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Goldstone Type (Non-Poincar6) Supergravity
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The gauge description of gravity as Higgs-Goldstone tj'pe iields is extendecl on supergravitl'.

Follovn'ing the Poincar6 gauge version of gravity, contemporziry supergravitl' models are connected

r','ith the super (graded) Poincar6 group. N{ost of these models are basecl on gauge coordinate supertrans-

lat i6ns in the spir i t  of  Kibble 's gravi ty approach, ' )  a l though graded af f ine bundles conte into p lay,  too. ' '

H6q'ever,  Poincar6 g:ruge r .ers ions of  gravi ty (especia l l l 'K ibble 's or-re cr i t ic ized by F.  I Iehl  and others)  fa i l

to be quite satisfactory.'r') The Poincar6 supergrar-it1, faces its own additional clill iculties. For instance,

many authors ignore the fact  that  by the supertranslat ion lar . r 'coordinates -Yu are not  real ,  but  represent

even elements of a Clrassmann algebra.
' l 'he 

Pgincar6 gauge vers ions of  gravi ty lost  s ight  uf  the fact  that  not  onl l '  gaugc potent ia ls,  but

Higgs-Goldstone fields appear in a galrge theory r','hen symmetries zlre spontaneor-rsl1' broken. Einstein's

gravitational field and supergravity turn out to be fields just of this type.

S 1. Gauge graYitation theory

We consider the gauge gravitation theory as being based on Einstein's relativity and

equivalence principles reformulated in the fibre bundle terms.o)-')
In these terms a metric gravitational fleld on an orientable space-time manifold Xn is

defined as a global section .q of the fibre bundle B of pseudo-Euclidean bilinear forms in

rangenr spaces over X4. The bundle B is associated with the tangent bundle ?(X)
possessing the structure group GL*(4,.r8), and this is isomorphic with the fibre bundle in
quot ient spaces GL*(4, R)/SO(3, 1).  The global sect ion h of the quot ient bundle, which

is isomorphic with g, describes a gravitational field in the tetrad form.
By the well-known theoremsu) for a global section h of the quotient bundle to exist,

the possibility of contraction of the structure group GL- (4, R) of the tangent bundle to the
Lorentz group is necessary and sufficient. It means the existence of an atlas Wn-{ur.,

el,tn\ of 7(X) such that all transition functions of. Ws are elements of the Lorentz gauge

group, and all metric functions gr:t/ttng coincide with the Minkowski metric ry relative to
As. Tetrad (vierbein) functions ht,-t!Lsh take on values in the center of the quotient

space Gl+(4, R)lSOG, 1) relat ive to Vn.
Usually a tetrad field h is written as a section of the principal GL(4, R)-bundle up to

multiplicati on of h on the right by elements of the gauge Lorentz group. This freedom

reflects the nonuniqueness of the atlas Vs. Let us fix the atlas AJs and tetrad functions
h r . t a k i n g v a l u e s i n t h e u n i t e l e m e n t o f  t h e g r o u p  G L ' ( 4 , R ) .  ' f h e n w i t h r e s p e c t t o a n y

at las ?'  of  T(X) the tetrad funct ions hr read h,-</, t ( , / , tn) ' .  These represent matr ix
functions acting in the typical fibre of 7(X) and describing the gauge transformations
f rom the  a t las  Vs  to  the  a t las  V : {u r ,< ! r -h r< / , , ,n \ .  Changes o f  V  to  q t ' - {u t ,Qr '

-91<!t\ lead to gauge transformations /zr'9t-hr of the tetrad field h'.
In the fibre bundle terms the relativity principle proves to be identical with the gauge

principle of covariance under the gauge group GL(4, / i ) (X) of al l  t ransformations of
atlasses of the tangent bundle 7(X). Thereby the gravitation theory can be built
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directly as the gauge theory of the space-time group GL.(4, R). But the relativity

principle fails to fix the Minkowski signature (-, -, -, +) of metric fields, and therefore

the equivalence principle must be called into play in the gauge gravitation theory.

In the fibre bundle terms the equivalence principle can be formulated as the postulate

of the existence of a reference frame where Lorentz invariants can be defined everywhere

on a manifold Xn, and these would be conserved under any parallel transport. This

postulate holds if the connection on the tangent bundle can be reduced to the Lorentz

connection, what entails in turn the contraction of the structure group GL*(4, R) of this

bundle to the Lorentzgroup, and consequently the existence of a gravitational field on Xn.

In this fashion the equivalence principle establishes the situation of spontaneous breaking

of gauge space-time symmetries down to the exact Lorentz gauge and a gravitational field

can be treated as the sui generis Goldstone field corresponding to this breakdown.

This standpoint is contrary to ideas on the Poincar6 gauge description of gravity,

which aimed to represent tetrad gravitational fields as gauge fields of translations due to

seeming coincidence of tensor ranks of tetrad fields and translation gauge fields. More-

over, a gauge model of the Poincar6 group as the fundamental dynamic group of Special

Relativity was believed to supplement gauging of internal and intrinsic spin symmetries of

particles. However, one faced here the specification of gauging of the Poincar6 group as

the dynamic group realized by differential operators. All such attempts resulted in

models which were rather far from the conventional formulation of a gauge theory.')'n)

The conventional gauge technique can be applied for gauging of the Poincar6 group'

if one ignores its physical role and regards it as an abstract group.t)' ') In this case the

Poincar6 gauge potentials are represented by coefficients of a general affine connection A

on the principlal affine frame bundle A(X). Under fixing a certain translation gauge the

correspondence between A and the pair (At,0) of a linear connection At on the linear

frame bundle LG) and ,Rn-valued l-form d on the total space of. L(X) (or the tensor

field 0 of the type (1, 1) on X, or fibre mapping of TdD is established.u) Coefficients

of tensor field d represent homogeneous components of translation gauge potentials'

One sees at once that 0 has nothing to do with h. Among other things they differ

mainly in their gauge transformation laws. Tetrad functions /z describing the gauge

transition between the fixed atlas Ws and a given atlas W are transformed as htngtht

under atlas changes, whereas gauge translation potentials d describing the fibre mapping

of  T(X)  a re  t rans formed as  g , 'g ,0 ,9 , ' .o ' ' "

Thus the poincar6 gauge model fails to provide a gravitational field with the status

of translation gauge potentials. Then one must pose the question on the physical treat-

ment of translation gauge fields. For instance, such fields are applied to describe disloca-

tions in the gauge theory of dislocations and disclinations,n) and this description can be

used in the gauge field theorY.to)
Since supergravity (,4/:1) must include gauge gravity, one ought to construct a

supergravity theory as sui generis graded generalization of a gauge gravitation theory.

As a matter of experience of a gauge gravitation theory the Poincar6 gauge approach fails

to be quite relevant for this aim. Therefore, one is obliged to formulate supergravity in

terms of super fibre bundles after the fashion of the gauge gravitation theory in our

version.
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$ Z. Super fibre bundles

Let us recall some notions. One calls Grassmann algebra an associative algebra ,4
(with the unit element) over the field of real numbers rB, which possesses a canonical
(finite) set of anticommutative generators €',"', €', [6r, 6u]*:0. This is a Zz-graded

commutative algebra t1:\o@At, whose even part,4o (odd part A) represents a

2r '-dimensional real vector space of even (odd) products of generators f. An even part

,40 splits into ,40: R@Ao', and the projection o:A- R is called the body map.

A Grassman algebra can be provided with the structures of Banach algebra and

Euclidean topological space by the norm")

L

11611: f  la r '  1 ,1  ,  € -Foo l . - ,o^ r "Ae{n , .Aa

In a super field theory the Grassmann algebra replaces the numerical field, and

superspaces over A replace familiar vector spaces over ft. We call a superspace the
product B''-:\on x Ar-. On the one hand, this represents the ,4-envelope of a Zz-graded

vector space L" '^:Lo@ Lr:R"@R^ which is obtained by mult ipl icat ion of even (odd)

vectors of L by even (odd) elements of ,4. A superspace B"'* considered as the ,zl-

e n v e l o p e  p o s s e s s e s  ( n * m )  b a s i s  v e c t o r s  { 9 ' , a : 1 , " ' ,  n , 9 , , i : 1 , " ' , m \ ,  a n d  c o o r -

dinates of its even (odd) elements are even (odd) elements of ,4. On the other hand, a

superspace B' ' '  forms a2t '  (n-tm)-dimensionai real  vector space with the basis {4or,
I  , o \ .

A superspace is provided with the norm and the Euclidean topology induced by the

norm (1). Functions on superspaces, differentiation with respect to Grassmann coor-

dinates, supersmooth (superanalitic) functions and mappings are defined on the analogy of

the ordinary case, but with a glance to a certain specification.rl)-13) We only remark that

functions on a superspace I)"'^, which take on values in the Grassmann algebra, can be

considered as mapping of the vector space l l " ' ( t t*m) into the vector space 1l ' ' .

Accordingly, the differentiation of such functions with regard to Grassmann coordinates
can be rewritten via their derivatives with regard to real coordinates, when these de-

rivatives obey the generalized version of the Cauchy-Riemann condition.

An (n, zz)-dimensional supermanifold M"'^ is defined as a Banach manifold endowed

with an at las Wr,t-{ur,  er ' .  nr) IJn'n\ whose transi t ion funct ions are supersmuol l t r t ) ' tz)

Cne constructs the super tangent bundle T(M"'^) over the supermanifold M"'*. The

typical fibre of this bundle is the superspace B"'', and the structure group of T(M"'*) is

the group of automorphisms of B"'*.
This is the super Lie group L(n, m) of invertible matrices

where A and D are square (nxn) and (mxm) matrices consisting of even Grassmann

elements, and B, C are rectangular matrices consisting of odd Grassmann elements. A

matrix M is invertible as soon as matrices oA and ol) (where o is ttre body mapping) are

invertible. The super Lie grciup L(n, m) represents an ordinary Lie group included in the

97r

( l )

l a  B \' - \ .  r , ) '
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group GL( 'z '  ' (n ' l  m) ,  R) .
Thereby a supermanifold M"'^ and a super tangent bundle T(M"'-1may be represent-

ed as a certain 2' ' (ml rz)-dimensional real manifold and the tangent bundle over it,

whose transition functions obey the special condition of the Cauchy Riemann type.

Let us describe the "super" analogue of a space-time manifold'

S g. Super space-time sYmmetrY

A super Lie group SG is an abstract group admitting the parametrization by Grass-

mann elements, which endows this group rvith superanalytic manifold. The analogy of a

Lie algebra for a super Lie group is graded Lie module of left-invariant derivations at the

unit element of SG.") The even part of this module (which consists of the tangent space

at the unit element of SG) represents an ordinary Lie algebra, which equals the Lie

algebra of the super Lie group SC as a Lie group.

Hereinafter we restrict ourselrres to the case of super Lie groups whose Lie albebras

can be obtained as,4-envelopes of Lie superalgebras (graded Lie algebras)' This case

exhausts symmetries of a super field theory.

One calls Lie superalgebra any Zz'gtaded algebra A- Ao@A' endowed with products

| , ] satisfying the following axioms:

I t ,  t ' 1 - - 1  l ) 4 ( t ) 4 \ I ' ) l l ' ,  I ) ,

U ,  l t '  ,  f ' l l : l l l  ,  I '1,  r")+ (  t larr tat t ' ) l l '  , l I  ,  I " l l  ,

I € A o r , ,  I , e  A o s , t .

The even part of a Lie superalgebra forms a Lie algebra, whereas the odd part A' forms

a representation of this Lie algebra, u'hat enables one to classify sirnple Lie superalgebras

after the fashion of the Lie algebra classification.'n)

Irredusible linear representations of Lie superalgebras A ate tealized in Z'-graded

vector spaces 1- by matrices

for even elements and

/ 0  a \
t l
\ c  0 l

for odd elements. 
' lhis representation space l, is a sum of spaces of irreducible represen-

tations of the Lie albebra .40, and odd elements of ,4r perform transitions betu'een these

representations.
Since, roughly speakirtg, :1 is a superalgebra of generators of a super Lie group' we

see that the study of .zl exhausts the de:;cription of symmetries of a super field theory.
point out that a supergravity theory admits only real superalgebras and their reai

reprcsentation at least in an even sector.

At first r,r,e cliscr-rss the super analogies of the spatial rotation SO(3) and the covariant

( ' t  o\
\0  Dl
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spat ial  t ransformation algebra CIL(3, R)

\Mr, Mr, Mr: lM,,  Mi l-  e , :uM,\ ,

One ought to discern two kinds of SO(3):

\S*- iM' M',  S -  iM,+ M',  S.-  iM' j  .

These are isomorphic real subalgebras of the complex algebra Sf(3, C). The first
describes space rotations, and the second is the so-called quantum mechanic albebra of
spin operators.

The minimal superalgebra including SO(3) is OSP (1, i ) .  I ts even part  consists of
the Lie albebra SP(2),  rn 'hich equals SO(3) in the quantum mechanic form {Sr,  S ,  S.} ,
and its odd part contains t'uvo generators Q*, Q . The commutation relations of OSP
/ r  1 \

\ 1 .  1 /  r e a o :

l _ l

[ s , , 9 - ] - ; a '  ,  [ s . , 9  l - - ; a

[ S , ,  Q t ] - ( l  ,  [ S - ,  I  ] :  Q *  ,

[ S , Q ' ] - Q ,  [ S , Q ] : 0 ,

[ Q * , 8 * ] :  ] s . ,  [ 0  ,  o  l - ] t  [ Q ' ,  Q  J : j s ,  Q )

plus commutation relations for S*, S , Sr. The odd elements Q realize the fundamental
spin i /  2 representat ion of SO(3).

'fhe 
superalgebra OSP (3, 1) possesses representations by real matrices in the scalar-

spinor graded space l' ' ', and in the vector-spinor graded space l,"' ' describing the spatial
part of a super space-time. Unfortunately the quantum mechanic algebra SO(3) cannot
be included in the real algebra GL$), and the superalgebra OSP(1, l) fails to be relevant
for a supergravity theory.

The superalgebra OS1'(3, l) turns out to be quite satisfactory. Its even part is the
direct sum of the Lie algebra SO(3) with generators {,41', Mr, M'\ and the Lie algebra
SP(2)-SO(3) with generators {S,,  S ,  S.} .  I ts odd part  contains three pairs of gen-
erators \Q, ' ,  Q, ,  i -1,2,31. The commutat ion relat ions of OSP(3. 2) read:

[M,  s ] :o  ,  lM, ,  e i ' ) :  t  € , iue  u '  ,

[ ( J ' - ,  Q , * ' ] : 0 ,  l Q ,  ,  Q r * , 1 - 0 ,

l Q ,  .  Q  , , 1  ) u , , , M u

plus commutat ion relat ions for \M',  Mr, Mr\,  {S-,  S ,  S:} ,  and commutat ion relat ions (2)
for each index i  of  Q j ,  Q, The pair  of  odd elements {Q, ' ,  Q, }  for each index i
'eal izes the fundamental  spin 1/2 representat ion of the algebra {S-,  S ,  Sa},  and the
t r ip le t  \Q" ,  Qr* ,  Qr ' ) ( {Q,  ,  Qr ,  Q,  } )  rea l i zes  the  vec tor  (covec tor )  representa t ion  o f
the algebra \Mr, M', M"j.

'fhe 
superalgebra OSI) (3, 1) possesses the minimal-dimensional representation in the

graded space Z'' ' by (Sx5) matrices where non-zero elements o;; re?d..

M r : { a z z - ' -  ( t z . t : 7 1 ,  M r -  \ a r . r :  -  a s t : 7 } ,  M z - \ o z r :  -  o t z : I \ ,
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5 , : { a + s - 1 } ,

q  -  : \ n , , -  o^ , :  t l  ,
^  I  1 l
Q ,  i o s , = ' a t r  Z J

The even subspace of L''t is the space of the vector representation of so(3) : \M" M'' Muj'

a n d t h e o d d s u b s p a c e o f  L 3 J i s t h e s p a c e o f  t h e s p i n l / 2 r e p r e s e n t a t i o n o f  s o ( 3 ) : { s * ' s  '

S ' ) .
The Lie algebra so(3) = {M,, Mr, Mrl can be included into the Lie algebra GLQ' R) '

and the superallJebra osP(3, l) can be included into the Lie superalgebra L$'!l ' The

even part  of  l (3,2) is the direct sum of Lie algebras Gl(3, E) and GLQ' R) '  Odd

g b n e r a t o r s  o f  t ( 3 ,  ' D  a r e  { Q " ,  Q '  , 8 " , 8 '  '  i : 1 ' 2 ' 3 1 '  G e n e r a t o r s  { M '  S '  Q \  a n d  \ M '

s,  or compose two graded subalgebras os1'(3, 1) of  l (3,2).  The even generators

complet ing OS1'(3, 1) to l (3,  2) are vielded by products t0 '  Ol '

The superalgebra L$,2) possesses the natural representation in the graded space

Lu,,. The even part of l ' ' '  is the spatial vector space of the natural representation of the

Lie algebra GL\3,r'i), and the odd part of l ' ' '  is the spinor space realizing the spin 1/2

representat ion of the Lie algebra so(3) :  sP(2) and the di latat ion operator D - \at+: ass

: 1 1 ' 2 \ .  I n  c o m p a r i s o n  w i t h  Q ,  m a t r i c e t  Q  o t  L ' ' '  r e a d "  0 ' * :  { d t i -  -  d ' u - I l 2 \ '
:  r  r  i  n l

Q ,  
-  

l Q ; a =  o 5 t  I l L l '

In the fashion of the spatial supersymmetries the super space-time symmetrtes are

examined. The subalget .u osp( 4,2: D seems to be the most convenient for describing

super space-time symmetries. Its even part is the direct product of the Lorentz algebra

so(3, 1) and the symplectic algebra sPQ,2) which is isomorphic to the algebra so(4' l)

and includes the Lorentz algeira SO(3, 1). The odd part of OSP(4,2; 1) is composed of

g e n e r a t o r s  Q o , , a : 1 , ' . . , 4 ; i : | , . . . , 4 , w h i c h f o r m t h e 4 - v e c t o r r e p r e s e n t a t i o n o f  
S o ( 3 ,  1 )

along the indices a, and the 4 spinor representation of so(3, 1)csP(2' 2) along the

indices i.
The superalgebra osP(4,2; 1) possesses the minimal-dimensional representation by

real matrices in the graded space lu'0, which is the direct sum of the 4-vector space Xn and

the 4-spinor space @0. The odd generators Qo' are realized in I'^'o by matrices

.  t  1  l ,  - -  \ k ( t )  L / ; \ - ;
Q o '  : 1 a a , t + i :  f , l r " l ' ,  o t ' a t , , " - + ( -  4 o o ) ' ( " '  k ( i l =  i - (  i ) ' i '

Imbedding of the Lie algebra so(3, 1) into the Lie algebra GI'(4,I1) induces imbed-

ding of the Lie superalgebra OSP(4,2; 1) into the Lie superalgebra L(4' 4) possessing the

natural representation in the graded space l4'4. The even part of L(4, 4) is the direct sum

of two algebras GLQ,R), and the odd part contains generators Qo" Qo" where' in

comparison with Q, matrices Q on ln'n read:

: - ,  1
Q o ' = { a o ' 0 ,  | a o a o . t " ' o q  h t t ) a  d I  k t i ) ' a l '

The even generators completing osp(4, 2; 1) to LQ, 4) are produced by products [Q, 0]

S A. SuPer Minkowski space

The Grassman envelope Bn3 of the graded space 14',1 seems to be the best model for

5  :  { a r r : 1 }  ,  S . : { a , n :  -  o , , - 1 2 \  ,
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the super expansion of the standard Minkowski space. The super Lie grorp OSP (4,2;

1) whose Lie algebra is the Grassman envelope OSP,r(4, 2; l) of the Lie superalgebra OSP
Q,2; l) replaces the Lorentz group. The supergroup OSP( 4,2; l) keeps the invariance of
the bilinear form

H (9 ,  9 ' )  :  qoo 'XoXo '  +  a r i ? '  0 "

:  x , x r ' -  x t x r ' -  x t  x t ' +  x o x 4 ' +  0 r 0 r ' -  0 r 0 r ' +  0 3 0 4 ' -  0 4 0 3 '  ( 3 )

on the elements 9-XoOoI 0'9,  of  the superspace Bn'n. Coordinates X" and dt of

elements I are even and odd Grassmann elements respectively, and the form (3) takes

on values in the even part of the Grassmann algebra A.
The SO(3, 1) and SP(2, 2) generators multiplied in even parameters turn the f.orm H

into zero by definition, and one can verify the same section of generators I multiplied in

odd parameters.

S 5. Supergravity

Let us examine a supermanifold Mn'n and a super tangent bundle 7'(M''") over Mn'n.

This bundle possesses the typical fibre Ba'a. The structure group of T(Mn'n) is the

supergroup LQ,4) whose Lie algebra represents the Grassmann envelope of the Lie

supera lgebra  L(4 ,  4 ) .
Following the treatment of the equivalence principle in the gauge gravitation theory

considered by us, let us require the contraction of the structure group I-(4,4) of the bundle
T(Mn'n) to the super Lie group OSP(4,2: l ) .  Since a supermanif  oId Mn'0, a super tangent
bundle T(Mo'n) and structure groups LQ,4),  OSPG,2;!)are an ordinary manifold,  an

ordinary fibre bundle and Lie groups respectively for this structure group contraction to

take place a global section G of the associated fibre bundle in quotient spaces LQ,4)

l O S P U , 2 ;  l ) m u s t  e x i s t  ( w h e r e  L G , 4 )  a n d  O S P ( 4 . 2 : 1 )  a r e  c o n s i d e r e d  a s  L i e  g r o u p s ) .

This quotient space is isomorphic to the space of all bilinear forms on a superspace
Bn'n, which can acquire the canonical form (3) via L(4,4) transformations. Then on the
fashion of our treatment of the gauge gravitation theory a global section G may be treated
as a supergravity field.

The definition of a supergravity field in the fibre bundle terms in the same way as a
gravity field opens the door to build a supergravity theory as the gauge theory of the

super-group LG,4) which is spontaneously broken down to the super Lorentz group OSP
(a,2,l). For instance, one may build supergeometry (super Christoffel symbols, supertor-
sion, supercurvature, etc.) directly by analogy with the conventional gravitation theory,
but with a glance to the certain specification connected with the odd Grassmann algebra
generators.

Supergravity must include gravity. This inclusion is induced by the immersion of the
real field R into a Grassmann algebra and by projection of a Grassmann algebra onto R

by the body map. The body map of a superspace B"'- onto R' is defined by the equivalen-
ce relat ion o9:o9' ,9,9'=8" '-  on a superspace B" '2.  But the def ini t ion of this
relation on a supermanifold faces difficulties. Really, let (u, ,/,) and (u' , Q') be two charts
on a suDermanifold. whose intersection is not connected, i.e.,
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u ) u ' : V r U V " ,  V ' ) V z : d .

Denote

<lv: \L ! Vr,z , </'i,t: <!' ! Vr,z .

Let 9 1e Vt, I2e V" be two o-equivalent elements relative to ( u, /), i.e., o,!r9 r- 6t!"9 r.

But these may be nonequivalent relative to (u',4,') because 6<!''t! ' t6*6tf'2'tf 't2 1o in

general. A supermanifold possesses such an atlas that o-equivalence is defined every-

where on a supermanifold,'u) but the quotient of a supermanifold by this equivalence

relation fails to be even a topological manifold in general. Moreover this equivalence

relation is destroyed by transition to other atlases of a supermanifold.

The body map problem is common to all models utilizing supermanifolds, and this is

the serious difficulty for physical outcomes of supersymmetry formalism to consider it as

quite satisfactory.
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