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Abstract
A time-dependent completely integrable Hamiltonian system is proved to admit
the action–angle coordinates around any instantly compact regular invariant
manifold. Written relative to these coordinates, its Hamiltonian and first
integrals are functions only of action coordinates.

PACS numbers: 45.20.Jj, 02.30.Ik

1. Introduction

A time-dependent Hamiltonian system of m degrees of freedom is called a completely
integrable system (CIS), if it admits m independent first integrals in involution. In order
to provide this with action–angle coordinates, we use the fact that a time-dependent CIS
of m degrees of freedom can be extended to an autonomous Hamiltonian system of m + 1
degrees of freedom where time is regarded as a dynamic variable [2, 3, 7]. We show that
it is an autonomous CIS; however, the classical theorem [1, 5] on action–angle coordinates
cannot be applied to this CIS since its invariant manifolds are never compact because of the
time axis. Generalizing this theorem, we first prove that there is a system of action–angle
coordinates in an open neighbourhood U of a regular invariant manifold M of an autonomous
CIS if Hamiltonian vector fields of first integrals on U are complete and the foliation of U by
invariant manifolds is trivial. If M is compact, these conditions always hold [5]. Afterwards,
we show that, if a regular connected invariant manifold of a time-dependent CIS is compact at
each instant, it is diffeomorphic to the product of the time axis R and an m-dimensional torus
T m, and it admits an open neighbourhood equipped with the time-dependent action–angle
coordinates (Ii; t, φi), i = 1, . . . ,m, where t is the Cartesian coordinate on R and φi are
cyclic coordinates on T m. Written with respect to these coordinates, a Hamiltonian and the
first integrals of a time-dependent CIS are functions only of action coordinates Ii .
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For instance, there are action–angle coordinates (I i;φi) such that a Hamiltonian of a
time-dependent CIS vanishes. They are particular initial data coordinates, constant along the
trajectories of a Hamiltonian system. Furthermore, given an arbitrary smooth function H on
R

m, there exist action–angle coordinates (Ii; φi), obtained by the relevant time-dependent
canonical transformations of (I i;φi), such that a Hamiltonian of a time-dependent CIS with
respect to these coordinates equals H(Ii). Thus, time-dependent action–angle coordinates
provide a solution to the problem of representing a Hamiltonian of a time-dependent CIS in
terms of first integrals [4, 6]. However, this representation need not hold with respect to any
coordinate system because a Hamiltonian fails to be a scalar under time-dependent canonical
transformations.

2. Time-dependent completely integrable Hamiltonian systems

Recall that the configuration space of a time-dependent mechanical system is a fibre bundle
Q → R over the time axis R equipped with the bundle coordinates (t, qk), k = 1, . . . ,m.
The corresponding momentum phase space is the vertical cotangent bundle V ∗Q of Q → R

endowed with holonomic coordinates (t, qk, pk = q̇k) [8–10]. The cotangent bundle T ∗Q,
coordinated by (qλ, pλ) = (t, qk, p0, pk), is the homogeneous momentum phase space of
time-dependent mechanics. It is provided with the canonical Liouville form � = pλ dqλ, the
canonical symplectic form � = dpλ ∧ dqλ, and the corresponding Poisson bracket

{f, f ′}T = ∂λf ∂λf
′ − ∂λf ∂λf ′ f, f ′ ∈ C∞(T ∗Q). (1)

There is the one-dimensional trivial affine bundle

ζ : T ∗Q → V ∗Q. (2)

Given its global section h, one can equip T ∗Q with the global fibre coordinate r = p0 − h.
The fibre bundle (2) provides the vertical cotangent bundle V ∗Q with the canonical Poisson
structure { , }V such that

ζ ∗{f, f ′}V = {ζ ∗f, ζ ∗f ′}T ∀f, f ′ ∈ C∞(V ∗Q) (3)

{f, f ′}V = ∂kf ∂kf
′ − ∂kf ∂kf ′. (4)

A Hamiltonian of time-dependent mechanics is defined as a global section

h : V ∗Q → T ∗Q p0 ◦ h = −H(t, qj , pj )

of the affine bundle ζ (2) [8, 9]. It yields the pull-back Hamiltonian form

H = h∗� = pk dqk − H dt (5)

on V ∗Q. Then there exists a unique vector field γH on V ∗Q such that

γH	 dt = 1 γH	 dH = 0

γH = ∂t + ∂kH∂k − ∂kH∂k. (6)

Its trajectories obey the Hamilton equation

q̇k = ∂kH ṗk = −∂kH. (7)

The first integral of the Hamilton equation (7) is a smooth real function F on V ∗Q whose
Lie derivative

LγH
F = γH 	 dF = ∂tF + {H, F }V

along the vector field γH (6) vanishes, i.e. F is constant on trajectories of γH . A time-
dependent Hamiltonian system (V ∗Q,H) is said to be completely integrable if the Hamilton
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equation (7) admits m first integrals Fk which are in involution with respect to the Poisson
bracket { , }V (4), and whose differentials dFk are linearly independent almost everywhere
(i.e. the set of points where this condition fails is nowhere dense). One can associate this CIS
with an autonomous CIS on T ∗Q as follows.

Let us consider the pull-back ζ ∗H of the Hamiltonian form H (5) onto the cotangent
bundle T ∗Q. It is readily observed that

H∗ = ∂t	(� − ζ ∗h∗�) = p0 + H (8)

is a function on T ∗Q. Let us regard H∗ as a Hamiltonian of an autonomous Hamiltonian
system on the symplectic manifold (T ∗Q,�) [10]. Its Hamiltonian vector field

γT = ∂t − ∂tH∂0 + ∂kH∂k − ∂kH∂k (9)

is projected onto the vector field γH (6) on V ∗Q so that

ζ ∗(LγH
f ) = {H∗, ζ ∗f }T ∀f ∈ C∞(V ∗Q).

An immediate consequence of this relation is the following.

Theorem 1. (i) Given a time-dependent CIS (H; Fk) on V ∗Q, the Hamiltonian system
(H∗, ζ ∗Fk) on T ∗Q is a CIS. (ii) Let N be a connected regular invariant manifold of
(H; Fk). Then h(N) ⊂ T ∗Q is a connected regular invariant manifold of the autonomous
CIS (H∗, ζ ∗Fk).

Hereafter, we assume that the vector field γH (6) is complete. In this case, the Hamilton
equation (7) admits a unique global solution through each point of the momentum phase space
V ∗Q, and trajectories of γH define a trivial fibre bundle V ∗Q → V ∗

t Q over any fibre V ∗
t Q of

V ∗Q → R. Without loss of generality, we choose the fibre i0 : V ∗
0 Q → V ∗Q at t = 0. Since

N is an invariant manifold, the fibration

ξ : V ∗Q → V ∗
0 Q (10)

also yields the fibration of N onto N0 = N ∩ V ∗
0 Q such that N ∼= R × N0 is a trivial bundle.

3. Time-dependent action–angle coordinates

Let us introduce the action–angle coordinates around an invariant manifold N of a time-
dependent CIS on V ∗Q using the action–angle coordinates around the invariant manifold
h(N) of the autonomous CIS on T ∗Q in theorem 1. Since N and, consequently, h(N) are
non-compact, we first prove the following.

Theorem 2. Let M be a connected invariant manifold of an autonomous CIS {Fλ},
λ = 1, . . . , n, on a symplectic manifold (Z,�Z). Let U be an open neighbourhood of M such
that: (i) the differentials dFλ are independent everywhere on U, (ii) the Hamiltonian vector
fields ϑλ of the first integrals Fλ on U are complete and (iii) the submersion ×Fλ : U → R

n

is a trivial bundle of invariant manifolds over a domain V ′ ⊂ R
n. Then U is isomorphic to

the symplectic annulus

W ′ = V ′ × (Rn−m × T m) (11)

provided with the action–angle coordinates

(I1, . . . , In; x1, . . . , xn−m; φ1, . . . , φm) (12)

such that the symplectic form on W ′ reads

�Z = dIa ∧ dxa + dIi ∧ dφi

and the first integrals Fλ depend only on the action coordinates Iα .
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Proof. In accordance with the well-known theorem [1], the invariant manifold M is
diffeomorphic to the product Rn−m×T m, which is the group space of the quotient G = R

n/Z
m

of the group R
n generated by Hamiltonian vector fields ϑλ of first integrals Fλ on M. Namely,

M is provided with the group space coordinates (yλ) = (sa, ϕi) where ϕi are linear functions
of parameters sλ along integral curves of the Hamiltonian vector fields ϑλ on U. Let (Jλ) be
coordinates on V ′ which are values of first integrals Fλ. Let us choose a trivialization of the
fibre bundle U → V seen as a principal bundle with the structure group G. We fix its global
section χ . Since parameters sλ are given up to a shift, let us provide each fibre MJ , J ∈ V ,
with the group space coordinates (yλ) centred at the point χ(J ). Then (Jλ; yλ) are bundle
coordinates on the annulus W ′ (11). Since MJ are Lagrangian manifolds, the symplectic form
�Z on W ′ is given relative to the bundle coordinates (Jλ; yλ) by

�Z = �αβ dJα ∧ dJβ + �α
β dJα ∧ dyβ. (13)

By the very definition of coordinates (yλ), the Hamiltonian vector fields ϑλ of first integrals
take the coordinate form ϑλ = ϑα

λ (Jµ)∂α. Moreover, since the cyclic group S1 cannot act
transitively on R, we have

ϑa = ∂a + ϑi
a(Jλ)∂i ϑi = ϑk

i (Jλ)∂k. (14)

The Hamiltonian vector fields ϑλ obey the relations

ϑλ	�Z = −dJλ �α
βϑ

β

λ = δα
λ . (15)

It follows that �α
β is a non-degenerate matrix and ϑα

λ = (�−1)αλ , i.e. the functions �α
β depend

only on coordinates Jλ. A substitution of (14) into (15) results in the equalities

�a
b = δa

b ϑλ
a �i

λ = 0 (16)

ϑk
i �

j

k = δ
j

i ϑk
i �a

k = 0. (17)

The first of the equalities (17) shows that the matrix �
j

k is non-degenerate, and so is the matrix
ϑk

i . The second one gives �a
k = 0. By virtue of the well-known Künneth formula for the

de Rham cohomology of a product of manifolds, the closed form �Z (13) on W ′ (11) is exact,
i.e. �Z = d� where � reads

� = �α(Jλ, y
λ) dJα + �i(Jλ) dϕi + ∂α�(Jλ, y

λ) dyα

where � is a function on W ′. Taken up to an exact form, � is brought into the form

� = �′α(Jλ, y
λ) dJα + �i(Jλ) dϕi. (18)

Owing to the fact that components of d� = �Z are independent of yλ and obey the equalities
(16) and (17), we obtain the following.

(i) �a
i = −∂i�

′a + ∂a�i = 0. It follows that ∂i�
′a is independent of ϕi , i.e. �′a is affine

in ϕi and, consequently, is independent of ϕi since ϕi are cyclic coordinates. Hence,
∂a�i = 0, i.e. �i is a function only of coordinates Jj .

(ii) �k
i = −∂i�

′k + ∂k�i . Similarly to item (i), one shows that �′k is independent of ϕi and
�k

i = ∂k�i , i.e. ∂k�i is a non-degenerate matrix.
(iii) �a

b = −∂b�
′a = δa

b . Hence, �′a = −sa + Da(Jλ).
(iv) �i

b = −∂b�
′i , i.e. �′i is affine in sa .

In view of items (i)–(iv), the Liouville form � (18) reads

� = xa dJa +
[
Di(Jλ) + Bi

a(Jλ)s
a
]

dJi + �i(Jj ) dϕi
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where we put

xa = −�′a = sa − Da(Jλ). (19)

Since the matrix ∂k�i is non-degenerate, one can introduce new coordinates Ii = �i(Jj ),
Ia = Ja . Then we have

� = −xa dIa +
[
D′i (Iλ) + B ′i

a (Iλ)s
a
]

dIi + Ii dϕi.

Finally, put

φi = ϕi − [
D′i (Iλ) + B ′i

a (Iλ)s
a
]

(20)

in order to obtain the desired action–angle coordinates

Ia = Ja Ij (Jj ) xa = sa + Sa(Jλ) φi = ϕi + Si(Jλ, s
b).

These are bundle coordinates on U → V ′ where the coordinate shifts (19) and (20) correspond
to a choice of another trivialization of U → V ′.

Of course, the action–angle coordinates (12) are by no means unique. For instance, let
Fa, a = 1, . . . , n − m be an arbitrary smooth function on R

m. Let us consider the canonical
coordinate transformation

I ′
a = Ia − Fa(Ij ) I ′

k = Ik x ′a = xa φ′i = φi + xa∂iFa(Ij ). (21)

Then (I ′
a, I

′
k; x ′a, φ′k) are action–angle coordinates on the symplectic annulus which differ

from W ′ (11) in another trivialization. �

Now, we apply theorem 2 to the CISs in theorem 1.

Theorem 3. Let N be a connected regular invariant manifold of a time-dependent CIS on
V ∗Q, and let the image N0 of its projection ξ (10) be compact. Then the invariant manifold
h(N) of the autonomous CIS on T ∗Q has an open neighbourhood U obeying the condition of
theorem 2.

Proof. (i) We first show that functions i∗0Fk make up a CIS on the symplectic leaf (V ∗
0 Q,�0)

and N0 is its invariant manifold without critical points (i.e. where first integrals fail to be
dependent). Clearly, the functions i∗0Fk are in involution, and N0 is their connected invariant
manifold. Let us show that the set of critical points of {i∗0Fk} is nowhere dense in V ∗

0 Q and
N0 has none of these points. Let V ∗

0 Q be equipped with some coordinates (qk, pk). Then the
trivial bundle ξ (10) is provided with the bundle coordinates (t, qk, pk) which play a role of
the initial date coordinates on the momentum phase space V ∗Q. Written with respect to these
coordinates, the first integrals Fk become time-independent. It follows that

dFk(y) = di∗0Fk(ξ(y)) (22)

for any point y ∈ V ∗Q. In particular, if y0 ∈ V ∗
0 Q is a critical point of {i∗0Fk}, then the

trajectory ξ−1(y0) is a critical set for the first integrals {Fk}. The desired statement at once
follows from this result.

(ii) Since N0 obeys the condition in item (i), there is an open neighbourhood of N0 in V ∗
0 Q

isomorphic to V × N0 where V ⊂ R
m is a domain, and {v} × N0, v ∈ V , are also invariant

manifolds in V ∗
0 Q [5]. Then

W = ξ−1(V × N0) ∼= V × N (23)

is an open neighbourhood in V ∗Q of the invariant manifold N foliated by invariant manifolds
ξ−1({v} × N0), v ∈ V , of the time-dependent CIS on V ∗Q. By virtue of the equality (22),
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the first integrals {Fk} have no critical points in W . For any real number r ∈ (−ε, ε), let us
consider a section

hr : V ∗Q → T ∗Q p0 ◦ hr = −H(t, qj , pj ) + r

of the affine bundle ζ (2). Then the images hr(W) of W (23) make up an open neighbourhood
U of h(N) in T ∗Q. Because ζ(U) = W , the pull-backs ζ ∗Fk of first integrals Fk are free from
critical points in U, and so is the function H∗ (8). Since the coordinate r = p0 − h provides
a trivialization of the affine bundle ζ , the open neighbourhood U of h(N) is diffeomorphic to
the product

(−ε, ε) × h(W) ∼= (−ε, ε) × V × h(N)

which is a trivialization of the fibration

H∗ × (×ζ ∗Fk) : U → (−ε, ε) × V.

(iii) It remains to prove that the Hamiltonian vector fields of H∗ and ζ ∗Fk on U are
complete. It is readily observed that the Hamiltonian vector field γT (9) of H∗ is tangent to
the manifolds hr(W), and is the image γT = T hr ◦γH ◦ ζ of the vector field γH (6). The latter
is complete on W , and so is γT on U. Similarly, the Hamiltonian vector field

γk = −∂tFk∂
0 + ∂iFk∂i − ∂iFk∂

i

of the function ζ ∗Fk on T ∗Q with respect to the Poisson bracket { , }T (1) is tangent to the
manifolds hr(W), and is the image γk = T hr ◦ ϑk ◦ ζ of the Hamiltonian vector field ϑk of
the first integral Fk on W with respect to the Poisson bracket { , }V (4). The vector fields ϑk

on W are vertical relative to the fibration W → R, and are tangent to compact manifolds.
Therefore, they are complete, and so are the vector fields γk on U. Thus, U is the desired open
neighbourhood of the invariant manifold h(N). �

In accordance with theorem 2, the open neighbourhood U of the invariant manifold h(N)

of the autonomous CIS in theorem 3 is isomorphic to the symplectic annulus

W ′ = V ′ × (R × T m) V ′ = (−ε, ε) × V (24)

provided with the action–angle coordinates (I0, . . . , Im; t, φ1, . . . , φm) such that the
symplectic form on W ′ reads

� = dI0 ∧ dt + dIk ∧ dφk.

From the construction in theorem 2, I0 = J0 = H∗ and the corresponding generalized
angle coordinate is x0 = t , while the first integrals Jk = ζ ∗Fk depend only on the action
coordinates Ii .

Since the action coordinates Ii are independent of the coordinate J0, the symplectic
annulus W ′ (24) inherits the fibration

W ′ ζ−→ W ′′ = V × (R × T m). (25)

From the relation similar to (3), the product W ′′ (25), coordinated by (Ii; t, φi), is provided
with the Poisson structure

{f, f ′}W = ∂if ∂if
′ − ∂if ∂if ′ f, f ′ ∈ C∞(W ′′).

Therefore, one can regard W ′′ as the momentum phase space of the time-dependent CIS in
question around the invariant manifold N.

It is readily observed that the Hamiltonian vector field γT of the autonomous Hamiltonian
H∗ = I0 is γT = ∂t , and so is its projection γH (6) on W ′′. Consequently, the Hamilton
equation (7) of a time-dependent CIS with respect to the action–angle coordinates take the
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form İ i = 0, φ̇i = 0. Hence, (Ii; t, φi) are the initial data coordinates. One can introduce such
coordinates as follows. Given the fibration ξ (10), let us provide N0 ×V ⊂ V ∗

0 Q in theorem 3
with action–angle coordinates (I i; φi) for the CIS {i∗0Fk} on the symplectic leaf V ∗

0 Q. Then,
it is readily observed that (I i; t, φi) are time-dependent action–angle coordinates on W ′′

(25) such that the Hamiltonian H(I j ) of a time-dependent CIS relative to these coordinates
vanishes, i.e. H∗ = I 0. Using the canonical transformations (21), one can consider time-
dependent action–angle coordinates besides the initial data coordinates. Given a smooth
function H on R

m, one can provide W ′′ with the action–angle coordinates

I0 = I 0 − H(I j ) Ii = I i φi = φi + t∂iH(I j )

such that H(Ii) is a Hamiltonian of a time-dependent CIS on W ′′.
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