LETTER TO THE EDITOR

Action-angle coordinates for time-dependent completely integrable Hamiltonian systems

Giovanni Giachetta ${ }^{1}$, Luigi Mangiarotti ${ }^{1}$ and Gennadi Sardanashvily ${ }^{2}$
${ }^{1}$ Department of Mathematics and Physics, University of Camerino, 62032 Camerino (MC), Italy
${ }^{2}$ Department of Theoretical Physics, Physics Faculty, Moscow State University,
117234 Moscow, Russia
E-mail: giovanni.giachetta@unicam.it, luigi.mangiarotti@unicam.it and sard@grav.phys.msu.su

Received 24 April 2002
Published 12 July 2002
Online at stacks.iop.org/JPhysA/35/L439

Abstract

A time-dependent completely integrable Hamiltonian system is proved to admit the action-angle coordinates around any instantly compact regular invariant manifold. Written relative to these coordinates, its Hamiltonian and first integrals are functions only of action coordinates.

PACS numbers: 45.20.Jj, 02.30.Ik

1. Introduction

A time-dependent Hamiltonian system of m degrees of freedom is called a completely integrable system (CIS), if it admits m independent first integrals in involution. In order to provide this with action-angle coordinates, we use the fact that a time-dependent CIS of m degrees of freedom can be extended to an autonomous Hamiltonian system of $m+1$ degrees of freedom where time is regarded as a dynamic variable [2, 3, 7]. We show that it is an autonomous CIS; however, the classical theorem [1,5] on action-angle coordinates cannot be applied to this CIS since its invariant manifolds are never compact because of the time axis. Generalizing this theorem, we first prove that there is a system of action-angle coordinates in an open neighbourhood U of a regular invariant manifold M of an autonomous CIS if Hamiltonian vector fields of first integrals on U are complete and the foliation of U by invariant manifolds is trivial. If M is compact, these conditions always hold [5]. Afterwards, we show that, if a regular connected invariant manifold of a time-dependent CIS is compact at each instant, it is diffeomorphic to the product of the time axis \mathbb{R} and an m-dimensional torus T^{m}, and it admits an open neighbourhood equipped with the time-dependent action-angle coordinates $\left(I_{i} ; t, \phi^{i}\right), i=1, \ldots, m$, where t is the Cartesian coordinate on \mathbb{R} and ϕ^{i} are cyclic coordinates on T^{m}. Written with respect to these coordinates, a Hamiltonian and the first integrals of a time-dependent CIS are functions only of action coordinates I_{i}.

For instance, there are action-angle coordinates $\left(\bar{I}_{i} ; \bar{\phi}^{i}\right)$ such that a Hamiltonian of a time-dependent CIS vanishes. They are particular initial data coordinates, constant along the trajectories of a Hamiltonian system. Furthermore, given an arbitrary smooth function \mathcal{H} on \mathbb{R}^{m}, there exist action-angle coordinates $\left(I_{i} ; \phi^{i}\right)$, obtained by the relevant time-dependent canonical transformations of $\left(\bar{I}_{i} ; \bar{\phi}^{i}\right)$, such that a Hamiltonian of a time-dependent CIS with respect to these coordinates equals $\mathcal{H}\left(I_{i}\right)$. Thus, time-dependent action-angle coordinates provide a solution to the problem of representing a Hamiltonian of a time-dependent CIS in terms of first integrals [4, 6]. However, this representation need not hold with respect to any coordinate system because a Hamiltonian fails to be a scalar under time-dependent canonical transformations.

2. Time-dependent completely integrable Hamiltonian systems

Recall that the configuration space of a time-dependent mechanical system is a fibre bundle $Q \rightarrow \mathbb{R}$ over the time axis \mathbb{R} equipped with the bundle coordinates $\left(t, q^{k}\right), k=1, \ldots, m$. The corresponding momentum phase space is the vertical cotangent bundle $V^{*} Q$ of $Q \rightarrow \mathbb{R}$ endowed with holonomic coordinates $\left(t, q^{k}, p_{k}=\dot{q}_{k}\right)$ [8-10]. The cotangent bundle $T^{*} Q$, coordinated by $\left(q^{\lambda}, p_{\lambda}\right)=\left(t, q^{k}, p_{0}, p_{k}\right)$, is the homogeneous momentum phase space of time-dependent mechanics. It is provided with the canonical Liouville form $\Xi=p_{\lambda} \mathrm{d} q^{\lambda}$, the canonical symplectic form $\Omega=\mathrm{d} p_{\lambda} \wedge \mathrm{d} q^{\lambda}$, and the corresponding Poisson bracket

$$
\begin{equation*}
\left\{f, f^{\prime}\right\}_{T}=\partial^{\lambda} f \partial_{\lambda} f^{\prime}-\partial_{\lambda} f \partial^{\lambda} f^{\prime} \quad f, f^{\prime} \in C^{\infty}\left(T^{*} Q\right) \tag{1}
\end{equation*}
$$

There is the one-dimensional trivial affine bundle

$$
\begin{equation*}
\zeta: T^{*} Q \rightarrow V^{*} Q \tag{2}
\end{equation*}
$$

Given its global section h, one can equip $T^{*} Q$ with the global fibre coordinate $r=p_{0}-h$. The fibre bundle (2) provides the vertical cotangent bundle $V^{*} Q$ with the canonical Poisson structure $\{,\}_{V}$ such that

$$
\begin{align*}
& \zeta^{*}\left\{f, f^{\prime}\right\}_{V}=\left\{\zeta^{*} f, \zeta^{*} f^{\prime}\right\}_{T} \quad \forall f, f^{\prime} \in C^{\infty}\left(V^{*} Q\right) \tag{3}\\
& \left\{f, f^{\prime}\right\}_{V}=\partial^{k} f \partial_{k} f^{\prime}-\partial_{k} f \partial^{k} f^{\prime} \tag{4}
\end{align*}
$$

A Hamiltonian of time-dependent mechanics is defined as a global section

$$
h: V^{*} Q \rightarrow T^{*} Q \quad p_{0} \circ h=-\mathcal{H}\left(t, q^{j}, p_{j}\right)
$$

of the affine bundle ζ (2) [8, 9]. It yields the pull-back Hamiltonian form

$$
\begin{equation*}
H=h^{*} \Xi=p_{k} \mathrm{~d} q^{k}-\mathcal{H} \mathrm{d} t \tag{5}
\end{equation*}
$$

on $V^{*} Q$. Then there exists a unique vector field γ_{H} on $V^{*} Q$ such that

$$
\begin{align*}
& \left.\left.\gamma_{H}\right\rfloor \mathrm{~d} t=1 \quad \gamma_{H}\right\rfloor \mathrm{d} H=0 \\
& \gamma_{H}=\partial_{t}+\partial^{k} \mathcal{H} \partial_{k}-\partial_{k} \mathcal{H} \partial^{k} . \tag{6}
\end{align*}
$$

Its trajectories obey the Hamilton equation

$$
\begin{equation*}
\dot{q}^{k}=\partial^{k} \mathcal{H} \quad \dot{p}_{k}=-\partial_{k} \mathcal{H} \tag{7}
\end{equation*}
$$

The first integral of the Hamilton equation (7) is a smooth real function F on $V^{*} Q$ whose Lie derivative

$$
\left.\mathbf{L}_{\gamma_{H}} F=\gamma_{H}\right\rfloor \mathrm{d} F=\partial_{t} F+\{\mathcal{H}, F\}_{V}
$$

along the vector field γ_{H} (6) vanishes, i.e. F is constant on trajectories of γ_{H}. A timedependent Hamiltonian system $\left(V^{*} Q, H\right)$ is said to be completely integrable if the Hamilton
equation (7) admits m first integrals F_{k} which are in involution with respect to the Poisson bracket $\{,\}_{V}$ (4), and whose differentials $\mathrm{d} F_{k}$ are linearly independent almost everywhere (i.e. the set of points where this condition fails is nowhere dense). One can associate this CIS with an autonomous CIS on $T^{*} Q$ as follows.

Let us consider the pull-back $\zeta^{*} H$ of the Hamiltonian form H (5) onto the cotangent bundle $T^{*} Q$. It is readily observed that

$$
\begin{equation*}
\left.\mathcal{H}^{*}=\partial_{t}\right\rfloor\left(\Xi-\zeta^{*} h^{*} \Xi\right)=p_{0}+\mathcal{H} \tag{8}
\end{equation*}
$$

is a function on $T^{*} Q$. Let us regard \mathcal{H}^{*} as a Hamiltonian of an autonomous Hamiltonian system on the symplectic manifold $\left(T^{*} Q, \Omega\right)$ [10]. Its Hamiltonian vector field

$$
\begin{equation*}
\gamma_{T}=\partial_{t}-\partial_{t} \mathcal{H} \partial^{0}+\partial^{k} \mathcal{H} \partial_{k}-\partial_{k} \mathcal{H} \partial^{k} \tag{9}
\end{equation*}
$$

is projected onto the vector field $\gamma_{H}(6)$ on $V^{*} Q$ so that

$$
\zeta^{*}\left(\mathbf{L}_{\gamma_{H}} f\right)=\left\{\mathcal{H}^{*}, \zeta^{*} f\right\}_{T} \quad \forall f \in C^{\infty}\left(V^{*} Q\right)
$$

An immediate consequence of this relation is the following.
Theorem 1. (i) Given a time-dependent CIS $\left(\mathcal{H} ; F_{k}\right)$ on $V^{*} Q$, the Hamiltonian system $\left(\mathcal{H}^{*}, \zeta^{*} F_{k}\right)$ on $T^{*} Q$ is a CIS. (ii) Let N be a connected regular invariant manifold of $\left(\mathcal{H} ; F_{k}\right)$. Then $h(N) \subset T^{*} Q$ is a connected regular invariant manifold of the autonomous CIS $\left(\mathcal{H}^{*}, \zeta^{*} F_{k}\right)$.

Hereafter, we assume that the vector field $\gamma_{H}(6)$ is complete. In this case, the Hamilton equation (7) admits a unique global solution through each point of the momentum phase space $V^{*} Q$, and trajectories of γ_{H} define a trivial fibre bundle $V^{*} Q \rightarrow V_{t}^{*} Q$ over any fibre $V_{t}^{*} Q$ of $V^{*} Q \rightarrow \mathbb{R}$. Without loss of generality, we choose the fibre $i_{0}: V_{0}^{*} Q \rightarrow V^{*} Q$ at $t=0$. Since N is an invariant manifold, the fibration

$$
\begin{equation*}
\xi: V^{*} Q \rightarrow V_{0}^{*} Q \tag{10}
\end{equation*}
$$

also yields the fibration of N onto $N_{0}=N \cap V_{0}^{*} Q$ such that $N \cong \mathbb{R} \times N_{0}$ is a trivial bundle.

3. Time-dependent action-angle coordinates

Let us introduce the action-angle coordinates around an invariant manifold N of a timedependent CIS on $V^{*} Q$ using the action-angle coordinates around the invariant manifold $h(N)$ of the autonomous CIS on $T^{*} Q$ in theorem 1. Since N and, consequently, $h(N)$ are non-compact, we first prove the following.

Theorem 2. Let M be a connected invariant manifold of an autonomous CIS $\left\{F_{\lambda}\right\}$, $\lambda=1, \ldots, n$, on a symplectic manifold $\left(Z, \Omega_{Z}\right)$. Let U be an open neighbourhood of M such that: (i) the differentials $\mathrm{d} F_{\lambda}$ are independent everywhere on U, (ii) the Hamiltonian vector fields ϑ_{λ} of the first integrals F_{λ} on U are complete and (iii) the submersion $\times F_{\lambda}: U \rightarrow \mathbb{R}^{n}$ is a trivial bundle of invariant manifolds over a domain $V^{\prime} \subset \mathbb{R}^{n}$. Then U is isomorphic to the symplectic annulus

$$
\begin{equation*}
W^{\prime}=V^{\prime} \times\left(\mathbb{R}^{n-m} \times T^{m}\right) \tag{11}
\end{equation*}
$$

provided with the action-angle coordinates

$$
\begin{equation*}
\left(I_{1}, \ldots, I_{n} ; x^{1}, \ldots, x^{n-m} ; \phi^{1}, \ldots, \phi^{m}\right) \tag{12}
\end{equation*}
$$

such that the symplectic form on W^{\prime} reads

$$
\Omega_{Z}=\mathrm{d} I_{a} \wedge \mathrm{~d} x^{a}+\mathrm{d} I_{i} \wedge \mathrm{~d} \phi^{i}
$$

and the first integrals F_{λ} depend only on the action coordinates I_{α}.

Proof. In accordance with the well-known theorem [1], the invariant manifold M is diffeomorphic to the product $\mathbb{R}^{n-m} \times T^{m}$, which is the group space of the quotient $G=\mathbb{R}^{n} / \mathbb{Z}^{m}$ of the group \mathbb{R}^{n} generated by Hamiltonian vector fields ϑ_{λ} of first integrals F_{λ} on M. Namely, M is provided with the group space coordinates $\left(y^{\lambda}\right)=\left(s^{a}, \varphi^{i}\right)$ where φ^{i} are linear functions of parameters s^{λ} along integral curves of the Hamiltonian vector fields ϑ_{λ} on U. Let $\left(J_{\lambda}\right)$ be coordinates on V^{\prime} which are values of first integrals F_{λ}. Let us choose a trivialization of the fibre bundle $U \rightarrow V$ seen as a principal bundle with the structure group G. We fix its global section χ. Since parameters s^{λ} are given up to a shift, let us provide each fibre $M_{J}, J \in V$, with the group space coordinates $\left(y^{\lambda}\right)$ centred at the point $\chi(J)$. Then $\left(J_{\lambda} ; y^{\lambda}\right)$ are bundle coordinates on the annulus W^{\prime} (11). Since M_{J} are Lagrangian manifolds, the symplectic form Ω_{Z} on W^{\prime} is given relative to the bundle coordinates $\left(J_{\lambda} ; y^{\lambda}\right)$ by

$$
\begin{equation*}
\Omega_{Z}=\Omega^{\alpha \beta} \mathrm{d} J_{\alpha} \wedge \mathrm{d} J_{\beta}+\Omega_{\beta}^{\alpha} \mathrm{d} J_{\alpha} \wedge \mathrm{d} y^{\beta} \tag{13}
\end{equation*}
$$

By the very definition of coordinates $\left(y^{\lambda}\right)$, the Hamiltonian vector fields ϑ_{λ} of first integrals take the coordinate form $\vartheta_{\lambda}=\vartheta_{\lambda}^{\alpha}\left(J_{\mu}\right) \partial_{\alpha}$. Moreover, since the cyclic group S^{1} cannot act transitively on \mathbb{R}, we have

$$
\begin{equation*}
\vartheta_{a}=\partial_{a}+\vartheta_{a}^{i}\left(J_{\lambda}\right) \partial_{i} \quad \vartheta_{i}=\vartheta_{i}^{k}\left(J_{\lambda}\right) \partial_{k} . \tag{14}
\end{equation*}
$$

The Hamiltonian vector fields ϑ_{λ} obey the relations

$$
\begin{equation*}
\left.\vartheta_{\lambda}\right\rfloor \Omega_{Z}=-\mathrm{d} J_{\lambda} \quad \Omega_{\beta}^{\alpha} \vartheta_{\lambda}^{\beta}=\delta_{\lambda}^{\alpha} . \tag{15}
\end{equation*}
$$

It follows that Ω_{β}^{α} is a non-degenerate matrix and $\vartheta_{\lambda}^{\alpha}=\left(\Omega^{-1}\right)_{\lambda}^{\alpha}$, i.e. the functions Ω_{β}^{α} depend only on coordinates J_{λ}. A substitution of (14) into (15) results in the equalities

$$
\begin{array}{ll}
\Omega_{b}^{a}=\delta_{b}^{a} & \vartheta_{a}^{\lambda} \Omega_{\lambda}^{i}=0 \\
\vartheta_{i}^{k} \Omega_{k}^{j}=\delta_{i}^{j} & \vartheta_{i}^{k} \Omega_{k}^{a}=0 . \tag{17}
\end{array}
$$

The first of the equalities (17) shows that the matrix Ω_{k}^{j} is non-degenerate, and so is the matrix ϑ_{i}^{k}. The second one gives $\Omega_{k}^{a}=0$. By virtue of the well-known Künneth formula for the de Rham cohomology of a product of manifolds, the closed form $\Omega_{Z}(13)$ on $W^{\prime}(11)$ is exact, i.e. $\Omega_{Z}=\mathrm{d} \Xi$ where Ξ reads

$$
\Xi=\Xi^{\alpha}\left(J_{\lambda}, y^{\lambda}\right) \mathrm{d} J_{\alpha}+\Xi_{i}\left(J_{\lambda}\right) \mathrm{d} \varphi^{i}+\partial_{\alpha} \Phi\left(J_{\lambda}, y^{\lambda}\right) \mathrm{d} y^{\alpha}
$$

where Φ is a function on W^{\prime}. Taken up to an exact form, Ξ is brought into the form

$$
\begin{equation*}
\Xi=\Xi^{\prime \alpha}\left(J_{\lambda}, y^{\lambda}\right) \mathrm{d} J_{\alpha}+\Xi_{i}\left(J_{\lambda}\right) \mathrm{d} \varphi^{i} \tag{18}
\end{equation*}
$$

Owing to the fact that components of $\mathrm{d} \Xi=\Omega_{Z}$ are independent of y^{λ} and obey the equalities (16) and (17), we obtain the following.
(i) $\Omega_{i}^{a}=-\partial_{i} \Xi^{\prime a}+\partial^{a} \Xi_{i}=0$. It follows that $\partial_{i} \Xi^{\prime a}$ is independent of φ^{i}, i.e. $\Xi^{\prime a}$ is affine in φ^{i} and, consequently, is independent of φ^{i} since φ^{i} are cyclic coordinates. Hence, $\partial^{a} \Xi_{i}=0$, i.e. Ξ_{i} is a function only of coordinates J_{j}.
(ii) $\Omega_{i}^{k}=-\partial_{i} \Xi^{k}+\partial^{k} \Xi_{i}$. Similarly to item (i), one shows that $\Xi^{\prime k}$ is independent of φ^{i} and $\Omega_{i}^{k}=\partial^{k} \Xi_{i}$, i.e. $\partial^{k} \Xi_{i}$ is a non-degenerate matrix.
(iii) $\Omega_{b}^{a}=-\partial_{b} \Xi^{\prime a}=\delta_{b}^{a}$. Hence, $\Xi^{\prime a}=-s^{a}+D^{a}\left(J_{\lambda}\right)$.
(iv) $\Omega_{b}^{i}=-\partial_{b} \Xi^{\prime i}$, i.e. $\Xi^{\prime i}$ is affine in s^{a}.

In view of items (i)-(iv), the Liouville form Ξ (18) reads

$$
\Xi=x^{a} \mathrm{~d} J_{a}+\left[D^{i}\left(J_{\lambda}\right)+B_{a}^{i}\left(J_{\lambda}\right) s^{a}\right] \mathrm{d} J_{i}+\Xi_{i}\left(J_{j}\right) \mathrm{d} \varphi^{i}
$$

where we put

$$
\begin{equation*}
x^{a}=-\Xi^{\prime a}=s^{a}-D^{a}\left(J_{\lambda}\right) . \tag{19}
\end{equation*}
$$

Since the matrix $\partial^{k} \Xi_{i}$ is non-degenerate, one can introduce new coordinates $I_{i}=\Xi_{i}\left(J_{j}\right)$, $I_{a}=J_{a}$. Then we have

$$
\Xi=-x^{a} \mathrm{~d} I_{a}+\left[D^{\prime i}\left(I_{\lambda}\right)+B_{a}^{\prime i}\left(I_{\lambda}\right) s^{a}\right] \mathrm{d} I_{i}+I_{i} \mathrm{~d} \varphi^{i} .
$$

Finally, put

$$
\begin{equation*}
\phi^{i}=\varphi^{i}-\left[D^{\prime i}\left(I_{\lambda}\right)+B_{a}^{\prime i}\left(I_{\lambda}\right) s^{a}\right] \tag{20}
\end{equation*}
$$

in order to obtain the desired action-angle coordinates

$$
I_{a}=J_{a} \quad I_{j}\left(J_{j}\right) \quad x^{a}=s^{a}+S^{a}\left(J_{\lambda}\right) \quad \phi^{i}=\varphi^{i}+S^{i}\left(J_{\lambda}, s^{b}\right) .
$$

These are bundle coordinates on $U \rightarrow V^{\prime}$ where the coordinate shifts (19) and (20) correspond to a choice of another trivialization of $U \rightarrow V^{\prime}$.

Of course, the action-angle coordinates (12) are by no means unique. For instance, let $\mathcal{F}_{a}, a=1, \ldots, n-m$ be an arbitrary smooth function on \mathbb{R}^{m}. Let us consider the canonical coordinate transformation
$I_{a}^{\prime}=I_{a}-\mathcal{F}_{a}\left(I_{j}\right) \quad I_{k}^{\prime}=I_{k} \quad x^{\prime a}=x^{a} \quad \phi^{\prime i}=\phi^{i}+x^{a} \partial^{i} \mathcal{F}_{a}\left(I_{j}\right)$.
Then $\left(I_{a}^{\prime}, I_{k}^{\prime} ; x^{\prime a}, \phi^{\prime k}\right)$ are action-angle coordinates on the symplectic annulus which differ from $W^{\prime}(11)$ in another trivialization.

Now, we apply theorem 2 to the CISs in theorem 1.
Theorem 3. Let N be a connected regular invariant manifold of a time-dependent CIS on $V^{*} Q$, and let the image N_{0} of its projection $\xi(10)$ be compact. Then the invariant manifold $h(N)$ of the autonomous CIS on $T^{*} Q$ has an open neighbourhood U obeying the condition of theorem 2.

Proof. (i) We first show that functions $i_{0}^{*} F_{k}$ make up a CIS on the symplectic leaf $\left(V_{0}^{*} Q, \Omega_{0}\right)$ and N_{0} is its invariant manifold without critical points (i.e. where first integrals fail to be dependent). Clearly, the functions $i_{0}^{*} F_{k}$ are in involution, and N_{0} is their connected invariant manifold. Let us show that the set of critical points of $\left\{i_{0}^{*} F_{k}\right\}$ is nowhere dense in $V_{0}^{*} Q$ and N_{0} has none of these points. Let $V_{0}^{*} Q$ be equipped with some coordinates $\left(\bar{q}^{k}, \bar{p}_{k}\right)$. Then the trivial bundle $\xi(10)$ is provided with the bundle coordinates $\left(t, \bar{q}^{k}, \bar{p}_{k}\right)$ which play a role of the initial date coordinates on the momentum phase space $V^{*} Q$. Written with respect to these coordinates, the first integrals F_{k} become time-independent. It follows that

$$
\begin{equation*}
\mathrm{d} F_{k}(y)=\mathrm{d} i_{0}^{*} F_{k}(\xi(y)) \tag{22}
\end{equation*}
$$

for any point $y \in V^{*} Q$. In particular, if $y_{0} \in V_{0}^{*} Q$ is a critical point of $\left\{i_{0}^{*} F_{k}\right\}$, then the trajectory $\xi^{-1}\left(y_{0}\right)$ is a critical set for the first integrals $\left\{F_{k}\right\}$. The desired statement at once follows from this result.
(ii) Since N_{0} obeys the condition in item (i), there is an open neighbourhood of N_{0} in $V_{0}^{*} Q$ isomorphic to $V \times N_{0}$ where $V \subset \mathbb{R}^{m}$ is a domain, and $\{v\} \times N_{0}, v \in V$, are also invariant manifolds in $V_{0}^{*} Q$ [5]. Then

$$
\begin{equation*}
W=\xi^{-1}\left(V \times N_{0}\right) \cong V \times N \tag{23}
\end{equation*}
$$

is an open neighbourhood in $V^{*} Q$ of the invariant manifold N foliated by invariant manifolds $\xi^{-1}\left(\{v\} \times N_{0}\right), v \in V$, of the time-dependent CIS on $V^{*} Q$. By virtue of the equality (22),
the first integrals $\left\{F_{k}\right\}$ have no critical points in W. For any real number $r \in(-\varepsilon, \varepsilon)$, let us consider a section

$$
h_{r}: V^{*} Q \rightarrow T^{*} Q \quad p_{0} \circ h_{r}=-\mathcal{H}\left(t, q^{j}, p_{j}\right)+r
$$

of the affine bundle ζ (2). Then the images $h_{r}(W)$ of W (23) make up an open neighbourhood U of $h(N)$ in $T^{*} Q$. Because $\zeta(U)=W$, the pull-backs $\zeta^{*} F_{k}$ of first integrals F_{k} are free from critical points in U, and so is the function \mathcal{H}^{*} (8). Since the coordinate $r=p_{0}-h$ provides a trivialization of the affine bundle ζ, the open neighbourhood U of $h(N)$ is diffeomorphic to the product

$$
(-\varepsilon, \varepsilon) \times h(W) \cong(-\varepsilon, \varepsilon) \times V \times h(N)
$$

which is a trivialization of the fibration

$$
\mathcal{H}^{*} \times\left(\times \zeta^{*} F_{k}\right): U \rightarrow(-\varepsilon, \varepsilon) \times V
$$

(iii) It remains to prove that the Hamiltonian vector fields of \mathcal{H}^{*} and $\zeta^{*} F_{k}$ on U are complete. It is readily observed that the Hamiltonian vector field $\gamma_{T}(9)$ of \mathcal{H}^{*} is tangent to the manifolds $h_{r}(W)$, and is the image $\gamma_{T}=T h_{r} \circ \gamma_{H} \circ \zeta$ of the vector field γ_{H} (6). The latter is complete on W, and so is γ_{T} on U. Similarly, the Hamiltonian vector field

$$
\gamma_{k}=-\partial_{t} F_{k} \partial^{0}+\partial^{i} F_{k} \partial_{i}-\partial_{i} F_{k} \partial^{i}
$$

of the function $\zeta^{*} F_{k}$ on $T^{*} Q$ with respect to the Poisson bracket $\{,\}_{T}(1)$ is tangent to the manifolds $h_{r}(W)$, and is the image $\gamma_{k}=T h_{r} \circ \vartheta_{k} \circ \zeta$ of the Hamiltonian vector field ϑ_{k} of the first integral F_{k} on W with respect to the Poisson bracket $\{,\}_{V}$ (4). The vector fields ϑ_{k} on W are vertical relative to the fibration $W \rightarrow \mathbb{R}$, and are tangent to compact manifolds. Therefore, they are complete, and so are the vector fields γ_{k} on U. Thus, U is the desired open neighbourhood of the invariant manifold $h(N)$.

In accordance with theorem 2, the open neighbourhood U of the invariant manifold $h(N)$ of the autonomous CIS in theorem 3 is isomorphic to the symplectic annulus

$$
\begin{equation*}
W^{\prime}=V^{\prime} \times\left(\mathbb{R} \times T^{m}\right) \quad V^{\prime}=(-\varepsilon, \varepsilon) \times V \tag{24}
\end{equation*}
$$

provided with the action-angle coordinates $\left(I_{0}, \ldots, I_{m} ; t, \phi^{1}, \ldots, \phi^{m}\right)$ such that the symplectic form on W^{\prime} reads

$$
\Omega=\mathrm{d} I_{0} \wedge \mathrm{~d} t+\mathrm{d} I_{k} \wedge \mathrm{~d} \phi^{k}
$$

From the construction in theorem $2, I_{0}=J_{0}=\mathcal{H}^{*}$ and the corresponding generalized angle coordinate is $x^{0}=t$, while the first integrals $J_{k}=\zeta^{*} F_{k}$ depend only on the action coordinates I_{i}.

Since the action coordinates I_{i} are independent of the coordinate J_{0}, the symplectic annulus W^{\prime} (24) inherits the fibration

$$
\begin{equation*}
W^{\prime} \xrightarrow{\zeta} W^{\prime \prime}=V \times\left(\mathbb{R} \times T^{m}\right) . \tag{25}
\end{equation*}
$$

From the relation similar to (3), the product $W^{\prime \prime}$ (25), coordinated by $\left(I_{i} ; t, \phi^{i}\right)$, is provided with the Poisson structure

$$
\left\{f, f^{\prime}\right\}_{W}=\partial^{i} f \partial_{i} f^{\prime}-\partial_{i} f \partial^{i} f^{\prime} \quad f, f^{\prime} \in C^{\infty}\left(W^{\prime \prime}\right)
$$

Therefore, one can regard $W^{\prime \prime}$ as the momentum phase space of the time-dependent CIS in question around the invariant manifold N.

It is readily observed that the Hamiltonian vector field γ_{T} of the autonomous Hamiltonian $\mathcal{H}^{*}=I_{0}$ is $\gamma_{T}=\partial_{t}$, and so is its projection γ_{H} (6) on $W^{\prime \prime}$. Consequently, the Hamilton equation (7) of a time-dependent CIS with respect to the action-angle coordinates take the
form $\dot{I}_{i}=0, \dot{\phi}^{i}=0$. Hence, $\left(I_{i} ; t, \phi^{i}\right)$ are the initial data coordinates. One can introduce such coordinates as follows. Given the fibration $\xi(10)$, let us provide $N_{0} \times V \subset V_{0}^{*} Q$ in theorem 3 with action-angle coordinates ($\bar{I}_{i} ; \bar{\phi}^{i}$) for the CIS $\left\{i_{0}^{*} F_{k}\right\}$ on the symplectic leaf $V_{0}^{*} Q$. Then, it is readily observed that $\left(\bar{I}_{i} ; t, \bar{\phi}^{i}\right)$ are time-dependent action-angle coordinates on $W^{\prime \prime}$ (25) such that the Hamiltonian $\mathcal{H}\left(\bar{I}_{j}\right)$ of a time-dependent CIS relative to these coordinates vanishes, i.e. $\mathcal{H}^{*}=\bar{I}_{0}$. Using the canonical transformations (21), one can consider timedependent action-angle coordinates besides the initial data coordinates. Given a smooth function \mathcal{H} on \mathbb{R}^{m}, one can provide $W^{\prime \prime}$ with the action-angle coordinates

$$
I_{0}=\bar{I}_{0}-\mathcal{H}\left(\bar{I}_{j}\right) \quad I_{i}=\bar{I}_{i} \quad \phi^{i}=\bar{\phi}^{i}+t \partial^{i} \mathcal{H}\left(\bar{I}_{j}\right)
$$

such that $\mathcal{H}\left(I_{i}\right)$ is a Hamiltonian of a time-dependent CIS on $W^{\prime \prime}$.

References

[1] Arnold V (ed) 1988 Dynamical Systems III (Berlin: Springer)
[2] Bouquet S and Bourdier A 1998 Phys. Rev. E 571273
[3] Dewisme A and Bouquet S 1993 J. Math. Phys. 34997
[4] Kaushal R 1998 Int. J. Theor. Phys. 371793
[5] Lazutkin V 1993 KAM Theory and Semiclassical Approximations to Eigenfunctions (Berlin: Springer)
[6] Lewis H, Leach O, Bouquet S and Feix M 1992 J. Math. Phys. 33591
[7] Lichtenberg A and Liebermann M 1983 Regular and Stochastic Motion (Berlin: Springer)
[8] Mangiarotti L and Sardanashvily G 1998 Gauge Mechanics (Singapore: World Scientific)
[9] Sardanashvily G 1998 J. Math. Phys. 392714
[10] Sardanashvily G 2000 J. Math. Phys. 415245

