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1. Introduction

Strongly nonequilibrium plasma produced in gases by high-
intensity femtosecond laser pulses has attracted interest 
because of a number of specific electrodynamic properties 
that can be used for the generation and amplification from 
x-ray and EUV radiation to the THz frequency band [1–13]. In 
particular, the filamentation phenomenon can be very impor-
tant in the physics of the generation and (or) amplification of  
radiation [14].

Typically, spontaneous emission from atoms and ions 
is not taken into account when the strong-field dynamics 
of an atomic system is studied. In reality, the value of the 
vacuum modes of the electric field strength is negligible 

in comparison with those in high-intensity femtosecond 
laser pulses. The typical time allowed in dipole approx-
imation transitions for visible or UV radiation is in the range  
10−6–10−8 s, which is shorter than the duration of a fem-
tosecond pulse by many orders of magnitude. Hence, it 
seems that there is no necessity to take such transitions into 
account. On the other hand, any nonlinear process in plasma 
starts from spontaneous emission and this emission should at 
least be taken into account in the early stages of generation. 
To overcome this difficulty, the semiclassical approach [15] 
is now widely used. This approach is based on the calcul-
ation of the response of the quantum system driven by the 
laser field using the average over the atomic wave function 

( )→ψ r t,  of the dipole moment
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Abstract
A new approach for studying the spontaneous emission of an atomic system in the presence of 
a high-intensity laser field is used to study the process of harmonic generation. The analysis 
is based on consideration of quantum system interaction, with the quantized field modes 
being in the vacuum state, while the intense laser field is considered to be classically beyond 
perturbation theory. The numerical analysis of the emission from the single one-electron 1D 
atom irradiated by the femtosecond laser pulse of a Ti:Sa laser is discussed. It is demonstrated 
that not only odd, but also even harmonics can be emitted if the laser field is strong enough. 
The origin of the appearance of even harmonics is studied. The obtained results are compared 
with those found in the framework of the semiclassical approach that is widely used to study 
harmonic generation. It is found that the semiclassical approach is inapplicable in the  
strong-field limit.
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( ) ( )
→ → →∫ ψ= −d t e r t r r, d ,2 3 (1)

where ( )→ψ r t,  describes the evolution of an atomic system in 
a laser field. If a laser field is weak enough, i.e. its strength 
is much smaller than that of the atomic field, perturbation 
theory can be applied and one obtains the decomposition of 
the response over the field strength powers [16]. If the field 
is strong and perturbation theory is not applicable to study 
the quantum dynamics, the numerical solution of the non-
stationary Schrödinger equation for the quantum system in a 
laser field can be used. Such an approach for determining the 
response and studying the contribution of different processes 
to filamentation was used in [17, 18].

A similar approach was applied to study the atomic high-
frequency response and high-order harmonic generation 
(HHG) in the last two decades [19–23]. In this case the inten-
sity of emission was calculated as

→
ωω ωI d~ ,4 2

 (2)

where ωd  is the Fourier transform of the dipole moment (1):

( ) ( )
→ →

∫π ω= −ωd d t t t
1

2
exp i d . (3)

Such an approach was found to be extremely fruitful—see, for 
example, a recent review [5] and references therein.

Nevertheless, the possibility of applying the semiclassical 
approach to study harmonic generation and the polarization 
response in the case of a high-intensity laser field when the 
population of the initial (ground) state is depleted during the 
laser pulse action was questioned recently in [24]. It was dem-
onstrated that the application of the semiclassical approach 
to study the emission of a quantum system driven by a high 
intensity laser field is generally in contradiction with quantum 
electrodynamical calculations. In [25], a new approach for 
studying the spontaneous emission of an atomic system in the 
presence of a high-intensity laser field was developed. This 
approach is based on first order perturbation theory applied 
to the interaction of an atomic system dressed by an exter-
nal laser field, with many quantized field modes under the 
assumption that initially all the modes are in a vacuum state.

Here we reformulate this approach for the velocity 
gauge and apply it to study the emission of a model single- 
electron atom driven by a femtosecond pulse from a Ti:Sa laser 
(�ω = 1.55 eV). We find that odd harmonics of fundamental 
frequency are only emitted by the atom in rather weak exter-
nal laser fields when the strong-field atomic dynamics can be 
studied in the framework of quantum-mechanical perturbation 
theory. Beyond the applicability of perturbation theory in the 
regime of effective atomic ionization, both odd and even har-
monics of fundamental frequency are found to exist as a result 
of the electron bremsstrahlung in a strong laser field.

Comparative analysis of the obtained data with those 
derived in the semiclassical approximation is performed. It is 
found that the semiclassical approach that is widely used to 
study high-order harmonic generation fails in the strong field 
limit when the population of the ground state is depleted and 
essential ionization takes place.

2. Theoretical model of the interaction of an atomic 
system driven by a classical external field with 
quantized field modes

We start the analysis of the spontaneous emission of an atomic 
system using the Hamiltonian

( ) ({ }) ( { })→ →= + +H H r t H a V r a, , ,f0 (4)

where ( ) ( )→ →= +H H r W r t,0 at ; ( )→H rat  is the atomic Hamiltonian, 
and

( ) ( )→ →= − +W
e

mc
A t p

e A t

mc2

2 2

2
 (5)

is the interaction of an atom with a classical laser field in the 
velocity gauge in the dipole approximation, ( )

→
A t  is the vec-

tor potential of the classical field, → �= − ∇p i  is the momen-
tum operator, ({ })H af  is the Hamiltonian of the set of field 
modes excluding the laser field mode, ( { })→V r a,  stands for the 
interaction of an atomic electron with the quantized electro-
magnetic field, →r  is the electron radius vector and { }a  is the set 
of quantized field mode coordinates.

Let us assume that we know the solution of the nonstation-
ary problem for the atomic dynamics in the classical field

( ) ( ) ( )
→

→�
ψ

ψ
∂
∂

=
r t

t
H t r ti

,
, ,0 (6)

with the initial condition ( ) ( )→ →ψ ϕ= =r t r, 0 , where ( )→ϕ r  is a 
given stationary or unstationary state of the atomic discrete 
spectrum or continuum.

We will also suppose that at the initial instant of time all the 
field modes are in the vacuum state { }0 . Then the solution of 
the general equation with the Hamiltonian (4)

( { } ) ( ( ) ) ( { } )
→

→�
∂Ψ

∂
= + + Ψ

r a t

t
H t H V r a ti

, ,
, ,f0 (7)

and initial condition ( { } ) ( ) { }→ →ϕΨ = = ×r a t r, , 0 0  can be 
found by means of perturbation theory.

The wave function of the zero-order approximation, 
excluding interaction with the quantum field modes, reads 
as

( { } ) ( ) { }( ) → →ψΨ = ×r a t r t, , , 0 .0 (8)

We are going to find the solution of (7) in the form

( { } ) ( { } ) ( { } )( )→ → →δΨ = Ψ + Ψr a t r a t r a t, , , , , , ,0 (9)

with ( )�δΨ Ψ 0 .
For further analysis let us recall that initially we have vac-

uum in all of the field modes. Therefore, in the first order of 
perturbation theory, δΨ contains only one-photon excitations 
in a field mode:

( { } ) ( ) { }→ →∑δ δψΨ = ×
λ

λ λr a t r t, , , 0, 0, ....1 , 0, ...0, 0 .
k

k k
,

 
(10)

Here ( )⇀δψ λ r t,k  is the electron wave function, provided 
that one photon with wave vector 

→
k  and polarization λ has 

appeared.
As the interaction of the atom with quantized field can be 

written in a form

Laser Phys. Lett. 14 (2017) 055301
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∑ ∑= = −
λ

λ
λ

λ λV r a V
e

mc
e p a, ,

k
k

k
k k

,

( { }) ( )→ → →
 (11)

where λak  is the vector potential operator of the mode { }λk,  
and →

λek  is the polarization vector, for a given mode with  
one-photon excitation one has the problem

( )
( ) ( ) ( )

( ) ( )

→
→

→ →

→

δψ
δψ

ψ ω

∂
∂

= −

× × ×

λ
λ

λ

λ

�
r t

t
H t r t

e e p

mc
a

r t t

i
,

,

2
, exp i ,

k
k

k

k

0

norm

 

(12)

where с /( )�π ω= λa L4 knorm
2 3 , L3 is the normalization vol-

ume, and the initial condition is ( )→δψ = =λ r t, 0 0k .
Thus, we have the set of equations  for atomic system 

evolution, provided that one photon in the mode { }
→
λk ,  has 

appeared. It is obvious that the expression

( ) ( )∫ δψ=λW t r t r, dk k
2 3 (13)

represents the probability of finding a photon in the mode 
{ }

→
λk ,  as a function of time. Then the total probability of emit-

ting a photon of any frequency and polarization during the 
transition →f i is

( ) ( )∑=
λ

λW t W t .fi
k

k
,

 (14)

As the spectrum of field modes is dense, we can replace the 
sum in (14) by the integral over field modes. After integration 
over the angular distribution of the photons and summation 
over the possible polarizations, the probability of spontaneous 
decay in the spectral interval ( )ω ω ω+, d  can be expressed in 
the form

/ω
π
ω ω= ×ω ω λ=W

L

c
Wd

3
d ,k c

3

2 3
2

, (15)

where λWk,  is given by (13). One should note that expres-
sion (15) does not depend on the normalization volume, as 

/λW L~ 1k,
3.

To provide more insight into the physics of spontaneous 
emission in the presence of a strong laser field, the wave func-
tions ( )→δψ λ r t,k  should be represented as a superposition of the 
stationary states of the atomic Hamiltonian:

( ) ( ) ( )( ) →

�
⇀ ⎜ ⎟

⎛
⎝

⎞
⎠∑δψ φ= −λ

λr t C t r E t, exp
i

.k
n

n
k

n n (16)

The squared coefficients of the decomposition (16) ( )λCn
k 2

 find 

the atom in the states n  under the assumption that the emitted 
photon is in the definite mode { }λk, . We will further use these 
values to interpret the results of the numerical simulation.

We would like to note that the discussed problem can also 
be formulated in the length gauge [25]. In this case

( )
→→ε= −W d t , (17)

where 
→
d is the dipole operator and ( )→

→

ε = −t
c

A

t

1 d

d
 is the elec-

tric field strength. However, it is known [15] that if the dipole 
approximation is valid, both gauges are equivalent to each 
other.

3. Numerical model

In this section we briefly describe the numerical model that 
was used to study the spontaneous emission of a quantum 
system driven by a high-intensity laser field. We studied a 
1D single-electron atomic system with a Coulomb-screened 
potential [26]

( )
α

= −
+

V x
e

x
,

2

2 2
 (18)

with a screening parameter α = a1.6165 0, where a0 is the 
Bohr radius. For such a value of α the ionization potential 
is 12.13 eV, which corresponds to the ionization potential of 
a xenon atom. The set of energy levels in such a xenon-like 
atom can be found in table 1.

We will also discuss the set of calculations for an atom 
initially prepared in the ground state n  =  1 and exposed to the 
radiation of the Ti:Sa laser (�ω = 1.55 eV) with a trapezoidal 
sine-squared pulse with a plateau of duration tp and smoothed 
sine-squared fronts of duration tf, so that the total pulse dura-
tion was τ = +t t2p p f. The parameters tp and tf were chosen to 
be equal to two and ten optical cycles (OC).

According to the above-mentioned model, we solved 
equation  (6) for the evolution of the atomic wave function 
self-consistently with the set of equations  (12) for one- 
photon excitations in different quantized field modes. The 
procedure is described briefly in [25]. The frequency interval 
ω∆  between the quantized field modes was typically 0.02 

of the fundamental frequency, while the number of modes 
was 400–1200, depending on the chosen laser intensity 
value. The modeling was performed for a time interval that 
exceeded 2×  the duration of pulse τ τ= 2 p. This allowed one 
to distinguish the spontaneous transitions that are possible 
without laser field from the stimulated transitions, such as the 
Raman and Rayleigh types, or the stimulated bremsstrahl-
ung, when spontaneous photons only appear during the laser 
pulse action.

To compare the obtained spectra with those obtained in the 
semiclassical model, the semiclassical probability of emission 
in the spectral interval ( )ω ω ω+, d  was also calculated

Table 1. Xenon energy levels obtained in the numerical simulations 
for potential (18).

Principal quantum number, n Energy (eV)

1 −12.134
2 −5.910
3 −3.457
4 −2.220
5 −1.550
6 −1.135
7 −0.870
8 −0.685
9 −0.555
10 −0.457
11 −0.385

Laser Phys. Lett. 14 (2017) 055301
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( )

�

ω
=ω ωW

c
d

4

3
,semi

3

3
2 (19)

where ωd  was taken from (1) and (3).

4. Discussion

We will start the discussion of atomic dynamics in a strong 
laser field and harmonic generation with the data for the ioniz-
ation yield and the probability of staying in the ground state in 
dependence on laser intensity (see table 2).

First, we note that up to the intensity values ⩽ − ×1 2 1013 
W cm−2 the atom predominantly stays in its ground state. 
According to [24], that is the regime where the semiclassi-
cal approach can really be used to study spontaneous emis-
sion. Our simulations partially confirm this statement. The 
semiclassical calculations for atomic emission are presented 
in figure 1(a). Due to the definite parity of the atomic station-
ary states, the peaks in the spectra only correspond to the odd 
harmonics. Three additional peaks are observed at energies 
~6.22, 9.92 and 11.01 eV. These lines mainly appear in the 
after-pulse regime due to the population of states =n 2 , 
=n 4  and =n 6  and hence represent the oscillation of the 

dipole moment at consequent frequencies. These lines can be 
interpreted as spontaneous transitions to the ground state.

The results of the quantum-mechanical simulations of the 
atomic spontaneous emission for the same laser intensity are pre-
sented at figure 1(b). One can see that there are two groups of 
lines in the spectra: one group corresponds to the lines appearing 
during the laser pulse, while the other includes the lines emit-
ted predominantly in the after-pulse regime. The first group of 
lines mainly contains the emission at the fundamental frequency 
and its third and fifth harmonics. We can state that these harmon-
ics are the result of Rayleigh →� �ω ω= + = + λn n1 1 k  
(ω ω= λk ) and hyper-Rayleigh scattering when three of the five 
laser photons are absorbed and one phonon is emitted. These lines 
are in rather good agreement with the semiclassical calculations.

In addition to the lines corresponding to the generation of 
odd harmonics, several lines are found to emerge in the after-
pulse regime that in part do not appear in the semiclassical 
calculations. Lines �ω =λ 6.22, 9.92, 11.01k  eV correspond 
to the →=n 2, 4, 6 1  series of the spontaneous emission 

from levels excited during the laser pulse action. These lines 
are also observed in the semiclassical model. Nevertheless, one 
can distinguish a number of additional lines that do not exist 
in the semiclassical model. Among  these are the lines with 
ω =λ� 2.45, 4.31, 5.02, 5.36, 5.58k  eV that form the series 

→=n 3, 5, 7, 9, 11 2 . The lines with �ω =λ 1.23k  eV  
can be associated with the →=n 4 3  transition. In both 
cases, all of these lines correspond to the transitions to unpop-
ulated excited states and hence cannot be observed in the sem-
iclassical model [25].

The next point in our discussion concerns spontaneous emis-
sion in the strong field limit when an atom is predominantly 
ionized during the laser pulse. The semiclassical and quantum-
mechanical spectra for the intensity value 1014  W  cm−2 are 
presented in figure 2. For this intensity value the probability 
of ionization is ≈ 0.94 while the ground state is depleted up 
to ≈ 0.017. In both cases one observes harmonics of the fun-
damental frequency with a plateau-like structure up to energies 
≈ +U I3.17 p i (Up is the ponderomotive potential and Ii is the 
ionization potential of the atom). We would also like to men-

tion the existence of spontaneous emission lines that corre-

spond to the transitions →4 1  and →2 1 . Nevertheless, 
one can see that the results of the quantum-mechanical calcul-
ations differ dramatically from those of the semiclassical anal-
ysis. First, not only odd, but also even harmonics are observed 
in the emission spectra in a relatively low-energy part of the 
spectra ⩽�ω λ 10k  eV. In the high-energy part of the spectra, 
odd-order harmonics still dominate.

To provide an insight into the physical processes of har-
monic emission in the regime of strong field ionization, 
hereafter we analyze the distribution of the population of the 
ground state in dependence on harmonic frequency.

First, for a strong laser field when the probability of ioniz-
ation is high, the peak with ω ω=λk  can have a different 
physical nature. In addition to the process of Rayleigh scat-
tering, it can arise from the near-free electron oscillations at 
the radiation frequency in the area of the atomic potential. 
To distinguish these mechanisms, the distribution of prob-

abilities ( )λCn
k 2

 under the assumption that the photon is in the 

mode { }λk,  with �ω = 1.55 eV was calculated. It was found 
that for �ω =λ 1.55k  eV the probability of finding the atom 
in the ground state is ≈ 0.003, and hence the bremsstrahlung 
dominates. A similar situation is also realized for a number 
of higher harmonics with ( )ω ω= =λ m m, 2 – 5k . All of 
them come from the bremsstrahlung. To the extent that the 
continuum states are degenerated and have different spatial 
parity for the same energy, both odd and even harmonics can 
be emitted.

From our point of view, the oscillating and spreading of the 
ionized wave packet near the parent center is similar to the poten-
tial scattering in the presence of a strong external laser field when 
the quiver velocity is greater than the translational one. The spon-
taneous emission for such a bremsstrahlung regime was analyzed 
in [27]. The typical spectrum for spontaneous emission that was 
obtained in [27] is presented in figure 3 and consists of a number 

Table 2. Ionization yield and probability of staying in the ground 
state ( ω = 1.55�  eV).

Intensity (W cm−2) Ionization yield
Ground state  
population

1  ×  1013 4.372 74  ×  10−4 0.999 27

2  ×  1013 0.008 36 0.990 86

3  ×  1013 0.087 37 0.844 13

4  ×  1013 0.284 31 0.703 24

5  ×  1013 0.525 53 0.457 24

6  ×  1013 0.459 33 0.474 93

8  ×  1013 0.583 27 0.163 76

1  ×  1014 0.941 16 0.017 16

Laser Phys. Lett. 14 (2017) 055301
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of both odd and even harmonics. It is in a good qualitative agree-
ment with our data for low-order harmonic emission.

For high-order harmonics in the plateau regime, odd harmon-
ics were still predominantly emitted (see figure 2(b)). This part of 
the harmonic spectra was in qualitative agreement with the semi-
classical model. To explain this peculiarity the decomposition 
(16) of the wave function ( )⇀δψ λ r t,k  was analyzed for field modes 
corresponding to ( )ω ω= = ÷λ m m, 6 24k  in the intensity 
range × ÷4 10 1013 14 W cm−2 when the plateau-like structure 
of harmonics is formed. It was found that both photorecombina-
tion to the ground state and bremsstrahlung contribute to the odd 

harmonics, although photorecombination provides the greater 
contribution to the plateau of odd harmonics. According to [27] 
we can conclude that the bremsstrahlung acts predominantly in 
the part of the spectra that is located before the plateau (see fig-
ure 2(b)) and as a result even harmonics are produced there.

It is also necessary to mention that the existence of the 
bremsstruhlung continuum was not observed in the semiclas-
sical calculations. It was found that the quantum-mechanical 
calculation provided the intensity of the harmonics and lines 
corresponding to transitions →4 1  and →2 1  up to the 
order of the values of—and above—the semiclassical ones. 
Both of these peculiarities result from the essential depletion 
of the ground state during the ionization process, followed by 
the suppression of the transition to the ground state, studied 
in the framework of the semiclassical approach. In the semi-
classical approach the probability of photorecombination is 
proportional to the population of the final state [25], and hence 
it underestimates the efficiency of high-order harmonic gen-
eration in the strong-field limit.

It should be also noted that the emission of a single atom 
was analyzed in this study. To produce the effective process 
for HHG one needs to analyze the emission from the atomic 
ensemble and the phase-matching effect. These problems 
are outside the scope of this paper. Nevertheless, we can 
suppose that phase matching would suppress the emission 

Figure 1. Semiclassical (a) and quantum-mechanical (b) spectra of spontaneous atomic emission for a laser intensity of 1013 W cm−2.  
The solid curve is the emission spectrum by the end of the laser pulse and the dashed curve corresponds to the instant of time equal to  
the two-pulse duration. The values near the peaks indicate their position in eV.

Figure 2. The same as figure 1, but for a laser intensity of 1014 W cm−2.

Figure 3. Spectral intensity of spontaneous bremsstrahlung in the 
field of an intense external wave.

Laser Phys. Lett. 14 (2017) 055301
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arising from transitions between discrete atomic levels and 
to a lesser degree those coming from bremsstrahlung and 
photorecombination.

5. Conclusions

We analyzed the spontaneous emission of an atom in the pres-
ence of a high-intensity laser field. Our analysis is based on 
consideration of quantum system interaction, with the quanti-
zed field modes being in the vacuum state, while the intense 
laser field is considered to be classically beyond perturbation 
theory. It was demonstrated that not only odd, but also even 
harmonics, as well as lines associated with the transitions 
between different discrete levels, can be emitted if the laser 
field is strong enough. The origin of even harmonics was stud-
ied. It was determined that they result from the bremsstrahlung, 
which becomes efficient in the regime of strong ionization. The 
obtained results were compared with those found in the frame-
work of the semiclassical approach. One can conclude that the 
semiclassical approach is inapplicable in the strong-field limit.
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