ)

n dh2(y), for b > 1,



















. (29)

We still have to calculate the integrals in (29) that contain f1, f2, and h2, respectively.

Proof of Theorem 1. We now consider F = Φ, H = Hs and γ ∈ {0;±1/2}. Here,
f1(xyγ) = (p0 + p2x2 y2γ)ϕ(x yγ), f2(xyγ) = (p1x yγ + p3x3 y3γ + p5x5 y5γ)ϕ(x yγ) and
we divide the function h2(y) = h2;s(y) given in (11) into two parts: h∗2;s(y) = s (s −
1) e−s/y /(2 y2) and h∗∗2;s(y) = s Q1(n y) y−2 e−s/y. The densities of the limit distributions

Vγ(x; d, r) =
∫ ∞

0 Φ(x yγ)dWs(y) were given in (20). If γ = 1/2 to calculate the integrals
in (29) involving f1(x

√
y), f2(x

√
y) and h∗2;s(y) we use Prudnikov et al. [35] (Formulas

2.3.16.2 and 2.3.16.3):

∫ ∞

0
y−m−1/2 e−py−q/ydy =











(−1)−m
√

π ∂−m

∂p−m

(

p−1/2 e−2
√

p q
)

, m = 0,−1,−2, . . .

(−1)m
√

π√
p

∂m

∂qm

(

e−2
√

p q
)

, m = 0, 1, 2, . . .
, p, q > 0, (30)

for p = x2/2 > 0, q = s > 0 and m = 0, 1, 2, respectively. The corresponding integral with

h∗∗2;s(y) was estimated in Christoph et al. [17] (see Proof of Theorem 5) by c(s) e−
√

π s n/2 ≤
C(s)n−2.

In case of γ = 0, we obtain
∫ ∞

0 Φ(x)dh2(y) = Φ(x)
(

h2(∞)− limy→0 h2(y)
)

= 0. To
calculate the integrals with f1(x) and f2(x) we use [35] (Formula 2.3.3.1) with α = 3/2, 2
and q = s:

∫ ∞

0
y−α−1 e−q/ydy

1/y=z
=

∫ ∞

0
zα−1 e−q zdz = Γ(α) q− α, α > 0, q > 0. (31)

If γ = − 1/2, the integrals with f1(x/
√

y), f2(x/
√

y) and h∗2,s(x/
√

y) are calculated

using (31) with α = 3/2, 5/2, 7/2, 9/2 and q = s+ x2/2. From Christoph and Ulyanov [20]
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(see Proof of Theorem 8), it follows that holds: n−1 supx

∣

∣

∣

∫ ∞

0 Φ(x/
√

y)dh∗∗2;s(y)
∣

∣

∣ ≤ C(s)n−2

and Theorem 1 is proved.

Proof of Theorem 2. Now, we consider the case F(x) = Gd(x), H(y) = Gr,r(y) and γ ∈
{0;±1}. This combination has not yet been studied in the literature. Only if γ = 1,
there is a result by Monahkov [38]; see Remark 11 above. Then, f1(xyγ) = 0, f2(xyγ) =
(q1x yγ + q2x2 y2γ)gd(x yγ) and we divide the function h2(y) = h2;r(y) given in (16) into
two parts: h∗2;r(y) = (2 r)−1 gr,r(y)(y − 1)(2 − r) and h∗∗2;r(y) = r−1 gr,r(y)Q1

(

gn y
)

.
For γ = 1, the density v1(x; d, r) in (20) and the integrals in (29) with f2(x y) and h∗2;r(y)

are computed with (31) for α = r+ d/2, r+ d/2− 1. The integral with h∗∗2;r(y) is estimated in

(A1) in Lemma A1. Together with the inequality |1/gn − 1/(rn)| ≤ max{2, r}(r − 1)(rn)−2,
we get (26).

In case of γ = 0, we obtain
∫ ∞

0 Gd(x)dh2(y) = Gd(x)
(

h2,r(∞)− limy→0 h2,r(y)
)

= 0.
To calculate the integrals with f2(x), we use (31) with α = r − 1 and q = r.

If γ = − 1 the density v−1(x; d, r) in (20) and the integrals with f2(x/y) and h∗2,r(y)
are calculated using Prudnikov et al. [35] (Formula 2.3.16.1):

∫ ∞

0
yα−1e−p y−q/ydy = 2(p/q)α/2 Kα(2

√
pq), p, q > 0,

with α = r − d/2, r − d/2− 1, r − d/2− 2, p = r and q = x/2. We use the order-reflection
formula Kα(u) = K−α(u) and the recursion formula; see Oldham et al. [34] (Chapter 51.5):

Kr−d/2−2(
√

2rx) = Kd/2+2−r(
√

2rx) =
2 (d/2 − r + 1)√

2rx
Kd/2−r+1(

√
2rx) + Kd/2−r(

√
2rx).

The integral with h∗∗2;r(y) is estimated in (A4) in Lemma A2 and Theorem 2 is proved.

Proof of Proposition 4. We consider γ = −1, r = 3/2 d = 4 and gn = (3n − 1)/2. The
integrals in (29) with f2(x/y) and h∗2,r(y) are calculated using (30) with m = −1, −2, −3,
p = r and q = x/2. The integral with h∗∗2, r is estimated in (A5) in Lemma A3 and
Proposition 4 is proved.

7. Conclusions

The common goal of the present work and that of Christoph and Ulyanov [18] is
to develop formal second order Chebyshev–Edgeworth expansions for sample statistics
with random sample sizes. Corresponding expansions are assumed for the statistics
with non-random sample sizes as well as for the random sample sizes. The statistics
examined are asymptotically normally distributed and, for the first time in this setting, also
asymptotically chi-squared distributed. The random sample sizes have negative binomial
or Pareto-like distributions. The formal construction of the approximating functions allows
the results to be used for a whole family of asymptotically normal or chi-squared distributed
statistics. The Student t-distribution with m degrees of freedom, the one-sample Student
t-test statistic, and the sample mean are considered as examples of asymptotic normal
statistics. Hotelling’s generalized T2

0 statistic and scale mixture of a normalized quotient of
two independent chi-squared random variables were studied as examples of the asymptotic
chi-squared distributions. In addition, random, non-random, and mixed scaling factors for
the statistics are considered, which have a significant influence on the limit distributions.
The limit laws are scale mixtures of the normal with mixing gamma or chi-squared with
mixing inverse exponential distributions. In addition to the normal distribution and the
chi-square distribution, there are a variety of limit distributions: the Laplace, the scaled
Student t-, the scaled Fisher, the generalized gamma, and linear combinations of generalized
gamma distributions.

The remaining terms in the approximations of the scaled statistics are estimated
by inequalities.
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Appendix A. Auxiliary Lemmas

Lemma A1. Let r > 1 then

|J1(x)| =
∣

∣

∣

∣

∫ ∞

0
Gd(x y)dh∗∗2;r(y)

∣

∣

∣

∣

≤ c(r, d)

gr−1
n

with h∗∗2;r(y) = r−1 gr,r(y)Q1

(

gn y
)

. (A1)

Proof of Lemma A1. We use the Fourier series expansion of the jump correcting function
Q1(y) at all non-integer points y; see Prudnikov et al. [35] (Formula 5.4.2.9 for a = 0):

Q1(y) =
1

2
− (y − [y]) = ∑

∞

k=1

sin(2 π k y)

k π
, y 6= [y], (A2)

and Prudnikov et al. [35] (Formula 2.5.31.4):

∫ ∞

0
yα−1 e−py sin(by)dy =

Γ(α)

(b2 + p2)α/2
sin(α arctan(b/p)) with α > −1, b, p > 0 . (A3)

Integration by parts in the integral J1(x), using (A2), interchanging sum and integral and
applying (A3) with α = r + d/2 − 1, p = (r + x/2) and b = 2πkgn leads to

J1(x) = − rr−1 xd/2

Γ(r) 2d/2 Γ(d/2)

∫ ∞

0
yr+d/2−2 Q1

(

gny
)

e−(r+x/2)ydy

= − rr−1 xd/2

π Γ(r) 2d/2 Γ(d/2)

∞

∑
k=1

1

k

∫ ∞

0
yr+d/2−2 e−(r+x/2)y sin

(

2πkgny
)

dy

= − rr−1 Γ(r + d/2 − 1)

π Γ(r) 2d/2 Γ(d/2)

∞

∑
k=1

ak(x; n)

k

with

ak(x; n) =
xd/2 sin

(

(r + d/2 − 1) arctan(2πkgn/(r + x/2))
)

(

(2πkgn)2 + (r + x/2)2
)(r+d/2−1)/2

.

Now, we split the exponent (r + d/2 − 1)/2 = (r − 1)/2 + d/4 and obtain

|ak(x; n)| ≤ xd/2

(2πkgn)r−1 (r + x/2)d/2
≤ 2d/2

(2π k gn)r−1
.
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Since r > 1, we find uniform in x ≥ 0

|J1(x)| ≤ c1(r, d)

gr−1
n

∑
∞

k=1
k−r =

c(r, d)

gr−1
n

and Lemma A1 is proved.

Lemma A2. Let r ≥ 2, then

|J−1(x)| =
∣

∣

∣

∣

∫ ∞

0
Gd(x/y)dh∗∗2;r(y)

∣

∣

∣

∣

≤ c(r, d)

gn
with h∗∗2;r(y) = r−1 gr,r(y)Q1

(

gn y
)

. (A4)

Proof of Lemma A2. Integration by parts in the integral J−1(x), using the Fourier series
expansion (A2), interchanging sum and integral, we find

J−1(x) =
rr−1 xd/2

Γ(r) 2d/2 Γ(d/2)

∫ ∞

0
yr−d/2−2 Q1

(

gny
)

e−(ry+x/(2 y))dy =
rr−1

π Γ(r) 2d/2 Γ(d/2)

∞

∑
k=1

Jk,n(x)

k

with Jk,n(x) =
∫ ∞

0 xd/2 yr−d/2−2 e−(ry+x/(2 y)) sin
(

2πkgny
)

dy.

In the literature, we have only found integrals Jk,n(x) with power functions y−1/2 and
y−3/2. Therefore, we integrate by parts in the integral Jk,n(x):

Jk,n(x) =
−1

2

∫ ∞

0

(

(d − 2r + 4) f1(x, y) + 2r f2(x, y)− f3(x, y)
)

e−(ry+x/(2 y)) cos(2πkgny)

2πkgn
dy,

where f1(x, y) = xd/2yr−d/2−3, f2(x, y) = xd/2yr−d/2−2 and f3(x, y) = xd/2+1yr−d/2−4.
Since r ≥ 2 and d ≥ 1 we obtain yr−2 e−ry/2 ≤ cr and (x/y)(d−1)/2 e−x/(4y) ≤ cd.

Using (30) with m = 0, 1, 2, p = r/2, and q = x/4 we find

∫ ∞

0
f1(x, y)dy ≤ crcdx1/2

∫ ∞

0
y−3/2 e−(ry/2+x/(4 y))dy = crcd2

√
π e−

√
rx /2 ≤ C1(r, d),

∫ ∞

0
f2(x, y)dy ≤ crcdx1/2

∫ ∞

0

y−1/2

e(ry/2+x/(4 y))
dy = crcd

√
2π x/r e−

√
2rx /2 ≤ C2(r, d),

∫ ∞

0
f3(x, y)dy ≤ crcdx3/2

∫ ∞

0

y−5/2

e(ry/2+x/(4 y))
dy = crcd2

√
π(

√
2rx + 2) e−

√
rx /2 ≤ C3(r, d)

and

|Jk,n| ≤
1

4πkgn

(

|d − 2r + 4|C1(r, d) + 2rC2(r, d) + C3(r, d)
)

≤ C∗(r, d)

kgn
.

Hence,

|J−1(x)| ≤ rr−1

π Γ(r) 2d/2 Γ(d/2)

π2

6 gn
C∗(r, d) ≤ c(r, d)

gn
.

Lemma A2 is proved.

Lemma A3. Let γ = −1, r = 3/2, d = 4 and gn = (3n − 1)/2, then

|J∗−1(x)| =
∣

∣

∣

∣

∫ ∞

0
Gd(x/y)dh∗∗2;3/2(y)

∣

∣

∣

∣

≤ c(3/2, 4)√
gn

with h∗∗2;3/2(y) = (2/3) g3/2,3/2(y)Q1

(

gn y
)

. (A5)

Proof of Lemma A3. Integration by parts in the integral J∗−1(x), using the Fourier series
expansion (A2), interchanging sum and integral, we find

J∗−1(x) =

√
3/2 x2

4 Γ(3/2)

∫ ∞

0
y−5/2 Q1

(

gny
)

e−(3y/2+x/(2 y))dy =

√
3/2√
π

∞

∑
k=1

J∗k,n(x)

k
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with

J∗k,n(x) = x2
∫ ∞

0
y−5/2 e−(3y/2+x/(2 y)) sin

(

2πkgny
)

dy.

Using Prudnikov et al. [35] (Formula 2.5.37.3), with the real constants p > 0, q > 0
and b > 0, we obtain

∫ ∞

0
y−3/2 e−p y−q/y sin(b y)dy =

√
π√
q

e− 2
√

q z+ sin(2
√

q z−) and 2 z2
± =

√

p2 + b2 ± p. (A6)

It was shown in Christoph et al. [17] (Proof of Theorem 5) that Leibniz’s integral rule allows
differentiation to q under the integral sign in (A6). Therefore,

∫ ∞

0
y−5/2 e−p y−q/y sin(b y)dy = (

√
π/2) e−2

√
q z+

(

q−3/2 sin(2
√

q z−)

+ 2 q−1 z+ sin(2
√

q z−) − 2 q−1 z− cos(2
√

q z−)
)

.

Since 0 < z− ≤ z+, p = 3/2, q = x/2, b = 2πkgn, k ≥ 1 and gn ≥ 1 we find
z+ ≥

√

π k gn,

|J∗k,n(x)| ≤ x2

√
π

2
e−

√
2 x z+

(

2
√

2

x3/2
+

8

x
z+

)

=

√
π

z+
e−

√
2 x z+

(√
2 x z+ + 4 x z2

+

)

≤ e−1 + 8 e−2

√
k n

and

|J−1(x)| ≤
√

3/2√
π

∞

∑
k=1

e−1 + 8 e−2

k3/2 √gn
.

Lemma A3 is proved.
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