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Why to gauge gravity?

At present Einstein’s General Relativity (GR) still remains the most satisfactory theory of classical
gravitation for all now observable gravitational fields. GR successfully passed the test of recent experiments
on the radiolocation of planets and on the laser-location of the Moon, which have put the end to some other
versions of gravitation theory, e.g., the scalar-tensor theory. ' '

At the same time the conventional description of gravity by Einstein’s GR obviously faced a number of
serious problems [55], and even some corner-stones of gravitation theory still remain disputable up to our
day. This is reflected also in the rather curious uninterrupted flow of proposals for new designations of this
theory.

Really, it is difficult to find in physics another example of continuous discussions about naming a
well-established theory like Einstein’s theory of gravitation. The author’s own proposal “Allgemeine
Relativitatstheorie” as pointing on the generalization of the Special Relativity (SR) is still not admitted
by some scientists. A. Friedmann wrote about “small” and “great” principles. V. Fock was a supporter
of Fokker’s expression ‘“chronogeometry”, insisting that GR does not possess any “relativity” (in the
sense of SR), and believing with Kretschmann and P. Havas that “‘general covariance™ requirement is a
trivial one. H.-J. Treder speaks about “‘geochronometrical gravity”. J.A. Wheeler repeatedly writes
about ‘“‘geometrodynamics”’, though previously it designated “already unified” theory of gravitation and
electromagnetism of Rainich. One would speak now about Newtonian “‘gravistatics” and Einsteinian
“gravidynamics” (after B. de Witt and D. Tvanenko) or “gravitodynamics” (A. Mercier).

It is well known that Einstein repeatedly insisted that the Relativity Principle (RP) is not a priori
necessary, i.e., it is not physically trivial. At the same time formulation of this principle is known to be
directly connected with establishing the notion of reference frames in gravitation theory, which itself
still remains under discussion.

The problem of reference frame definition in GR was not paid sufficient attention up to about the
mid-1950s. As was stressed when founding GR, e.g., in the Einstein—Kretschmann—Kottler discussions,
revived later by V. Fock, P. Havas and also by H.-J. Treder, the important possibility of a general
covariant formulation means that coordinates are only auxiliary quantities losing their immediate
physical sense of observable objects, in contrast with, e.g., the coordinates in Minkowski space. Then
there arose the necessity to distinguish coordinate systems from reference frames. Einstein, though
emphasizing for the first time the role of reference frames, however, did not give himself any formal
definition of them. Moreover many contemporary authors mixing coordinates and reference terms
simply ignore this problem. But more precise reference system determination is necessary for correct
experimentation, for stating the Cauchy problem for gravitational field equations, for describing spinors in
GR, and for other problems of gravitation theory.

Most deeply the reference frame problem is examined in the tetrad version of GR in combination with
the technique of (3 + 1) decomposition [76, 91, 47], where tetrads, thought to define local reference frames,
are erected in all space-time points. But the dilemma to make up these reference tetrads by a certain choice
of physical devices is as yet far from a final solution. All the more in the general case of a curved space-time
there may not exist any continuous tetrad distribution, but only up to admitting SO(3)-transformations of
tetrads.

The Equivalence Principle (EP) being another corner-stone of GR is also open to question, e.g., one
separates “weak”, ““middle-strong”, and “strong” equivalence principles [112, 108].

In GR the Equivalence Principle supplements RP and must establish the existence of a certain reference
frame, where all physical laws would take the known special relativistic form; and it seems naturally for
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some authors to establish the disappearance of a gravitational field as the criterion of transition from GR to
SR in some reference frame.

All existent formulations of EP are based upon the empirical equality of inertial mass, gravitational
active and passive charges. In the case of a uniform gravitational field it provides the existence of a reference
frame searched for, in which the motion law of probe particles is viewed in the same way as free motion in
SR. In the general case EP is formulated as a sui generis localization of this equivalence for uniform
gravitational fields, i.¢., a local inertial frame must exist, where a metric field becomes the Minkowski one,
and its Christoffel connection disappears in a given space-time point. But gravitation curvature does
generally not vanish in such a reference frame. Does this mean that the Equivalence Principle in gravitation
holds only in the “weak” variant, i.e., only for laws, e.g., of probe particle motion, which do not contain
more than first-order derivatives of a gravitational field?

Then to what degree is it correct to speak about such a special relativistic attribute as energy-
momentum of a gravitational field itself? Maybe it is the cause of the known problem of gravitation
energy, which led to vivid disputes, starting with Einstein~Grossman pre-GR works up to recent days,
and presenting a broad display of opinions, as, e.g., in the case of gravitational waves: posmve energy of
waves, or o energy at all!

Note also the widely discussed singularity problem in GR, which shows that either we are unable to gain
insight into the nature of singularities as yet, or that GR (at least in its classical version) is incapable to
describe extremal gravitational fields. -

These and some other difficulties of the GR picture of gravity motivate one’s attempts to reformulate
gravitation theory from non-conventional standpoints extending the framework of Einstein’s GR.

But why gauge gravity? Can the gauge treatment of gravity really solve the above-mentioned
problems? Beforehand nobody knows. But today many of these problems seem to be put in the shadow
of the urgent goal of the gravity unification with the elementary particle world. Just this goal stimulated
by the grand unification program in contemporary particle physics puts the gauge version in the forefront of
modern gravitation research.

Today, gauge theory provides the theoretical base of all modern unification attempts in particle physics.
It has become clear that weak and electromagnetic interactions can be successfully unified by the
Weinberg-Salam gauge model, and there is growing evidence that strong interaction is also mediated by
gauge particles or gluons within the framework of chromodynamics. In field theory gauge potentials
become a standard tool for describing interactions with very different symmetries. And apparently the
single gap in the modern gauge picture still remains gauging the external or space-time symmetries of fields
and particles, that includes the gauge gravity also.

Moreover, gauge theory using the mathematical formalism of fiber bundles realizes in fact the known
program of the 1920s to build the geometric unified picture of various interactions. And it is strange enough
that just the gravitation theory, being the first example of field geometrization, has still not any recognized
gauge version. Although the first gauge treatment of gravity was suggested immediately after the gauge
theory birth itself [109, 8, 62].

The main dilemma which during 25 years has been confronting the establishment of the gauge
gravitation theory, is that gauge potentials represent connections on fiber bundles, while gravitational fields
in GR are only metric or tetrad (vierbein) fields.

Connections as fundamental quantities appeared together with the metric in Weyl’s and Eddington’s
generalizations of GR on gravity with nonmetricity and torsion, and in this quality were again recognized
by Einstein in his last scientific paper [25]. But even in the gauge gravitation theory connections cannot
at all substitute the metric, because there are no groups, whose gauging would lead to the purely
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gravitational part of space-time connections (Christoffel symbols or Fock-Ivanenko spinorial
coefficients). To separate such gravitational components from gauge fields, e.g., of the Lorentz group,

metric or tetrad fields have to be introduced. :
At the present time the gravitation theory is viewed actually as the affine-metric theory possessing two

independent potentials, namely, metric and connection, and just this constitutes the peculiarity of the
gauge approach to the gravitation theory in comparison with the gauge models of the Yang-Mills type for
internal symmetries.

This article aims to match the gravitation theory and gauge theory within the framework of gauge theory
of external symmetries. Because both gravitation and gauge theories have the geometric formulations in
terms of the fiber bundle formalism, we shall use the fiber bundle language (for necessary mathematics see
[100, 63, 102, 103]).

I. The geometric treatment of gauge theory

This section is not intended to give the complete geometric picture of gauge theory. Here we pay
attention only to those aspects of fiber bundle formalization of gauge theory, which are necessary to
gain an insight into the gauge nature of gravity, e.g., we shall neglect for a time the topological numbers
of bundles and gauge fields, referring the reader interested in details of this subject, to the review articles
[75, 18, 24]. Gauge theories of only internal symmetries, i.e., whose transformations do not act on operators
of partial derivatives, are discussed in this section.

1. The conventional scheme of gauge theory

One may treat the general gauge theory as a generalization of classical and quantum electrodynamics on
non-Abelian symmetries.

The starting point for gauge theory was the known invariance of electrodynamics under gauge
transformations of matter fields {¢} and electromagnetic potentials A,. They read

e(x)=explia(x)) o(x),  Au—Au+dua(x) (1.1)

and represent local phase transformations, whose parameters a(x) are functions of space-time. The
invariance under these transformations (1.1) is provided by the so-called minimal type of electromag-
netic interaction, when potentials A, appear in a matter field Lagrangian only inside generalized
derivatives

D, =4, —iA, . / (1.2)

Hence, to be invariant under local phase transformations, a matter Lagrangian must include
electromagnetic interaction. For the first time Weyl pointed out this phenomenon and laid it in the
foundation of his unified version of gravity and electromagnetism of 1918 [113], and later he and others
repeatedly returned to the idea of introduction of electromagnetic potentials from the condition of the local
phase invariance.

The crucial step was taken by Yang and Mills in 1954 [118], who laid down the concept of a
non-Abelian gauge theory as a generalization of Weyl’s picture of electromagnetism.
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In conventional form the basic principle of gauge theory consists in the conservation of the invariance
of a field Lagrangian under passing to local symmetry transformations, whose parameters become
functions of space-time and vary from point to point.

Then to compensate the invariance-violating terms arising in a Lagrangian under local trans-
formations due to the non-zero derivatives of their parameters, one has to introduce supplementary
gauge or compensating fields A, = A}, possessing the gauge law of local symmetry transformations

g(x): A.—~>gAg ' +dg g™ (1.3)

and must replace partial derivatives d, in a matter Lagrangian with generalized derivatives called
gauge-covariant or compensative: -

D, =9, - A", (1.4)

where [,, are generators of the symmetry group. The transformation law (1.3) of gauge fields and the
derivative (1.4) generalize the gauge transformation (1.1) and the derivative (1.2) corresponding to the
electromagnetic case of the symmetry group U(1) with the single generator I = i. Interaction with any
non-Abelian symmetries is mediated by gauge fields just as the electromagnetic interaction is mediated by
vector-potentials A,,.

Thus the simple requirement of the local symmetry invariance armed physicists with the universal
method of the interaction description [64, 1].

On the other hand the gauge derivative (1.3) proves to be regarded as a covariant derivative on a
certain fiber bundle over space-time, and gauge potentials represent connections on them. Thereby
gauge theory generalizes the gravitation Christoffel connection, which realizes parallel transport in the
tangent bundle over space-time, and it takes the bundles into consideration, whose fibers are spaces of
internal attributes of the particles, e.g., isospin, “‘colour”, “flavour”, etc. Gauge fields define the affine
geometry on these bundles.

In particular, it clarifies also the cause of the failure of unified theories of the 1920s (Weyl, Kaluza,
Klein, Eddington, Einstein). These theories attempted to describe electromagnetism and other fields
just as gravitation in terms of space-time geometry, while even the electromagnetic gauge derivative (1.2)
cannot play a covariant derivative role in any space-time geometry.

The known Fock-Ivanenko coefficients of 1929 describing parallel transport of fermions in
GR [26, 114] were actually the first non-tangent bundle connections, which were applied in field theory.
That the Yang-Mills gauge theory and the affine geometry of fiber bundles were one and the same thing
was pointed out by various authors from the mid-1960s [69, 39, 64, 116, 86, 67, 11], and to-day the fiber
bundle formulation of classical gauge theory becomes already commonly admitted and gives the
adequate image of this theory [75, 18, 24].

Moreover, our opinion is that fiber bundles provide the most relevant mathematical lan-
guage of the whole field theory, when any physical fields are formalized by cross sections of
corresponding fiber bundles, whose geometric and topological structures are thought to characterize
entirely the interaction of these fields. In particular, this permits various mathematical ideas, methods,
and results of differential geometry and topology to come into play in field theory, and, e.g., global
topological attributes of bundles have been widely used as sui generis topological quantum numbers of
fields. Moreover, because nothing hinders in principle to take advantage of any type of bundles, and
to generalize field notion on their cross sections, one may receive a powerful and universal tool for
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research of very different physical systems including those, which as yet remain out of the possibilities of
other existing methods.

2. Fiber bundles

For convenience of the readers who are not familiar enough with fiber bundles, we have gathered
below some of the basic notions adapted from standard textbooks {100, 63, 102, 103] (see also review
papers [75, 18, 24]).

A pair of topological spaces M and X possessing the continuous projection 7: M— X is called a fiber
bundle A = (M, 7, x), where M is a total or bundle space, X is a base space, but the inverse image of a
base point x € X with respect to projection 7, M, = 7w '(x), is called a fiber of a bundle A at a point x.
A topological space V is called a typical fiber of a fiber bundle A, if all fibers M, are isomorphic with V.

A cross section or local section of a fiber bundle A is such a continuous injection s: U—->M of an
open subset U of X into M, that 7s = idy is the identity on U. It means that a section s is a mapping,
which assigns a preferred point s(x) on each fiber to each point x € U

s(X)EM, = 77 (x).

A section is named global, if it is defined on the whole base X. There exist fiber bundles which have no
global sections.

One says a fiber bundle A is trivial, if a bundle space M is homeomorphic with the direct product
M=V XX, where V is a typical fiber of A.

A fiber bundle A is called locally trivial, if there is such a family {U,} of open subsets covering X, that
restriction of A onto every U, is trivialization, i.e., there is a family of homeomorphisms {¢;} so that for
each U;

’,lf,'ﬂ'il(U,') = V X Ui .

A pair (U, ;) is called a chart, and the transition functions s; = yss; * must be defined on the overlap
of the patches U, and Uj; they satisfy the cocycle conditions: ; = Idy,

Y = for x€U;NU.. 2.1

For each fixed x € U; N U; the transition function ¢; represents the map from V onto V. If all such
maps belong to a certain topological group G of transformations of the typical fiber V, i.e., if all
transition functions is; represent elements of the group G(X) of all continuous functions on open
subsets of X, which take values in G, the group G is called a structure group of a fiber bundle A.

A set of elements of the group G(x) represents the transition functions of the bundle A, if and only if
the cocycle condition (2.1) holds. Transition functions define a consistent procedure for gluing together the
trivial pieces of a locally trivial bundle, and determine it completely. The transition functions of a trivial
bundle can be taken to be the identity.

A collection of trivialization charts W, ={U, i} is called an atlas of a fiber bundle A. Atlases
¥, ={U;, ¥} and ¥, = {Uj, ¢} are considered to be equivalent, if their combination is again an atlas,

!

i.e., if transition functions between any chart (U, ¢;) of ¥, and any chart (U, ¢}) of ¥, may be
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determined. Transformation between equivalent atlases is defined by elements of the group G(x), and
reads

Pi(x) = gi(x) ¢u(x), xey;

Pi(x) = &(x) ¥(x) g;'(x), x€U, NU;. 22)

Fiber bundles A and A’ with the same base and structure group are named associated, if their atlases
¥, and ¥, within the accuracy of their equivalence transformations (2.2) have the same families of
transition functions {i;;}, which as elements of the group G(X) can be defined without regard to the
concrete typical fiber of bundles with the same structure group. Associated bundles with the same
typical fibers are called isomorphic.

Every fiber bundle A possessing a structure group G has an associated principal bundle, whose
typical fiber is the group G itself, acting by left translations. Continuous sections of a principal bundle
compose the group G(X), but its global section exists only if this bundle is trivial.

The class of associated bundles is a topological characteristic of fiber bundles belonging to it. These
classes can be described in terms of Chern, Pontrjagin, and some other characteristic classes
representing certain elements of cohomology groups of the base space X, e.g., any fiber bundle over a
contractible base space which has zero cohomology groups is trivial.

One says that contraction of a structure group G of a bundle A to a certain subgroup H takes place, if
there is an atlas of A, whose transition functions reduce to elements of the subgroup H(X) of G(X). The
necessary and sufficient condition for occurrence of this contraction is the existence of a global section
of an associated bundle, whose typical fiber is a quotient space G/H. Such a contraction always takes
place, when the base X of A is a paracompact space, G is a Lie group, and H is its maximal compact
subgroup.

Note that the quotient bundle in question may have many global sections, from which one singles
out the center section o(x)= g, = const., where o, is the H-fixed center of the quotient space G/H.
Other global sections differ from it only on patches of trivialization of the quotient bundle, and all of
them can be led to the center section in some atlas corresponding to another variant of the structure
group contraction.

For our purpose we shall confine in the following our consideration to differentiable vector bundles.

A differentiable vector bundle SR

A=X,V,G, %) | (2.3)

is given by the following objects:

1) A base X is a finite-dimensional connected manifold supplied with a coordinate atlas Wx.

2) A typical fiber V is a finite-dimensional topological vector space.

3) A structure group G is a Lie subgroup of the group GL(V) of all isomorphisms of the vector space
V, which contracts to G as a structure group of a vector bundle A.

4) A bundle atlas ¥, = {U,, ¢} defines some kind of reference frame on a fiber bundle A, where all
bundle attributes are described as their images onto trivial bundles {U; X V} with respect to trivialization
mappings {¢}. In particular, one can erect a basis of any fiber M, as the inverse image under ¢, of a basis of
the typical fiber V. Also any section s of a bundle A is represented in such a reference frame by the collection
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of vector-valued functions
so¥)=(x)s(x), x€U;

relative to the trivialization charts (U, ;). Changes of the atlases ¥, and ¥y generate changes of the
reference frames (2.2) and the coordinate frame, respectively. It is often convenient to imply that atlases
¥, and Px have the same family {U;} covering X.

5) All manipulations with A are assumed to be differentiable a sufficient number of times.

Any vector bundle has global sections, although there may be no global sections which are
everywhere non-zero. '

We let a tangent bundle T(X) and a cotangent bundle T*(X) be real vector bundles whose fibers over
a point x € X are given by a tangent space T, and a cotangent space T%, respectively. We observe that
if ¥x={U, ¢} is a coordinate atlas of the base manifold X, then one can choose a holonomic atlas ¥ of
a tangent bundle T(X) and a cotangent bundle T*(X), such that ¥ = {U,, ¢, = d¢;}, where dp;(x): T, > R"
is a differential of the mapping ¢: U; = R" in a point x € U, and where basis elements of the fibers T,
and T? consist of differential operators {4, } and {dx*}, respectively.

One can build the following constructions on the vector bundles A and A’ with typical fibers V and
V', respectively:

a dual vector bundle A*, whose typical fiber is a dual space V*.

a Whitney sum bundle A ® A, whose typical fiber is a direct sum V® V.

a tensor product bundle A ® A’, whose typical fiber is a tensor product V ) V'.

Sections of a vector bundle (2.3) make up a vector functional space and their differentiation can be
defined. But before doing this, one must remember that to compare vectors belonging to fibers over
different base points these vectors need to be transported into the same fiber. Therefore differen-
tiation of vector bundle sections may be generally determined only as a covariant differentiation.

Let a bundle of p-linear alternating-sign maps from the tangent bundle T(X) into a vector bundle A
be given. Sections of this bundle represent exterior or skew differential p-forms on X with values in the
total space of A. In particular, O-forms are sections of A. Denote 2% as the sheaf of such p-forms. Then
their covariant differentiation is determined by the operator of the exterior covariant derivative D
satisfying the following conditions:

D: 2% - 0r*t

D(w + »')=Dw + Do’

D(wrw)=Dw A o'+ (- 1)’w A Do’
where A is the sign of the exterior product.

In the frame of the atlas ¥, the exterior covariant derivative D on trivialization charts is expressed in
the form

¢Dy;l=d- A ‘ 2.4)
where d is the ordinary exterior derivative with zero square dd=0, and A represents a connection

1-form on X with values in the Lie algebra gl(V) of the group GL(V).
In contrast to dd =0, the square of covariant derivatives is generally non-zero and determines the
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curvature 2-form
DD=F - @23)

for which the Bianchi identity DF = 0 always holds.

In frames of bundle and coordinate atlases, when the basis {dx*} of the cotangent spaces T% and the basis
{I.} of the Lie algebra gl(V) are chosen, the connection and curvature forms are evaluated from the
expressions

A= A% L, dx*, F=F7 I, dx* rdx*

(2.6)

F,=3,A,—d,A,—cm AL A

where ¢, are the structure constants of gi(V).
Let us notice that the covariant derivative (just like the curvature form) on a differentiable bundle is

determined without regard to any atlas. But its expression (2.4) through a connection form A is true

only in some atlas. From this one finds the transformation law of a connection form A under the atlas

transformations (2.2):

GX)2g(x):  ¢i(x)~> glx) lx), xe U,

2.7
&(x): A()—g(x) Alx) g7" (x)+dgi(x) g7 (x) . 7

The connection form A can be defined isomorphically on any fiber bundle associated with A. In
particular, one studies conveniently the properties of the connection, when it is observed on a principal
bundle.

A connection form A represents an infinitesimal operator of parallel transports of fibers of a bundle
along paths in a base space.

In a general form the connection on a fiber bundle may be introduced by lifting the paths from a base
space into a bundle space. In particular, such a lift of loops passed through the same base point x € X
induces a group of isomorphisms of the fiber over x. This group is called a holonomy group H, of a
connection over a point x € X.

In the case of a connection given on a differentiable vector bundle (2.3), the holonomy groups H,
over all points x € X are isomorphic to each other, and are isomorphic with a certain Lie subgroup H
of the group GL(V). The Lie algebra of H, proves to coincide with the Lie algebra of all values of the
curvature form F. Moreover, the group H turning out to be the holonomy group of some connection on
a fiber bundle (2.3) is sufficient for the structure group of this bundle to be contracted to H.

The given definition of bundles is close to the physicist’s way of thinking in terms of local
coordinates, gauge transformations, covariant differentiation, etc. At the same time the readers may
find another formulation of the fiber bundle theory in most of the mathematical and some physical
literature. Therefore we shall sketch it briefly to clarify some constructions in the bundle and gauge
theories.

One starts with the notion of a principal G-bundle. Its total space may be determined as a smooth
manifold P realizing a free action of a Lie group G on P to the right, such that the equality ug = u for
some u €P and g €G leads to g = ¢, where e marks the unit element of G. A quotient space P/G of
orbits of G on P represents a base X of a principal bundle, but a canonical mapping 7: P—>P/G is a
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bundle projection. A principal bundle (P, 7, X = P/G) is considered to be locally trivial with regard to a
certain family of trivializations ;: 7 '(U;)—> U, X G. G acts inside fibers of a principal bundle, and the
mapping ¢; satisfies the condition ;(ug) = ¥ (u)g.

Now let G X V-V denote an action of G into a manifold V to the left: GX V3 (g, v)>gvEV. If
P is a total space of a principal G-bundle, then one defines an action of G in PX V:

g: (1, v)~> (ug. g 'v).
Let

p:PXV->M=(PXV)/G (2.8)
be the canonical map on the quotient of P X V by G. The set M has the natural structure of a total space

of an associated bundle A = (M, V, G, X) with a typical fiber V and a projection my: M— X defined by
mm - p(4, v) = 7(u). Every element u € P induces a mapping

u:V-p(u, V)=V, _ o= 7 (m(u)) (2.9)

such that u g(v) = u(gv).
Let ¢: P—>V be a mapping equivariant with respect to the actions of G into P and V, e.g., such that
forany g€ G and u€P

e(ug)=g "o(u).

Then one can construct the section

s(m(u)) = p(u, ¢(u0))

of an associated bundle A, and there is a one-to-one correspondence between equivariant mappings
from P to V and sections of A.

One may also consider another definition of connection on fiber bundles. This definition starts with
the notion of a connection on a principal bundle by fixing a so-called “horizontal” subspace T'(P) of a
tangent space T,(P) at every point u € P, such that

T.(R)=TiP)DTiP), T (P)=(38) Tu(P).

Here (dg) denotes the differential of the mapping g: P— P,, and T{(P) is a tangent space over a fiber G
at w(u). The space T%(P) is isomorphic with the tangent space T,.(X) over a base manifold X and
determines the directions of infinitesimal parallel translations of the point u along the paths through
m(u) in X.

Ti(X) depends smoothly on u and can be described by a connection 1-form @ on P from the condition

w(t")=0, FfeTHX).

This form w takes on values in the Lie algebra Lg of the group G and reads w; = (6 + A) with respect to
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some atlas ¥ = {is, U;} of a principal bundle (P, G, X), where 8 is a canonical form on G, i.e., (/)= |,
but A is a connection 1-form on X, which was introduced above. One finds that A = (do;)w, where
o:(x) = ¢ '(x, 1) is the section of (P, G, X) on U,. Just the component A expresses the individuality of a
connection form e, while 6 is a standard part of w. The form A being transferred to any associated fiber
bundle defines a connection on it.

A fiber bundle LX of linear frames of an n-dimensional manifold X exemplifies a principal bundle
important for our following researches. A total space of LX represents a manifold of all linear frames in
tangent spaces T,(X) over X and realizes a free action of the group GL(n, R). LX is associated with a
tangent bundle T(X), and every linear frame in a point x € X may be described as a non-singular linear
mapping (2.9) of the typical fiber R” of T(X) on T,. In turn, this mapping u(R) is represented as the
linear isomorphism u(R)y; of R” with respect to some atlas ¥ = (¢, U,) of the bundle T(X).

We also define the R"-valued soldering form 6 on LX:

o(T) = u'(om(T)), TET.(X) (2.10)

where (d7): T(LX)— T(X) is the differential of the projection 7: LX— X. 6 is the equivariant form with
respect to the actions of G in T(LX) and R", and represents the identity mapping of T(X) on itself, ¢.g.,
8(x) = 7,(x) o’ (x), where 7,(x) and o'(x) are dual bases of T,(X) and T%(X), such that o'(7;) = 6}. The
soldering form represents a global 1-form 6 € Q7. on a manifold X. If D is a covariant differential of
some connection on T(X), the 2-form of torsion D@ = (2 is defined, such that the first Bianchi identity
D{2 = F A 6 holds. «

We shall conclude our summary of the necessary fiber bundle mathematics with some words about
pseudo-Riemannian spaces.

A manifold X" is called to be provided with the pseudo-Riemannian structure of the rank k <n, if a
global section g of the fiber bundle A of pseudo-Euclidean bilinear forms in tangent spaces over X" is
defined. A is associated with the tangent bundle T(X) possessing the structure group GL(n, R), and it is
isomorphic with the fiber bundle in quotient spaces GL(n, R)/O(n — k, k), whose global section (and
consequently a global section of A) exists only when the structure group GL(n, R) of the bundle T(X)"
can be contracted to its subgroup O(n — k, k).

It means that there is an atlas ¥, of T(X"), of which all transition functions are realized by elements
of the group O(n—k, n)(X"), and where g takes the canonical diagonical form n:n;=1,i<k;
n: = — 1, i > k. Of course, if the bundle T(X") is nontrivial, the atlas ¥, is nonholonomic.

Other global sections of A differ from a given g on patches of trivialization of T(X") by some
elements of GL(n, R)(X), and corresponding atlases diagonalizing them exist.

To define a pseudo-Riemannian structure on a manifold X" is not always possible. Only a
Riemannian structure (k = 0) exists on every manifold X", because a structure group GL(n, R) can
always be contracted to its maximal compact subgroup O(r).

Every connection form I" on a pseudo-Riemannian space (X, g) can be expanded in a sum of three
components: I'={ }+ K+ Q, where { } are Christoffel symbols, K is contortion, and Q is nonmetricity.
They are calculated from the conditions:

(d-{}g=0 d-{}Hhe=0

d-Ng=-20 @-1No=S$
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and their coefficients read with respect to some holonomic atlas of T(X):

I ={eou}+ Koy + Qo

{eou}={euo}, Kopn=—"Kos, Q= Qoeu

{eop} =2 (u8eo + oBen — I | 2.11)
Ko = Seone + Sonse = Sper + Quuer = Qe - | |

Seon =3 Feon = Lepr) -

One says that a connection I" on a pseudo-Riemannian space (X, g) satisfied the metricity condition,
if
(d-T)g=0. B o A (2.12)

The metricity condition (2.12) holds only when a connection I is reduced to the group O(n — k, n), i.e.,
when its holonomy group belongs to O(n — k, n), and there is an atlas of T(X), where I' is represented
by O(n — k, n)-valued forms in all charts of this atlas.

A pseudo-Riemannian space depending on a kind of a connection [” on it is called an Einstein—
Cartan space U”, if Q =0; an Einstein GR space V", if Q =0 and K =0; and a space of teleparallelism T",
if a curvature form R of I" equals zero.

3. Fiber bundle representation of gauge theory

As we have said, the formalization of field systems by fiber bundles is based on the field
representation as cross sections of corresponding bundles.

Let {¢(x)} be a certain multiplet of classical so-called matter fields on an orientable space-time
manifold X* with values in a vector space V possessing a representation of a Lie group G of internal
symmetries. The existence of a nonsingular G-invariant bilinear form on V is also admitted.

In fiber bundle terms the matter fields {¢(x)} are formalized by global sections of a differentiable
vector bundle A = (V,X* G, ¥,) which possesses the base space X*, the typical fiber V, and the
structure group G. The bundle atlas ¥, and the coordinate atlas ¥x of the manifold X* fix a reference
frame and a coordinate frame, respectively. In regard to these frames fields {¢} look like V-valued
functions on trivialization patches of A, and changes of atlases ¥, and ¥y induce the gauge G(X) and
coordinate transformations of these field functions.

Because replacing the atlas represents an equivalence transformation of A, the invariance of the field
system described by A under such a transformation seems to be quite natural for it to be required. Thus
the fiber bundle picture of field systems leads directly to their gauge description, where a gauge
principle is manifested as some kind of relativity principle.

Gauge potentials appear naturally also in the fiber bundle description of matter fields. They are
identified with coefficients A} of a certain connection form on the bundle A. Their gauge trans-
formation law (2.7) represents the non-Abelian generalization of electromagnetic gauge transformations
(1.1), and its familiar infinitesimal form reads

I, 8™ (x): 6AZ(x) = ci AL 80™(x)+ dw™ (x) .



14 D. Ivanenko and G. Sardanashvily, The gauge treatment of gravity

Matter fields {¢} and gauge potentials A compose the dynamic variables of the system in question,
and one uses the action principle for describing their evolution. Here we prefer to apply the form of this
principle familiar for physicists, although it does not correspond to elegancy of the fiber bundle of
the kinematics of gauge theory, but its fiber bundle reformulation [19] is not as yet
widespread.

The total action function S of the system of fields {¢} may be written on any compact-limited range U of X
and takes the form : ,

5= [IL.(e. Dg)+ La]. T . (1)

Here a matter Lagrangian [, is constructed from a free field Lagrangian by replacing the ordinary
derivatives 4 by the covariant ones D. As a consequence L, looks, on the one hand, like the
Lagrangian of free fields {¢} in the affine geometry of the bundle A, and, on the other hand, like the
Lagrangian of the fields {¢} which interact due to the gauge field mediating between them.

A gauge field Lagrangian L. is always chosen by analogy with the Abelian case of the elec-
tromagnetic field Lagrangian in the form

1
La==ga2F Py | | (32)

where F is the curvature or strength form (2.6) of gauge fields, and (,) means a nonsingular
G-invariant bilinear form in the Lie algebra of the group G. If G is semisimple, () is the Killing form,
and

1
LAZ@H”(F/\ *F).

Note also that after special rescaling of the gauge fields the coupling constant g and L4 can be inserted
into the covariant derivative D =d - gA.

The action functional (3.1) is written without regard to any reference frame, and is evidently gauge
invariant. It leads to the following Noether’s identities:

8.(F%+95)=0 . (33
Fu+ 0L, J0A, =0,  FXx+3LAI0A, =0 ‘ \ (3.3b)
LAJA,., + ILAJIA,, ., =0 , (3.3¢c)
where
. oL, o OLa :
”@"’_&p,y I(@)v jA aAp I(A) (34)

are currents according to symmetry transformations with a generator 1.
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The identities (3.3b,¢) are strong, while (3.3a) is so-called weak, which takes place only for extremal fields
satisfying the Euler—Lagrange equations:

L_py oL, il
5‘P ® aI)/.l.(P (990 D¢ =const

=0

(3.5)
SLISA =D, F* —4g2§" = 0.

These equations describe the interaction of matter fields {¢} via gauge fields, whose sources are currents of
matter fields. Remark that in the general case different boundary sources may also appear on the right hand
sides of the conservation law (3.3a) and the equations (3.5).

If we now consider matter fields {¢} interacting with external gauge fields, the Noether identities
become the modified identity (3.3a)

D,.#%=0. | B (3.6)

The identity (3.6) does not express preserving of any integrable physical quantity because it contains the
covariant divergence, and to obtain the conservation law (3.3a), one must take the sum of the matter field
current and the gauge field current, although the latter proves to be non-covariant under local
G(X)-transformations. This situation is analogous to the known difficulties of the formulation of
energy-momentum conservation in gravitation theory.

One uses the fiber bundle formalization to describe the field models with space-times which possess very
different geometric and topological structures. This is very important, because real space-time is a
non-Minkowski space curved by gravitation, and other causes may change space-time topology also, ¢.g.,
inside elementary particles, under cosmological conditions. Moreover, some authors believe that many
fundamental attributes of particles have the topological nature. The familiar Aharonov—Bohm effectsin the
case of electromagnetic fields in spaces with non-zero homology groups exemplify the phenomena, which
may be caused by a nontrivial global topological structure of space-time.

Following some papers, e.g. [116], we finish this section with the translation table between gauge and
bundle terminologies:

Gauge field terminology Fiber bundle terminology
classical fields sections of a vector bundle
space-time base space

symmetry group structure group

gauge transformation atlas transformation

gauge principle relativity principle

gauge potential connection 1-form on a bundle
field strength curvature of a connection

4. Goldstone and Higgs fields in fiber bundle terms

Not only gauge fields can appear in gauge theory; Goldstone and Higgs fields are well known to arise
also in it, when the symmetry is spontaneously broken [4].
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One observes various situations looked upon as the spontaneous symmetry breaking in gauge models,
and some of them have obtained the fiber bundle versions [71, 107, 108, 42, 43, 6]. Although these versions
are applied to describe rather different physical circumstances, the common feature for all of them is
bundles with contracted structure groups.

We concentrate our attention here on the situation of spontaneous symmetry breaking, which issues
from the contraction of the structure group of the fiber bundle A describing a certain gauge model from
the previous section. We shall see that such a situation, on the one hand, corresponds to the Higgs
mechanism of spontaneous symmetry breaking in gauge models of internal symmetries and, on the
other hand, is the basis for the definition of gravitational fields in the gauge theory of external
symmetries.

Denote by {y} the multiplet of scalar fields described by global sections of a certain vector bundle A.
Let also the structure group G of A be contracted to its subgroup H, which is required to be a stability
group of some non-zero points of the typical fiber W. Denote by Wy, the subspace of W composed by
these points.

Then there exist non-zero global sections of the bundle A, which take on values inside the H-invariant
subspace Wy in the reference frame of a certain bundle atlas, whose transition functions belong to the
group H(X). Let x, denote one of these global sections, which minimizes the energy functional of the
fields {x}. Then y, may be interpreted as sui generis physical vacuum or as a ground state, whose
symmetry is broken, and small perturbations over y, may be considered.

In particular, in the most familiar case, when the coupling potential of fields y(x) reads

Line==p2 + A" | (1)

Xo is found in the form yy(x) = w, = const, where w, belongs to the subspace Wy, and wg= u’/A>
To describe the perturbations over a state with broken symmetry, note that every point w in a
small neighbourhood of the non-zero H-fixed point w, € W can be written as

w:g(W0+WH)7 gEG, WHEWH
For small w, wy and g being near the unity of G, this decomposition is rewritten in the form
w=wo+wyta v “4.2)

where (w,+ o) belongs to the orbit (Gwy) of the group G in W, and consequently can be identified with
a point of the quotient space G/H.
Then the small perturbations {y} over the ground field y, are found in the known form

x(X)= xo+ wu(x)+ o(x) 4.3)

where the fields wy(x) are global sections of A, which take values in the subspace Wy, but the fields
(xo+ o(x)) represent global sections of the associated bundle in the quotient space G/H.

H-invariant components (x, + wu(x)) of fields y(x) with spontaneously broken symmetry are usually
called Higgs fields, and after being quantized, the fields o (x) prove to represent the Goldstone fields of
the known Goldstone’s theorem [4].

Fields with broken symmetry of vacuum become part of many modern gauge models to provide the
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Higgs mechanism supplying matter and gauge fields with suitable masses due to interaction of these
fields with the Higgs vacuum yp.

Nevertheless, separating a field y with spontaneously broken symmetry in Goldstone and Higgs parts
fails to be gauge invariant, because in gauge theory with internal symmetries Goldstone components of
y can always be removed by the appropriate gauge, while a previously pure Higgs field turns out to be
supplied with such components in the new gauge. Note also that the Goldstone theorem in gauge theory can
only be proved in the gauge where vacuum is invariant under translations. But such a gauge fails to exist in
general.

Now we point out the particular kind of fields with spontaneously broken symmetries, which are
always present in all gauge models of internal symmetries. These are Hermitian metrics. Really, most
internal symmetry groups are unitary subgroups of a certain group GL(#, C). Consequently, afiber bundle A
formalizing a gauge model with such a symmetry group has the structure group GL(n, C) which, however, is
always contracted to the structure group U(n) as the maximal compact subgroup of GL(n, C). Then, as
stated above, in this gauge model, apart from matter and gauge fields, there appear supplementary fields
representing the global sections of the associated bundle in quotient spaces GL(n, C)/U(n), which are
isomorphic with the space of Hermitian metrics in C”. Hence, Hermitian metrics, being these
supplementary fields, may be regarded as fields whose symmetries are spontaneously broken, whose
ground state is the unit matrix; Higgs type fields are U(n)-invariant diagonal metrics, but their deflections
play the role of Goldstone type fields. At the same time Hermitian metrics don’t compose dynamic fields in
gauge models of internal symmetries because every of them can be brought always to the constant diagonal
Hermitian metric in a certain gauge.

The situation is changed radically in the gauge theory of external or space-time symmetries.

II. Relativity Principle and Equivalence Principle in the gauge gravitation theory

The single accepted point of the gauge treatment of gravity is the standpoint that this treatment must
issue from the gauge theory of some external symmetries. However, it seems that almost every author puts
forward his own version of such a theory.

The multitude of the proposed gauge gravitation theories shows that the gauge principle alone is
insufficient to describe the gravity.

The key difficulty lies in the determination of the gauge status of the metric or tetrad gravitational
field.

At the same time this field gains the excellent description in Einstein’s GR based on the Relativity
and Equivalence Principles.

This leads one to admit that a gauge model aiming to describe gravitation as close as possible to GR must
agree with the basic Relativity and Equivalence Principles of Einstein's theory. Moreover, one can admit
that the gauge gravitation theory just like GR must also be based on RP and EP reformulated in gauge
theory terms using the fiber bundle formalism [56].

5. Relativity Principle as the gauge type one

In the fiber bundie language Einstein’s gravitational field on an orientable space-time manifold X* is
defined as a global section of the fiber bundle A of pseudo-Euclidean bilinear forms in tangent spaces
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over X*. A is associated with the tangent bundle T(X*) possessing the structure group GL*(4, R). 4 is
isomorphic with the fiber bundle in quotient spaces GL™(4, R)/L, where L=SO(3, 1) is the Lorentz
group. We call this bundle 3. Its global section h(x), isomorphic with g, describes a gravitational field
in tetradic form. /4 used to be written as a section of the associated pr1nc1pal GL(4, R)-bundle up to
multiplication of /& on the right by elements of the group L(X), i.e., h = =h L(X).

Then with respect to some atlas of T(X*) the section /& can be realized by a family of matrix functions
hi(x) in R?, whose gluing is done modulo Lorentz transformations, and the isomorphism of & and g
forms g;(x)= h?(x) h?(x) 9., where m, is the constant Minkowski metric field. This relationship
appears from the fact that h is realized by a global field taking the value in the center of the quotient
space GL* (4, R)/L and consequently by a family of unit matrix functions in R* with respect to the atlas
Y, where g = 1.

In every point x € X atetrad field & defines a tetrad {£(x)} = ¢ '(x)h;(x){¢} in T, where {} is a basis of R*,
such that a metric g(x) becomes diagonal with respect to { }. { } is defined up to admitting Lorentz
transformations and forms a global section of quotients of the linear frame bundle LX by L.

A gravitational field g or & on a manifold X* and its Christoffel connection { } in T(X*)define a
certain geometry of an Einstein space V* on X®, which is conventionaly understood as a geometry of
space-time.

RP in GR, as discussed above, is usually formulated as a requirement for matter field and test particle
equations to conserve their form under all changes of reference frames.

Following the general fiber bundle formulation of field theory, a reference frame in the gravitation
theory may be defined in fiber bundle terms as the choice of a certain atlas ¥ = {U,, 4} of the tangent
bundle T(X?*), and the group of all reference frame changes is the gauge group GL"(4, R)(X*).

This definition is close to that used in the tetrad formulation of GR. If an atlas ¥ = (U,, ) of T(X*)
isfixed, a tetrad {¢(x)} = ' (x) h:(x){t}, where {} is a basis of the typical fiber R* of T(X"), may be erected in
every point of a space-time manifold X*. A family of these tetrads is uniquely defined by an atlas ¥, and
transformations of these tetrads accompany changes of a reference frame. Inversely, if a family of local
sections #(x) of the linear frame bundle LX" on some covering {U,} of X is fixed, it defines a choice of an
atlas ¥ = {U, ¢, py} of T(X*), such that {£;(x)} = 7' (x){r} and @ (x)}{5,(x)} = py (x {1}

The conventional (generally covariant) form of GR corresponds to the special case of purely holonomic
iransformations of reference frames, when a choice of the atlas of the bundle T(X*) correlates

W= {U, ¢ = dg}} e 5.1)

with the coordinate atlas ¥x = {U,, ¢;} of the manifold X*, and such a correlation is strictly retained
under all reference and coordinate frame changes.

Thus in the fiber bundle formalism of the gravitation theory RP may be formulated as the
requirement of the covariance of field equations under the gauge group GL'(4, R)(X). In this
way RP proves to be identical with the gauge principle of a gauge theory of the external symmetry
group GL"(4, R), and the gravitation theory can consequently be built from RP directly as the gauge
theory of the group GL' (4, R).

However the GL™(4, R)-gauge theory turns out to be broader than the general conception of the
gravitation theory. For example, it does not distinguish the Minkowski metric form from other possible
metrics in tangent spaces. Therefore the Equivalence Principle in the gravitation theory also must be taken
into account.
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6. Equivalence Principle and broken space-time symmetries

Many authors emphasize the same nature of the basic gauge principle and RP of Einstein’s GR.

In contrast with RP, EP in the conventional gauge theory of internal symmetries was not explicitly
formulated. The representation of gauge fields by a connection 1-form on fiber bundles leads already itself
to the fact that these fields can be zero in a given space-time point in a certain gauge, and in this case matter
field equations take the free field form in this point.

In the case of external symmetries gauge fields can be eliminated in a given space-time point also by
a certain reference frame choice, but, if these gauge fields are not purely Christoffel symbols, the metric
or tetrad gravitational field functions are not flat in a point with respect to such a reference frame.
Moreover, if the metric becomes flat simultaneously with connection being zero in the local inertial frame,
one must postulate in addition for this flat metric to be just the Minkowski metric and no one with another
signature.

Thus, as distinguished from the gauge theory of internal symmetries, the EP formulation turns out to
be non-trivial in the gauge gravitation theory.

EP in GR supplements RP and guarantees the transition to Special Relativity in a certain reference
frame, as discussed above.

In geometric terms SR may be characterized as the geometry of Lorentz invariants (in the spirit of
Klein’s Erlanger program). Then EP may be formulated in the gauge gravitation theory to require the
existence of such a reference frame, with respect to which Lorentz invariants can be laid down
everywhere on a space-time manifold X*, and they would be conserved under any parallel transport.

This requirement holds when a connection of the tangent bundle T(X*) over a space-time manifold
X* can be reduced to the Lorentz connection, i.e., when the holonomy group of this connection belongs to
the Lorentz group, or in other words, there are atlases of T(X?), such that a connection form takes on values
in the Lie algebra of the Lorentz group. It leads, in turn, to the contraction of the structure group GL" (4, R)
of the tangent bundle T(X*) to the Lorentz group.

In other words the Equivalence Principle in the gauge gravitation theory makes gauge fields of
external symmetries to be reduced to the Lorentz gauge fields in some reference frames.

The direct consequence of such an EP is the existence of global sections of the quotient bundle 3 and the
metric bundle A, i.e., the existence of the metric or tetrad gravitational field everywhere on a space-time
manifold X*, that follows from the contraction of a structure group of tangent bundles (see section 2).

In the presence of a gravitational field the usual postulates of EP in GR hold. Indeed, there is a
holonomic reference frame, where the gravitational metric field becomes just of the Minkowski type, and its
Christoffel symbols vanish in a given space-time point. But in the general case of the Lorentz gauge fields
containing also torsion components, the whole connection will not be equal to zero in this frame.
Nevertheless, there exists also a reference frame. where the whole connection vanishes in a point, but the
gravitational tetrad field remains.

The contraction of the structure group GL*(4, R) of T(X") to the Lorentz group results also in its
contraction to the maximal compact subgroup SO(3) of the Lorentz group. It means that the existence of
atlases of T(X"), where all transition functions consist of only spatial rotations and fail to break
SO(3)-invariants, which therefore can be laid down everywhere on X*. Non-zero time-directed vectors
erected in all space-time points exemplify such SO(3)-invariants. In particular, these vectors may be
defined as the global section of the associated bundle in quotient spaces SO(3, 1)/SO(3), and thereby they
represent some 4-velocities. The latter means that local reference frames in the sense of SR can be set up to
admitting spatial rotations in all space-time points.
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In particular, this proves the important theorem that in the gravitation theory the well-known
(3+ 1) decomposition procedure can be carried out in a relevant reference frame in all points of a
space-time manifold. We emphasize this fact because (3 + 1) decomposition has become a part of many
modern branches of gravitation theory [47] (see also the works of A. Zelmanov and C. Cattaneo).

EP in gauge gravitation theory defines in fact sui generis Klein—Chern geometry of invariants on the total
spaces, sheafs of sections of the tangent, and the associated bundles over a space-time X*. This enables one
to interpret the geometrical aspects of GR in the spirit of Klein’s Erlanger program, in contrast to the
repeated opinion of Fock, Bondi, Havas and some other authors denying the presence of any symmetries in
the gravitation theory.

7. Gravity as the Goldstone type field

For the aim of this article it is especially important that the Equivalence Principle formulated in the
gravitation gauge theory suggests that the gravitation field looks like a field of the Goldstone type.

In the gauge gravitation theory the EP leads, as stated above, to contraction of the structure group
GL"(4, R) of the tangent bundle T(X*) to the Lorentz group SO(3, 1) imitating the situation, which is
analogous to the spontaneous symmetry breaking. It leads to the existence of a global section of the
quotient bundle with the typical fiber GL"(4, R)/L, whose single L-fixed point is the Minkowski metric.
Then, in analogy to the case of the spontaneous breaking of internal symmetries, one may look upon
the Minkowski metric field as being the vacuum Higgs field x,, and small perturbations may seem to
play the role of Goldstone fields o(x). These metric perturbations can admittedly be identified with the
presence of a gravitation field, which therefore displays itself as a field of the Goldstone type. But the
specificity of the external symmetry gauge comes into play.

First of all, as distinguished from Goldstone fields of internal symmetries, the gravitational field fails
to be removed by any gauge. The reason lies in the fact that gauge transformations of external
symmetries act also on operators of partial derivatives, which are vectors d, of tangent spaces. But
these vectors play the role of derivatives only in holonomic frames. In non-holonomic frames, where the
metric gravitational field g becomes the Minkowski one, g = », the vector d; = h#(x) d, contains tetrad
fields. Consequently tetrad fields cannot, in the general case, be hidden completely in the regauged
connection under any gauge transformations, in contrast to the occurrence with the Goldstone fields in
the internal symmetry case. And it shows that a non-flat gravitational field remains in any reference
frame.

It means also that a gravitational field, as the field breaking space-time symmetries down to the
Lorentz group, turns out to be deprived of the purely Higgs vacuum state on space-time manifolds which
possess non-trivial tangent bundles. But ther its similarity to the splitting as in eq. (4.3), into Goldstone
and Higgs parts becomes also impossible. At the same time this splitting can always take place on flat
patches of space-time, e.g., locally, although even in this case it used to come into play only in the
weak-field limit. But even in this limit the way to assume a Goldstone nature of gravitons must be
carefully specified.

We are far from asserting that the standard Goldstone theorem may be exactly preserved in the gauge
gravitation theory, because, in particular, one of the essential points of this theorem is that the vacuum must
be invariant under translations, what is, however, generally violated in the case of external symmetries.

At the same time one observes the analogy of Goldstone and Higgs fields in the conventional gauge
models with a spontaneous breakdown of internal symmetries, and a metric or tetrad gravitational field in
the external symmetry gauge case. Just this motivates the treatment of Einstein’s gravitational field as a field
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of the Goldstone or Higgs—-Goldstone type. Moreover, gravity seems to present a good chance to be the
single macroscopic field of such a type.

For the first time the ideas, that violating Lorentz symmetry due to curvature of space-time leads to the
conception that the graviton may be a Goldstone particle, were expressed in the mid 1960s in connection
with the comparison of cosmological and vacuum asymmetries (Heisenberg, Ivanenko, supported by H.-J.
Treder) [54].

Then these ideas on breaking space-time symmetries were revived when the formalism of non-linear

realizations as a kind of induced representations was suggested [17, 58] as the appropriate mathematical
tool for discussion of situations of spontaneous symmetry breaking.

Non-linear realizations of a group G are built in the product space Wy X G/H by combining a linear
representation of a Cartan subgroup H of G in some space Wy with the representation of G by left
translations in the quotient space G/H. Confining us, as usual, to a small neighbourhood of the unity of
G, whose elements can be written in the exponential form g = (exp ol)h, where h €H, but I are
non-H generators of G, a non-linear representation of G can be found in the form

Gog: WuXG/HD w=wy+ o+ wyg— wo+ a' + wix
where (w, + ¢’} € G/H, and wi; € Wy is evaluated from the expression
(exp o' I}h = glexp ol), Wi = hwy .

In the context of breakdown of G to H-symmetries the non-H parameters o of G are regarded as
Goldstone particles possessing generally the inhomogeneous G-transformation law [17, 58, 111]. The
decomposition (4.2) of vectors w near the H-fixed, but non-G-fixed point w, exemplifies a construction
of such a non-linear realization of a symmetry group G broken down spontaneously to its subgroup H.

There have been built non-linear realizations of different space-time symmetry groups, e.g., the
Poincaré group [41, 44], the conformal group [92, 5] and others. Space-time coordinates and the Weyl
connection coefficients exemplify a geometric kind of Goldstone fields appearing in these models of
space-time symmetry breaking.

The first reference to the idea that a pseudo-Euclidean metric tensor can be reproduced within the
framework of the non-linear realization formalism in the context of symmetry breakdown of GL(4, R)
to the Lorentz group can be found in ref. [48], but earlier this idea had been partly realized in [82],
although only in the weak-field limit and without the symmetry breaking interpretation. This question
was further investigated by J. Ne’eman et al. [77, 78]. However in the non-linear realization formalism the
Goldstone treatment of metric gravity, based only on the isomorphism of the space of pseudo-Euclidean
bilinear forms in R* with the quotient space GL*(4, R)/SU(3, 1), ignores the geometric aspects of gravity.

In the fiber bundle language it has been pointed out by us [94, 95] and by A. Trautman [107, 108] that
a pseudo-Riemannian metric field on X* can be thought of as field breaking GL*(4, R)-symmetries.

Trautman introduces the notion of a metric gravitational field as related to mapping of the
principal GL(4, R)-bundle onto a GL(4, R)-orbit in the space of bilinear forms on R* which passes
through the Minkowski metric, which gives rise to reduction of this principal bundle in the image of the
linear frame bundle LX* to its subbundle of orthonormal frames. In contrast with others, Trautman calls
a gravitational field, a Higgs field. We see some reasons for this name also [94], but in comparison with
conventional Higgs fields a non-flat gravitational field does not possess any stability group.

In our gauge approach just the Equivalence Principle secures an external symmetry breakdown to the
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Lorentz group, and using the same mathematics we prefer, however, to describe such a breakdown in terms
of a structure group contracted on the tangent bundle, which carries all geometric and topological
information about space-time. This proves to be related with the existence of a gravitational field, called
into being as a field of the Goldstone or Higgs-Goldstone type in the gauge gravitation theory.

Now after clarifying the gauge status of Einstein’s metric or tetrad gravitational fields we are ready to
review present day’s space-time symmetry gauge models, whose part and parcel are the Einstein gravitation
theory and its generalizations.

III. Gauge gravitation models

We give the following table of space-time symmetry groups, whose gauging pretends to describe the
gravity:
SO@3, 1) ——m— 280(4’ 1)

) \ ///
M P

N2 )
GL(4, R)—> GA(4, R)— GL(5. R)

where M and P mark, respectively, the product group of Lorentz rotations and dilatations, and the Poincaré
group.

Gauge models of the linear groups SO(3, 1), M, GL(4, R) are based on realizing them as structure and
holonomy groups of the tangent bundle T(X*) over an orientable space-time manifold X*. All these
models have the same pseudo-Riemannian metric structure induced by contraction of the general
structure group GL*(4,R) of T(X*) to the Lorentz group, but they differ from each other in the
structure of connection.

Gauging the affine groups P and GA(4, R) has the essential peculiarity connected with the necessity
to consider affine bundles. A version of the affine group gauge is also the insertion of affine groups in
the linear groups SO(4, 1), GL(5, R), whose gauge theories are built in the standard way, but are
supplied with some conditions of reduction to the Poincaré or Lorentz gauge.

8. Lorentz gauge gravity

The first gauge treatment of gravity suggested by R. Utiyama [109], and D. Ivanenko et al. [§]
immediately after the famous work of Yang and Mills, was based on gauging just the Lorentz group.
There were considered in [§], in contrast with the standard gauge scheme, non-infinitesimal Lorentz local
transformations, and gauge potentials were taken in the special case of the Cartan connection form,
I' = g(x)dg '(x). which have zero curvature.

The Lorentz gauge geometry proves to coincide with the Finstein—Cartan geometry of gravity with

torsion.
This geometry is defined to supply a space-time with a pseudo-Riemannian metric g and an affine

connection [ satisfying the metricity condition
(d-T)g=0 | ‘ (8.1)

which is necessary and sufficient for a connection /" to be a Lorentz connection.
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Inversely, the Lorentz gauge theory turns just out to be the case, where the reduction of the
connection on tangent and associated bundles to the Lorentz gauge potentials, that, in our opinion,
may be motivated from EP, entails the existence of a gravitational metric or tetrad field on a space-time
manifold X*, and the metricity condition (8.1) holds.

Note that in Utiyama’s original work tetrad fields were a priori introduced into the Lorentz gauge
model as operators of reference frame changes, that lay outside the conventional gauge scheme and
called also to mind various attempts to generalize Utiyama’s model for describing tetrad fields as gauge
potentials of some space-time symmetry.

Let us point out that a Lorentz connection I looks generally like GL" (4, R)-valued gauge potentials,
e.g., in a holonomic reference frame, but forms a Lorentz gauge field only with respect to a special atlas
¥, of T(X"), where the metric field g (such that a pair (I, g) satisfies the metricity condition) forms the
constant Minkowski metric field g = n. In general this atlas is non-holonomic. Nevertheless one needs it
for bundles in the Lorentz gauge theory, whose typical fibers, e.g., a spinor fiber, require only Lorentz
transformation. Such bundles, being associated with the tangent bundle, nevertheless admit atlases only
with the Lorentz transition functions and Lorentz connections.

Fock, Ivanenko and Weyl were the first, who in reality considered spinor bundles in GR, and
Lorentz gauge fields (without torsion) nowadays reproduce the well-known Fock-Ivanenko coefficients
of 1929 [26, 114], which described the parallel transport of spinors in GR.

In a holonomic atlas a Lorentz connection is expressed by the formulas (2.11) for the zero
non-metricity term Q. In the non-holonomic atlas ¥, the Lorentz connection takes values in the Lie
algebra of the Lorentz group '

Fﬂzrzb Iab:%(hghgpzy_hzh:f)lab (82)

where I, are generators of the Lorentz group in some representation. In the connection expressed by
(8.2) one can also separate purely gravitation and torsion parts:

b
re = {‘L }Iab + K%L,

(7= 0 h b i i)

K = (S + R hycS5 — h? h, S5%) ®3)
S =T =T he,h™ + (hi, = hS,)R™ .
Note that separating the torsion term in a connection is the specificity of gauge theories of external

symmetries, whose generators act also on tangent and cotangent vectors, e.g., the operators 4, and dx*.
It results that a torsion form $* = D dx* and the following specific curvature tensors can be defined

R.,=R&% 1%, R=RZIY. 8.4)
The expressions (8.4) represent the well known Ricci curvature term and scalar curvature. Similar

curvature constructions are impossible in gauge models of internal symmetries.
The quantities R,,, and R from (8.4) behave as tensor and invariant, respectively, under holonomic
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gauge transformations, and they provide the additional freedom of Lagrangian choice in gravitation
gauge theory, in comparison with the Yang-Mills’s type of Lagrangians in the internal symmetry gauge
scheme. B

Note also that a zero curvature alone does not trivialize an Einstein-Cartan space, because for a
singly connected manifold (which possesses a certain linear connection) to be isomorphic with the
Minkowski space, a zero torsion of this connection is also necessary and sufficient. This is in
contradistinction to the case of internal symmetries in gauge theories, and the reason lies in the fact that
the flat space-time is a Minkowski affine space, whose affine curvature is the sum of the linear curvature
and torsion forms, and both of them must be equal to zero. For example, one can consider spaces with
the Minkowski metric, but with non-zero torsion [90, 33].

The relations of the Einstein—Cartan space-time U* with its limiting cases are illustrated by the figure
[34]

(8.5)

where T* = teleparallelism space, V* = Einstein GR space, M* = Minkowski space.

One sees that in the Lorentz gauge procedure nothing forces the torsion part of Lorentz gauge fields
to be zero. Nevertheless the fact that the Einstein gravitation never arose in gauge theories alone did
not satisfy some authors as is clear from Utiyama’s article of 1956, where (in contradistinction to
Ivanenko et al. [8]) the skew part of a Lorentz connection was neglected. Later Utiyama and some
others attempted to build the Einstein gravitation by gauging translations alone, but all such attempts
included necessary symmetrization of a connection.

Let us now consider the invariance condition in the Lorentz gauge. As distinguished from an internal
symmetry case, there are in the gauge models of external symmetries always two kinds of gauge
transformations, namely, the familiar atlas transformations of the matter field bundle A, and also the
atlas changes of the tangent bundle T(X?). The atlases of both these bundles are equivalent, but not
always the same, as noticed above. Hence their gauge transformations fail to correlate generally and
result in different conservation laws.

Utiyama had remarked this fact and inserted tetrad fields in his gauge model just to secure the
Lagrangian invariance under tangent gauge transformations. The invariance with respect to field gauge
transformations was in the meantime provided with inserting Lorentz gauge potentials just as in the
internal symmetry gauge. Nevertheless, Utiyma’s work left the question open about the gauge status of
tetrad fields, and also nothing fixed the Minkowski signature of metric in his model. We have seen that
a gravitational field has the Goldstone field nature, and its existence results from the Equivalence
Principle.

In the Lorentz gauge theory the gauge transformations of matter field lead to the familiar type of
gauge conservation laws (3.3), where Noether’s current ¢, represents a spin current of matter fields, and
this current, as in the case of internal symmetry currents in eq. (3.5), plays the role of a source but only
of contortion components of the Lorentz gauge fields. While the invariance of a matter field Lagrangian
under T(X*) gauge transformations leads to the known identity D, T*” =0, which is weak with respect
to matter fields and strong with respect to a gravitational field, and gives the zero value of covariant
divergence of the energy-momentum tensor of matter fields
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Thus one may consider a matter energy-momentum tensor as a “current” corresponding to GL"(4, R)-
gauge transformations of tetrad or metric fields, whose matter source is also this tensor.

Hence, the Lorentz gauge model issued from RP and EP as the result of space-time symmetry
breaking turns apparently out to be the minimal gauge picture containing Einstein’s gravity. This model
represents the adequate gauge picture of the Finstein—Cartan geometry supplied with both an affine
Lorentz connection and a pseudo-Riemannian metric as the sui generis Goldstone fields [95, 56, 57).

The Lorentz group gauge, of course, does not pretend to be the single gauge picture of space-time
geometry, gravitation and external attributes of elementary particles, whose symmetries are not
restricted only by the Lorentz group. At the same time the Lorentz gauge seems to be the minimal
gauge model containing Einstein’s gravitation, and thereby it must be the kernel of any gauge
model, which tries to extend Einstein’s gravity. As a rule, such generalizations conserve the metric
structure but modify the affine structure of the Lorentz gauge gravitation by using the fact that, for the
existence of a gravitational field reduction of a bundle connection to Lorentz gauge potentials is
sufficient but not necessary, and hence gauge fields of wider space-time symmetry groups may come into
play, but only if they are accompanied by spontaneously breaking of these symmetries down to the
Lorentz ones.

9. GL(4, R)-symmetry gauge

The symmetry group GL(4, R) is one of the most natural candidates to generalize the Lorentz gauge
gravitation because its gauge fields represent the most general kind of linear connection on tangent
bundles. Nevertheless, now one prefers, as a rule [117, 73, 37, 78], to gauge GL(4, R) symmetries in the
framework of the affine GA(4, R) gauge.

Sometimes GL(4, R) gauge transformations are by mistake identified with coordinate trans-
formations, what motivates somebody to look upon GL(4, R) as so-called passive symmetries, whose
localization has nothing to do with conventional gauging. This question was discussed by us, F. Hehl et
al., and J. Cho et al. [16], and the fiber bundle analysis clarifies this point.

GL(4, R) is a structure group of the tangent bundle over a space-time manifold X*, and in the gauge
gravitation theory GL(4, R) (or GL"(4, R) because of orientability of X*) gauge transformations have
the conventional gauge status as changes of atlases of tangent and associated bundles, while generally
coordinate transformations vary the coordinate atlas of a manifold X*. Thus coordinate and GL(4, R)
gauge transformations fail to correlate with each other. Such a correlation must be secured by hand,
e.g., operating with holonomic reference frames. In this case coordinate and tangent bundle atlases are
taken just as in eq. (5.1), and they both change in such a way that coordinate transformations
x* = x'"(x") are regarded as generating GL(4, R) gauge transformations of tangent reference frames
8,— 0, = (x"/9x,)d,. These transformations form a holonomic subgroup of the gauge group
GL{4, R)(X*).

We go into these details because one meets the same mixing of coordinate and gauge transformations
in the original versions of the Poincaré gauge theory (see next section).

The GL(4, R) group can be split into a one-parameter group of dilatations D and the SL(4, R)
group of volume preserving transformations in the Minkowski space-time. The latter has the Lorentz
subgroup SO(3, 1) of angular momentum and spin operators L, (a, b =0, 1, 2, 3), where Ly, = — Ly, but
the remaining nine generators form the symmetric shear operators I, (a, b =0, 1, 2, 3), i.e. I, = I,, and
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tr I, = 0. The commutation relations of the Sl(4, R) algebra are given by known ones of the Lorentz
algebra and by the following expressions:

[Laby ch] = (nadlbc + nbclad - nachd - ndeac)
©.1)

[Ial» ch] = (nacLbd + nadLbc + nbcLad + ndeaC) .

The relevance of GL{(4, R)-gauge for gauge gravitation is based on the fact that all world-tensors are
classified by finite linear representations of this group. Difficulties arise, however, with physical
interpretation of spinorial linear representations of GL(4, R), which is reduced to the infinite sums of
O(3)-spinors {30, 83, 97, 78].

At the same time the physical importance of spinorial representations of the Lorentz subgroup of
GL(4,R) is common knowledge. It motivates one to find physically relevant spinorial states with
GL(4, R) symmetries in a class of non-linear realizations of this group induced by spinorial represen-
tations of the Lorentz group [78], which is the Cartan subgroup of GL(4, R) as one can see from
commutation relations (9.1). Note that representations of GL(4, R) coincide (because the dilatation
operator D commutes with all other generators) with representations of SL(4, R) on which the
dilatation law can be defined at will.

Non-linear realizations of SL{4, R) are built in the infinitesimal limit as follows. Denoting the
parameters of the Lorentz and shear generators of the algebra SI(4, R) as {¢“’} and {¢**}, one may write
a given element g in the neighbourhood of the unity of SL(4, R) as

g = (expol)(expul). (9.2)

We find a non-linear representation of SL(4, R) on the product space V= ¥ X SL(4, R)/L, where ¥ is a
space of some linear, e.g., spinorial representation of the Lorentz group. Small elements of V are
represented by pairs (o, ), where ¢ marks a certain left coset of SL(4, R) modulo L, but the group
element (exp o) in (9.2) is a representative of this coset .

The left translation action of SL(4, R) on the coset space elements o can be regarded as acting on the
representatives of cosets

go=o¢', g exp(ol) = exp(o’' Iy exp(u’L) o - (9.3)

where the L-valued remainder exp(u’L), being superfluous for the transformation law of cosets ¢, may
be utilized for action on a Lorentz representation space ¥. Thus a total realization of SL(4, R) on the
space V can be defined

g: (0, )= (0, ' = exp(u' L)) | ©.4)

where ¢’ and u’ are solved from eq. (9.3).

Because the quotient space SL(4, R)/L is isomorphic with the space of pseudo-Euclidean bilinear
forms g, in R* (with det g = — 1) the representation space V looks like a metric-spinor or gravitation-
spinor complex composed of elements (g, ), where g,, = (exp(o])n)a, and the operators (exp o)
represent the tetrad coefficients 4.

For the first time a similar gravitation-spinor complex was constructed in ref. [82], and we have, with
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reference to [77,78], discussed such a realization of SL(4,R) in view of spontaneously breaking
space-time symmetries and treating gravity as a Goldstone type field.

However, this realization of SL(4, R) in the form of eq. (9.4) is built only for infinitesimal operators
of this group, i.e., in fact for the Lie algebra Sl(4, R) and the weak-gravitation limit. Usually the
infinitesimal limit in the non-linear realization scheme satisfies everybody, but in the given case it is
insufficient because the geometric nature of the gravitational field depends on the global structure of a
space-time manifold X*.

Therefore one must use a global procedure to induce representations for building the gravitation-
spinor complex. This procedure states that representations of SL(4, R), induced by a certain represen-
tation of the Lorentz subgroup, are found on the space of W-valued functions in the group space of
SL(4, R), which satisfies the following condition

(g )=1"¢(), I[€EL.

This condition as a matter of fact, reduces functions ¢(g) on the group space to the functions ¢ (o) on
the coset space SL(4, R)/L or on the set of the representatives {a,} of cosets ¢(o)= ¢(0,). Then the
induced representation of SL(4, R) on these functions is defined as

(8e)a)=(g""0) (g7 o) (g o). DR ©.5)

We see that a concrete form of the representation (9.5) is determined by a particular choice of
representatives of the cosets. The expression (9.2) exemplifies such a choice of representatives near the
unity of the group. Generally a family of coset representatives {o,} is defined by a certain global section
of the L-principal bundle SL(4, R)— SL(4, R)/L. As this bundle is trivial, it has global sections.

In turn, ¥-valued functions {1} represent global sections of fiber bundles over a base SL(4, R)/L with
a typical fiber ¥. If such a bundle is trivial too, one may take non-zero constant functions ¢, i.e.,
represented by pairs (o, ) like in the case of the infinitesimal representation (9.4).

Thus it is proved that the gravitation-spinor representation (g, ¢) of SL(4, R) can be spread on all
group transformations and all pseudo-Euclidean metrics gup.

World-tensors can also be rewritten in the fashion of induced representations of SL(4, R). For
instance, a world-vector a, may be identified with a pair (h{, a) of a tetrad coefficient h; and a Lorentz
vector a, = h'a,

The action of the dilatation subgroup D of GL(4, R) on representations of SL(4, R) may be defined at
will, e.g., on the world-vectors both by length preserving operators

D:a* >da*, a,—~d'a,

or by conformal scale operators
D: a* >da*, a,—>da,, a*->d*a’.

However, the last case may be reduced to the former one by multiplication of g, by a scalar density s:
a* - a*

-2
) a,—>S "4,

which possesses the transformation law D: s —ds.
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As follows from this GL(4, R)-representation excursion just the induced and world-tensor represen-
tations of GL(4,R) form now apparently the chief part of physical applications of this group,
although nobody would quite reject its polyfield representations too. So, the bundles occurring in the
GL(4,R) gauge theory represent tensor products of tangent and cotangent bundles and bundles in
product spaces GL(4, R)/L X ¥ of induced representations of GL(4, R). But in the last case for a global
section, namely for existence of the gravitational part of such a bundle, the contraction of a structure
group GL{4,R) to the Lorentz group must occur. It reproduces the situation, which arises due to
the Equivalence Principle in the Lorentz gauge gravitation. But here it is caused by the requirement
that fermion fields must be defined in any reference frame, e.g., in holonomic frames on a space-time.

In a sense, gravitation enlarges the Lorentz symmetry of fermions up to the spontaneously broken
GL{4, R)-symmetry.

Now let us consider the affine GL(4, R) geometry. Gauge fields of GL(4, R) contain Lorentz, shear,
and dilatation gauge fields corresponding to L-, I- and D-generators, respectively. In comparison with
the Lorentz connection which consists of Christoffel symbols and contortion, GL(4, R) connection
includes also a non-metricity part Q associated with shear and dilatation fields. On a tangent bundle Q
can be evaluated from the expression

D)Lgev =- 2050‘;1,

and the whole GL(4, R) connection takes the form (2.11). This connection represents the most general
kind of linear connections on a tangent bundle and describes the Eddington affine geometry on it.

The Noether current associated with the shear and dilatation transformations is a so-called hyper-
momentum current [36, 37].

H. Weyl was the first [113] who attempted to generalize gravitation theory by taking a non-metricity
connection into consideration in the form of the dilatation gauge field Q.. = Q.g.- Later many
authors (Eddington, Dirac, Utiyama, Ehlers et al.) followed him [13, 60, 110], and now a non-metricity
affine geometry is revived again within the framework of gauge gravitation models.

Nevertheless, in spite of an almost 60-years history, the non-metricity generalization of gravity is not
as widespread as the Einstein—Cartan theory of gravity with torsion. In our opinion, the reason lies in
the fact of the absence as yet of any observable sources, which may be identified with shear and
dilatation currents and would generate non-metricity gauge fields like a spin generating torsion.
However, in the orbital representation one finds that hypermomentum can be reduced to the set of time
derivatives of gravitation quadrupole momentum [16].

At the same time the shear components of the GL(4, R) gauge fields fail to retain Lorentz mvarlants
and the GL(4, R) gauge theory violates EP in the version discussed above.

10. What are the Poincaré gauge fields?

The other natural extension of the Lorentz group of space-time symmetries is the Poincaré group.
But the Poincaré gauge did not appear as a generalization of the Lorentz gauge gravitation model, but
as its competitor.

The Poincaré gauge approach to gravity was brought into play immediately after Utiyama’s work in
order to correct his gauge gravitation model, whose drawback was seen in the unnatural gauge
status of a tetrad gravitational field from the conventional gauge point of view [62, 96, 28]. The Poincaré
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approach aimed to represent tetrad fields as gauge fields of translations due to the coincidence of tensor
ranks of tetrad fields hj and hypothetic translation gauge fields A;, and this idea has been most
widespread in gauge gravitation researches for almost 20 years.

Why so? The space-time of Special Relativity is the affine Minkowski space, and the Poincaré group,
being the motion group of this space, represents the fundamental dynamic group of SR, and its unitary
representations are identified with free particle states in SR. Up to that, for a gauge theory of
elementary particles to be complete, the Poincaré gauge is believed to supplement the internal gauging
and the intrinsic spin symmetries of particles.

However, one faces here the specificity of gauging the Poincaré group as a dynamic group. Without
aiming to give the exhaustive definition, one can characterize dynamic symmetries as describing a space
distribution and time evolution of a physical system, and these are realized by differential operators
acting in a functional space. Wave functions of free particles in SR exemplify the realization of the
Poincaré group as a dynamic group with generators expressed via differential operators: :

P

=00 L =L3+ L3, BCURY
and just the orbital part L™ of the Lorentz group generators L,, provides the canonical commutation

relations of the Poincaré group as a semidirect product of translation and Lorentz groups

[LM,,, Pe] = [L(:,,, Pe] = (nVEP.U« - nHGPV) .

In contrast with internal symmetries and Lorentz spin transformations which change field
functions in a point, Poincaré transformations with the differential generators (10.1) can be thought of,
on the one hand, as coordinate transformations, and, on the other hand, as transitions from point to
point. Both these interpretations are equivalent in a flat space, but differ under gauging.

Authors of the first works on Poincaré gauge [62, 96, 28] adhered to the coordinate interpretation of
the Poincaré generators (10.1). They combined gauging Lorentz spin transformations and coordinate
translations x* — x* + g*. Localization of these translations x* — x* + a*(x) reproduced the group of
general coordinate transformations, which induced, in turn, the holonomic subgroup of the gauge group
of tangent bundle transformations GL(4, R)(X), as we have discussed in the previous section. Genera-
tors of such correlated coordinate and gauge holonomic transformations are Lie derivatives [64], and
just the invariance condition of a matter Lagrangian under these transformations, having nothing to do
obviously with gauge translations, called to mind the tetrad or metric field in this gauge approach. But
the same invariance condition had motivated Utiyama’s insertion of tetrad fields in his Lorentz gauge
gravitation model, and hence the gauge status of tetrad fields in this Poincaré gauge model has nothing
to do with gauge potentials of the translation group.

The procedure of gauging the Poincaré transformations (10.1) interpreted as point to point tran-
sitions was proposed by F. Hehl, P. von der Heyde et al. [40, 35, 38]. This procedure does not reduce to
localization of group parameters, as usual, but modifies also the generators of the Poincaré group by
replacing ordinary derivatives in (10.1) by the covariant ones:

d,-»D,=d,~TI, ’ (10.2)

where I, = I'?* L5 is a certain Lorentz connection. Then the localization of Poincaré transformations

P =exp{o*d, + o® (L5 + L)}
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takes the non-conventional form |
P(x)= exp{c” (x) D, + 0™ (x) (L35"+ 23)} (10.3)

where L' results from L by substitution of (10.2).

The replacement (10.2) seems quite natural as generalization of translations in a flat space to
parallel translations in a curved space. But at the same time it violates the familiar commutation
relations of the Poincaré group, e.g., translation generators become non-commutative

[D,.. D] = RV Lag

and transformations (10.3) do not compose the gauge Poincaré group P(X) in the conventional sense.

Moreover, the invariance of a matter field Lagrangian under the gauge Poincaré transformations
(10.3) reduces on extremal fields to the ordinary invariance conditions under gauge Lorentz spin
transformations and holonomic gauge GL(4, R)-transformations, which are the same as we have seen in
the previous gauge gravitation models and they lead to the same Lorentz gauge and tetrad fields.

Thus one observes that both of the discussed Poincaré gauge versions being outside the conventional
gauge scheme, fail to provide a gravitational field with the status of the gauge potential of the Poincaré
translations, in spite of the previous intentions. At the same time these Poincaré gauge attempts were
stimulating for the development of the affine-metric theory of gravitation, e.g., the Einstein—Cartan
theory of gravity with torsion.

The conventional gauge techniques can be applied for gauging the Poincaré group, if one degresses
for a time from its physical role as a special relativistic dynamic group and regards it as an abstract
structure and holonomy group of some fiber bundles [14, 15, 73, 84, 21, 31, 81].

It is a well-known fact that most of the representations of the Poincaré group P with physical
meaning are built as induced representations, realizing the translation subgroup T as translations in its
own subgroup space T = P/L., which is isomorphic with the affine Minkowski space. Thereby, this space
must be a part of any construction of a fiber space of bundles in the standard Poincaré gauge theory.
Moreover it seems reasonable to require that the bundles in T are associated with an affine tangent
bundle AT(X) over a space-time manifold X*. Thercfore we confine our attention to Poincaré
connections on A T(X) and the associated principal bundle AX in affine frame spaces.

The bundles A T(X) and AX differ from the linear bundles T(X) and LX in an affine typical fiber
V X T, where V denotes a vector typical fiber of T(X) or LX. The Poincaré group action on V X T reads

P3g=(gL €L gr€T): (v, 1)~ (gLv, gt + gr)-

AT(X) and AX are associated with T(X) and LX, and the structure affine group GA(4, R) of AT(X)
and AX contracts to the linear group GL(4, R).

A Poincaré connection form A splits on a P-bundle in two components A = A, + Ar, where A,
denotes a Lorentz connection, and Ar= A, T, dx" represents an R*-valued translation connection form,
whose coefficients play the role of translation gauge fields. ‘

We are especially interested in the situation, where the Poincaré structure group of a bundle
contracts to its Lorentz subgroup. In this case a global section o of the associated bundle exists in the
quotient spaces P/L. Then one can expand a translation connection form A+ in two parts:

Ar=A,+40 , : S (10.4)
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where A, is calculated from the following condition

D-A)oe=0, D=d-A
and reads (A, )" = (Do), such that (10.4) takes the form

Ar= (Do)*T, + 6°T, . ‘ (10.5)

One easily sees that just the component A, is responsible for the inhomogeneous transformation law
of the connection A under gauge translations, while 8¢ remains invariant under these transformations
and satisfies the linear law of gauge Lorentz transformations. Moreover, there is always a certain
translation gauge, where the inhomogeneous part A, of the translation connection Ar equals zero, and
Ar coincides the part 6. For instance, it is possible to get such a reduction A= 6 to occur in all bundle
atlases which have only linear group transition functions, if one chooses o to coincide with the zero
function in these atlases.

Let us fix such a translation gauge. Then one returns to consideration of the bundles AX and
TA(X), and can make use of the known theorems [63] establishing the one-to-one correspondence
between general affine connections A on AX, pairs (A, 6) of the line connections A, on LX, and the
R*-valued 1-forms 6 on X. This correspondence reads

. AI é — R[ Dé )
Aﬂ(o O), F (0 0) | (10.6)

where the general affine connection form A and its curvature form F are represented by (5X5)-
matrices acting on columns (}), r € R*, and D and R, denote a covariant differential and a curvature
form of the linear connection A,.

In the framework of the discussed Poincaré gauge A; is a Lorentz connection, whose coefficients
represent Lorentz gauge fields, but coefficients of the form 6 are homogeneous components of
translation gauge potentials.

One sees at once the agreement of the tensor ranks of the translation gauge potentials §¢ and the
tetrad fields 4 j,. For a long time this superficial agreement stimulated repeated attempts to describe the
tetrad gravitational fields in the framework of gauge gravitation theory as gauge potentials of the
translation group.

Is there indeed any correlation between gauge fields 2 and tetrad fields h% describing any
gravitational field on X*? Let us look into this question.

Remind that a tetrad gravitational field 4 is defined as a global section of the fiber bundle X in
quotient spaces GL' (4, R)/L. However, h used to be represented by a family of local sections {4} of the
principal GL*(4, R)-bundle, which are considered up to Lorentz gauge transformations acting on {/;} to
the right. {h;} can be described as matrix fields {43 (x)} acting in R* and corresponding to the gauge
transformation between an atlas ¥ of the tangent bundle and the atlas ¥,, where the metric
gravitational field g (isomorphic with /) looks like the constant Minkowski metric 7, i.e., i, = hal,
where ¢ and ¢, are trivialization mappings of atlases ¥ and ¥, respectively. Changes of a bundle atlas
¥ lead to gauge transformations of a tetrad field

h—gh. (10.7)
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A translation connection form 6 determines linear transformations 6(x): T.(x)— T.(x) of tangent
spaces at every point x € X. H(x) can be smgular With respect to some atlas of T(X) a translation form
6 is represented by a family of matrix fields {0 by}, also acting in R*. Thus one can locally match
tetrad fields & and gauge translation fields 0. But the gauge transformation law of a connection form 6:

éiﬁgiéigi_l » (10.8)

differs from the transformation law (10.7) of a tetrad field A, and just this difference destroys the
hypothetical identification of tetrad gravitational fields / and translation gauge potentials 6.

Indeed, let us suppose for a moment that a tetrad gravitational field 4 and a translation connection 6,
which are realized, with regard to some atlas ¥, by the matrix fields {k;} and {6} in R, respectively, are
identified. Let ¥ by ¥,. Then {h;} represent Lorentz transformations of R* and one can always
single out a patch U; and an atlas ¥,, such that ;(x) = idg¢ on U; in ¥,. In turn, the translation gauge
field 6 identified with & must be reduced to the soldering form # on U, But then, in virtue of the gauge
transformation law (10.8), such a connection has to be equal to this soldering form 6 on the whole
manifold X* and in all atlases of the tangent bundle. This is obviously impossible on a manifold X*
possessing a non-trivial tangent bundle and with respect to other atlases of T(X?).

Thus we see that the identification of tetrad fields describing a certain gravitational field and
homogeneous components 6 of gauge translation fields can only take place on some patch of
trivialization of a tangent bundle T(X) and with respect to a certain fixed reference frame ¥. But even
within these limits nothing proves that a tetrad field & = 6 represents a tetrad field corresponding to
some gravitational field because nothing fixes the Minkowski signature of this field.

Note that some authors [87, 14, 31] proposed to identify & with (6 + @), but it does not change the
main conclusion about the non-coincidence of gravitational and gauge translation fields.

This conclusion brings us back to the problem of the physical meaning of translation gauge fields and
the Poincaré translations acting inside fibers of bundles.

In the case of the affine tangent and affine frame bundles the Poincaré translations act inside tangent
spaces as translations of tangent vectors

Ta:TB—>Tb+abaf, TbETx. -

Some authors [20, 84, 85] considered the realization of such translations of functions ¢ (x, 7) which do
not depend only on space-time points x, but also on tangent vectors 7, i.e., ¢(x, 7) possess a sui generis
“internal affine” symmetry, and, for instance, even the relevance of such functions for describing
hadrons was discussed.

In contradistinction to the application of tangent vectors as arguments of field functions another
approach (L. Chang [12], V. Ponomariov [85]) uses them as values of field functions, which are
considered to take values in a space V X Tx of some non-linear realization of the Poincaré group, where
V is a space of the Lorentz group representation, but tangent spaces Tx play the role of spaces of
values of the Goldstone fields corresponding to the translation group T = P/L. So Poincaré translations
act only on Goldstone fields 7(x), which, however, can be removed by a certain translation gauge, but a
translation connection § remains, though both its physical relevance and its geometrical sense (in the
framework of linear geometry on a manifold X*) seems to be not quite clear.

Indeed, a generalized affine connection A on the affine frame bundle AX defines a linear connection
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A, and a supplementary R*-valued form 6 on a linear frame bundle, and an affine curvature of A
represents the sum of the linear curvature of A; and the linear covariant derivative Dlé of the form 6.
Only if a translation connection from 6 is reduced to the soldering form 6, the covariant derivative D,
represents a familiar geometric object, namely, the torsion form {2 of a linear connection A,

This fact leads some authors to restrict their attention only to affine connections, i.e., when a
translation connection coincides with the soldering form 6 [87, 31, 73]. However such a coincidence can
only occur if a linear group principal subbundle of an affine bundle is isomorphic with a linear frame
bundle, but in this case the soldering form represents the canonical attribute of all linear frame bundies,
and moreover it fails to contain any information about the specificity of each of them.

In spite of the opinion of some authors, the soldering form itself is unable to define any torsion and tetrad
gravitational fields, because a connection is constructed without use of the soldering form. A parallel
transport of # does not define a torsion field, but picks out the torsion components of a connection as only
these components take part in 8 transport. The coefficients h,(x) of the soldering form 6= 70",
o' = hi, dx*, written with respect to a certain atlas ¥, make only sense of tetrad coefficients, if a
gravitational field has been defined, and V is the atlas, where this field becomes a Minkowski one.

Note that with use of the results of the GL(4, R) gauge (see the previous section) the Poincaré gauge
theory is generalized easy on gauging the affine group GA(4, R) both in the framework of non-
conventional approaches [3, 35, 68, 34, 38] and in the standard-like gauge scheme [15, 84, 81], but here
one faces the same difficulties as in the Poincaré gauge theory.

A version of the Poincaré gauge is also based on the insertion of the Poincaré group in some linear
groups, e.g., GL(5, R), the de Sitter group, and the conformal group, whose gauge theories are built in
the standard way, but must be supplied with some conditions of reduction to the Poincaré or Lorentz
gauges, which, in particular, results in various kinds of Goldstone and Higgs fields appearing in the
framework of non-linear realizations of these groups [9, 70, 72, 46, 61, 45, 21]. Nevertheless these
theories are blurred by a number of hypothetic fields connected with non-Lorentz symmetries, and
whose physical sense remains unclear as yet.

Thus one has the impression that at the present time only the Lorentz gauge theory supplied with the
mechanism of spontaneous symmetry breaking can pretend to the quite satisfactory gauge description of
gravity supplemented with torsion. Indeed, only in the Lorentz gauge gravitation, in contrast with other
gauge generalizations of Einstein’s gravitation possesses observable sources for all gauge, Goldstone
and other fields.

IV. Some outlooks

In this concluding section the main outcomes of the gauge trcatment of gravity for modern
gravitation theory are briefly sketched.

11. Gauge gravitation as a metric-affine one

The structure of gravitation theory as likely as any field theory is determined by establishing a family
of fundamental dynamic variables and a form of their action functional defining the field equations and
conservation laws in classical theory, and generating functionals in quantum theory.

For a long time the majority of gravitationists followed the path of Einstein’s GR and believed that
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the metric {(or tetrads, or 2-spin field etc. in various reformulations of GR) is the single gravitational
variable possessing the Hilbert-Einstein scalar curvature Lagrangian. At present time the choice of
variables and of a Lagrangian of gravitation theory is again widely discussed.

As we have mentioned above, Weyl, Eddington and Cartan were the first who drew their attention
to the fundamental role of connections in the geometrization of field theories [113,23, 10]. Later these
ideas were developed in connection with the description of fermions in GR [26, 114, 115]. But the
decisive step on this way was made in the framework of the gauge gravitation approach [62, 96, 28, 32},
where all versions admit two kinds of fundamental gravitational potentials: metric (or tetrad field) and
connection.

Metric and connection represent two independent geometric objects of space-time geometry, but in
gravitation theory this independence is not absolute because EP, postulating parallel translations
preserving Lorentz invariants, establishes the metricity constraint

(d-T)g=0 o e (11.1)

on the pseudo-Riemannian metric g and the Lorentz connection I, whose variations can, therefore, not
be independent. Consequently this constraint is introduced on physical reasons and does not issue from
the geometrical nature of metric and connection. It holds in metric-affine gravitation theories with
Lorentz connections, e.g., in GR and the Einstein-Cartan theory.

In these theories one chooses one from two possible versions of the choice of dynamic variables. In
the first case they are metric (or tetrad) fields and the connection I is constrained by (11.1). In the
second one the constraint (11.1) is resolved as a sui generis kinematic condition, which results in
splitting of the connection I" in Christoffel and contortion parts as in {8.2). Then a family of dynamic
variables of an affine-metric gravitation theory will consist of only tensor quantities, metric g and
contortion K, and even in the limit of zero contortion these different variants of the possible choice
prove not to be equivalent,

Note that in absence of the metricity constraint (11.1) one can either prefer independent variables g
and I, or one can split I" in the sum (2.11) of the Christoffel symbols, contortion K and non-metricity Q
to deal with only tensor dynamic variables g, K (or torsion S) and Q.

Let us discuss the chief points of the Lagrangian problem in the gauge gravitation theory. It is
necessary to emphasize that the gauge scheme itself establishes only the kinematics of gauge theory, i.e.,
a family of field variables, their transformation laws etc., but fails to determine directly a form of
Lagrangian. However, in gauge models of internal symmetries the choice of a gauge field Lagrangian in
the Yang-Mills form is rather unique, but in the gauge gravitation theory one has more freedom. The
reason lies in the specificity of gauge models of space-time symmetries, where Goldstone fields are
dynamic, and there is the possibility to pair group and space-time indexes of gauge fields. That enriches
the gauge gravitation models with different variants of Lagrangians, which are impossible in the gauge
theories of internal symmetries.

First of all let us point out that the conventional scalar curvature Lagrangian

V-gR
LH—E - 2
K

turns out not to be as correct as it seemed.



D. Ivanenko and G. Sardanashvily, The gauge treatment of gravity 35

Indeed, the variation goal based on Ly g in GR can be stated correctly only for asymptotically flat
metrics, because boundary conditions turned out to be incompatible in general with the Hilbert-
Einstein Lagrangian Ly g including the second-order derivatives in metric. To remove this in-
compatibility one can reduce the rank of gravitation equations either by using the Palatiny variation
with respect to metric and connection variables constrained by the metricity condition (11.1), or to
convert Ly g by adding the special divergence term to the Lagrangian without second-order derivatives
of the metric. In connection with this we remark that having regard to one or another boundary term in
a gravitation, the action turns out to be highly essential both in classical and in quantum gravitation
theories. ;

In metric-affine generalizations of GR the Lagrangian

— R
LH_E:\/_gQ‘;

where R denotes a scalar curvature of a general linear connection (while in the following R will mark a
curvature only of the Christoffel part of a connection), turns out to be not quite satisfactory too,
because it produces only algebraic equations of torsion fields and strikes off free dynamic torsion
(“tordions™).

In quantum gravitation theory L. g faced the problem of renormalization. Quantum “‘tordions™ is
also impossible in the theory with only the Hilbert-Einstein Lagrangian.

One tries to resolve these problems by introducing the quadratic curvature Lagrangians, and the
discussion on gravitation Lagrangian option centres to-day in the branch of quantum arguments.

The simplest generalization of Einstein’s GR consists in adding quadratic curvature terms in a
gravitation Lagrangian

L=V —g (A+arR+ a,R*+ a,R,,R"" + a3R.p,, R*™") (11.2)

(Eddington, Buchdal, Lanczos, etc.). They were proposed also by Weyl in his version of unified theory,
and proved to be quite necessary in quantum gravitation theory as counter terms due to the one-loop
contributions. Some constraints are imposed usually on values of the constants « in eq. (11.2).

. At the same time gravitational field equations derived from the Lagrangians (11.2) are of the fourth
order in metric, which leads to other gravitation solutions in comparison with GR.

We emphasize also the necessity in virtue of a variety of serious arguments [55] to include also the
cosmological term A in Lagrangians of the gravitation theory (these are formal arguments missed in 1915
by Hilbert and Einstein; empirical cosmological data of McVittie and B. Tinsley also lead to retaining A
introduced first by Einstein in 1917; quantum field theory necessarily leads to induced A, which may
prove to be variable).

Now let metric g, contortion K (or torsion §), and non-metricity Q compose the family of
independent dynamic variables in the metric-affine generalizations of GR. A metric-affine Lagrangian L
used to be'constructed from a complete connection I, and the fields S and Q turn out to be inserted in L
only via the connection I in this case. However one may construct a total Lagrangian also as the sum

L=L,+Ls(S,DS)+ Lo(Q, DO) (11.3)
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of a metric gravitation Lagrangian L, e.g.. the Hilbert-Einstein Lagrangian of GR, and Lagrangians
Ls of torsion S and Ly of non-metricity Q. This is possible because both S and Q are tensors under
gauge transformations. Moreover, a covariant derivative of fields S and Q in Lg and L, may be chosen
either as a complete covariant derivative D with contortion and non-metricity terms or reduced to the
covariant derivative D only of the Christoffel connection.

Of course, Lagrangians of the form (11.3) seem to be unnatural from the standpoint of the geometric
unity of Christoffel and torsion, and non-metricity components of a complete connection I. Neverthe-
less, two reasons can motivate us to neglect for a moment the considerations on the geometric elegancy
of Lagrangians constructed in the metric-affine theory. In the first place, the gravitation L, torsion Lg
and non-metricity Lo components of a total Lagrangian (11.3) may be chosen independently of each
other, e.g., L, is the Hilbert-Einstein Lagrangian of GR, but Lg and L, are Lagrangians of the
Yang-Mills type. Secondly, nothing requires that coupling constants of the torsion and non-metricity
Lagrangians Lg and L in (11.3) coincide with the gravitation constant in L,. In particular, torsion and
non-metricity coupling constants may be chosen much stronger than the gravitational one, which opens
a door to the hypothesis about the pessibility of strong torsion inside elementary particles or quarks,
whose effect would be comparable with weak or strong interaction effects.

In recent years torsion has attracted great attention as an affine generalization of the metric gravity.
The reason that torsion comes to the front lies in the fact that at present we only know two observable
space-time characteristics of particles, namely, mass (energy-momentum) and spin. And just energy-
momentum and spin of matter turn out to be the sources of metric gravity and torsion, respectively. But
because we do not observe any object possessing macrovalues of spin polarization, torsion theory as yet
cannot rival with Einstein’s gravitation theory.

The possibility of introducing torsion was indicated first by Cartan in 1922 [10], but for a long time it
remained in the shadow. For instance, Eddington who developed some affine generalizations of the
metric structure of GR, explicitly rejected the torsion [23]. Essentially such scepticism was due to the
lack of success of the attempt of Einstein and others (1928) to use the torsion generalization of
Riemannian geometry for building the unified theory of gravity and electromagnetism.

In field theory torsion was revived again in 1950 in the works of Weyl [115], and also by us [52, 53],
but just the gauge approach showed torsion as the indispensable attribute of space-time geometry [62,
96, 28, 33, 37] since it was proved that one has no symmetry group, whose gauge would describe only
metric gravitation.

A. Trautman [105, 106] made an important contribution to the formulation of the gravitation theory
of the Einstein—Cartan type, and was among the first to use the treatment of the underlying structure of
this theory in terms of fiber bundles.

Referring the readers for details of the theory and effects of classical torsion to the review of Hehl et
al. [35], we want to draw their attention again to the fundamental phenomenon of torsion, inducing
nonlinearity in the spinor Dirac equation.

Let us consider a system of Dirac massless fermions ¢ in the Einstein—Cartan space U* and supply
this system with the Lagrangian

L=5- V=g R+L, zzl;V—gR+%<§K2+L¢,

where L, is the Dirac Lagrangian in the space U*.
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The variation of L over the matter fields ¢ yields the Dirac (Weyl) equation in the space U*
D=0 ‘ (11.4)
The variation of L over metric fields yields the Einstein-type equation
R..—3Rg., = kT..(b). (11.5)

At last the variation over contortion yields the specific equation connecting contortion K with the spin
current of fermion fields $4

K7€ ypye = K, = K(nyyy,b = kS.. (11.6)

Substituting K evaluated from (11.6) in the equations (11.4, 5), one finds the field equations (11.4-6) in
the form:

R..-3Rg,., =T, () : . : | (11.7a)
Y Douth = &y  ys(yys )b = 0 ‘ ) (11.7b)
K. = KJYM75$~ : ' o (11.7¢)

Here (11.7a) is the familiar Einstein gravitation equation, but with the modified right hand side
corresponding to the energy-momentum tensor of nonlinear fermions described by eq. (11.7b)
representing the non-linear generalization of the Dirac equation.

The appearance of the non-linearity in the Dirac equations due to torsion was noted for the first time
by V. Rodichev [90] in the special case of the teleparallelism space Ty, and was investigated later in the
general space endowed with arbitrary curvature and torsion by many authors (Hehl, Datta, Peres,
Krechet, Ponomariov [65], etc.).

Non-linearities due to torsion arise in other fields of non-vanishing spin, e.g., in electromagnetic and
Proca fields (V. Ponomariov, E. Smetanin [99], V. de Sabbata). At the same time the question of torsion
interaction with gauge fields is not quite clear as yet because such an interaction breaks the correspond-
ing gauge invariance.

Not discussing other interesting consequences of torsion (e.g., specific spin precession. and left-right
neutrino oscillations of de Sabbata) we point here at the important possibility of preventing cos-
mological collapse by account of torsion, which can violate the energy dominance condition of the
Hawking-Penrose theorems. We shall return below to some effects of the quantum torsion.

The account of non-metricity also leads to analogous important effects: for Dirac fermionic matter it
contributes to the collapse, not preventing it in contradistinction with the torsion case (V. Krechet); like
torsion non-metricity induces non-linearity, but of vector, not of pseudo-vector type in spinor equations.
Such non-linear equations are analogous to sine-Gordon equations possessing important solitonic
solutions.

The spinor case is especially important as the non-linear Dirac equation just of this cubic type has been
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established (Ivanenko, 1938) and had been proposed as the basis of the unified spinor theory
(Heisenberg, Ivanenko, the 1950th) long before its geometrical reproduction. Referring for all details
and references to our work [55], we point here out that this version of unification led to many promising
results; there were evaluated the masses of hadrons (up to the {1 particle) and the coupling constants;
in an impressive way the fine structure constant was obtained (1/115-1/120 instead of 1/137). At present
we observe the revival of the modernized spinorial non-linearity for describing sub-quarks (preons)
[104] as in the standard quark models of Grand unification one is obliged to introduce too many
arbitrary parameters (Higgs fields etc.).

Nevertheless, one can object that the constant [ = 3k in front of the non-linear term in (11.7b) is too
weak. However, as we have pointed out, the torsion coupling is not obliged to coincide with the
gravitation constant. In particular, if the torsion coupling constant is due to the Salam “strong gravity”
constant introduced from the condition of equality of sizes of a proton and a “black hole” possessing
the proton mass, the self-interaction constant arising in (11.7b) turns out to be of the order of the
non-linearity constant of Heisenberg and our version of unified theory [55, 98]. Further analogies of
particles and microuniverses also arise (Ivanenko-Krechet, P. Roman, E. Recami [89]).

12. Gauge version of quantum gravity

There are some different approaches to dealing with quantum gravity. One of them, worked out in
the framework of concepts of “‘supergeometry”, is based on the Wheeler-De Witt equation [7]

{—8% G §g§eW + \/(T)gﬁ)R}?“’g) =0, HY|%)=0.

In this approach only a number of quantum cosmological models, reduced to one-parametric functional
spaces, were quantized.

Another version of gravity quantization is the covariant quantization. Its actions used to be taken in
the general form

S = I d*xV-g{ai A+ R+as R°+ ay R R* + g5 7 €., RS R25}+ boundary terms.
X (12.1)

In some versions of the action (12.1) the renormalizable quantum gravitation can be built [49, 101],
although it is non-unitary.

The difficulties in quantizing gravity stimulated some authors to consider gravity as a gauge field for
using the well-tested quantization and the renormalization procedure of gauge theory. But one faces
many peculiarities in quantizing gauge gravity in comparison with quantizing both Yang-Mills and
metric gravity.

These peculiarities lie in the affine-metric nature of gauge gravity possessing both connection and
metric variables. We shall point at some typical situations which arise in quantizing the affine-metric
gravity without entering in details.

1. A space-time connection [ is treated as a standard gauge field of a certain group, and its gauge
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theory differs from the ordinary Yang-Mills formulation only in additional freedom in the choice of the
Lagrangian. A metric tensor in such a theory is then regarded as an auxiliary quantity to satisfy the general
covariance [74], and is considered as a certain classical background without dynamical role.

2. For another type of metric-affine quantization we refer, e.g., to refs. [101, 79], where both tetrad
fields hy; and Lorentz connection I',.s are quantized independently. In this approach a Lagrangian,
constructed as combination of different pairing curvature and torsion tensors, depends on nine coupling
parameters, whose special selection may satisfy some requirements, e.g., the unitarity of a propagator,
the decrease of a number of ““ghost” fields, etc. This can motivate a definite Lagrangian choice in the
metric-affine theory from the quantum standpoint. Nevertheless, this quantization version fails to be fit
for, e.g., the Finstein—Cartan metric-affine theory, where the metricity constraint relating connection
and metric fields must be taken into account in the procedure of quantization.

3. The metricity constraint in the Finstein-Cartan theory can be resolved before one sets to
quantization, which then is modified for the quantization of a contortion component K,,, of the
Lorentz connection instead of quantizing the total connection. Contortion is a tensor under gauge
transformations, which causes a certain peculiarity in quantizing it in comparison with gauge fields. In
the gauges, where a metric field is reduced to the Minkowski metric, a contortion tensor reduces to a
pseudovector field K, = €,2“K ,,,, but, in contrast to the general gauge fields, the longitudinal component
of K, cannot be removed by any Lorentz gauge transformation, and quantizing a torsion field is
consequently non-renormalizable in general; however, in some particular cases renormalization via, e.g.,
special choice of Lagrangian may occur, e.g., in the case of the Yang-Mills type Lagrangian for a
contortion field. The symmetry properties of the Lagrangian admit additional gauge-like transformations of
atorsion field, whose gauge theory then coincides with the standard formulation. Interaction of a contortion
with spinor matter fields is renormalizable too.

The quantum torsion in the space of teleparallelism was also investigated in our group by P.
Poznanin [88], who considered the model with the contortion Lagrangian

1 @ )\2 o, a A o, @ A «
LZ‘mK KQ*EK[’ ]K[Uya]ﬁ'—lK’ K +—1(K,a)2
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and the processes of scattering of ‘“‘tordions” and interactions between particles realized by the
exchange of “tordions”. The interaction potential of two fermions due to exchange of a single “‘tordion”
contains a long-range part, which in the non-relativistic limit has exactly the form of a dipole-type
magnetic interaction

r r

[3(&)———(‘”"2)] .

Another interesting phenomenon, to which we want to draw attention, is that vacuum polarization
due to quantized spinor matter induces quadratic terms in the Lagrangian of the Einstein—Cartan field
(P. Pronin) quite like the well-known case of the Einstein gravity field (in the last case such terms can
lead to non-singular de-Sitter type inflationary cosmology (Guth, Starobinski, Gurovich). The cal-
culation of the one-loop corrections leads to the appearance of counterterms in the Lagrangian, which
have the form of the quadratic torsion Lagrangian:
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vab
LKN F;LvabF# “ 5 F;_Lvab = a[;.4.I<V]ab .

Such phenomena attract attention as a possible mechanism of the origin of induced gravitation and other
gauge fields by interactions of matter fields [2, 55].

13. Topological features of gravitational fields

Investigation of topological characteristics of gauge fields stimulated the research of analogous
characteristics of gravitational fields from the general point of view of topological classification of
corresponding fiber bundies.

Here we have to refer the readers for the necessary mathematics to, e.g., refs. [100, 59, 24].

Remind that gravitational fields on an orientable manifold X* are defined as global sections of the
bundle A in spaces of pseudo-Euclidean bilinear forms in tangent spaces over X* or of the associated
bundle in the quotient spaces GL* (4, R)/SO(3, 1), and the condition of the existence of the gravitational
field everywhere on X* is the contraction of the structure group GL(4, R) of T(X?) to the Lorentz group
SO@G, 1).

It defines the first step in the topological classification of gravitational fields into the characteristic
classes of tangent bundles admitting the Lorentz structure group.

Such bundles are characterized by the Euler class e € H*(X) and the first Pontrjagin class p, € H(X),
expressed via the Chern classes p; = ¢ — 2¢, ¢; € H*(X) of T(X?) as the bundle admitting the following
injection chain of the structure groups

SO(3)»S0@3, 1)>SL2,C)»GL @4, R)»GL@,C). .« - - (13.1)

H*(X) denote the simplicial cohomology groups of a manifold X*. Due to the injection of these groups
into the De Rham cohomology groups of real differential forms on X* the characteristic classes e, p; can
be imaged by the cohomology classes of the closed characteristic forms:

1 a . 1 o
e=§2—7;§6abcde/\Rd, plz—WTrR/\R o (13.2)

where R is a curvature 2-form of some connection on T(X*). These classes are independent on the
chosen connection, but the Euler form e must be computed only by using the SO(4 - k, k)-valued
curvature R. The Gauss—Bonnet theorem relates the Euler characteristic y of a compact manifold X* to
the Euler class of its tangent bundle T(X*): x(X*) = [x* e(T(X*)).

The Stiefel-Whitney classes of a tangent bundle over X* are defined too. These classes w; € H (X, Z5)
are not given in terms of curvature, but it is necessary that w,, w. are equal to zero for defining spinor
fields on X*.

Tangent bundles possessing the structure group which contract to the Lorentz group and con-
sequently to SO(3) have the classes e, ¢;, w1 equal to zero. Thus to classify the manifolds, admitting a
gravitation structure, we have only the single topological characteristic — the Pontrjagin class p,, but the
zero value Euler class of T(X") represents the necessary and sufficient condition for a gravitational field
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to exist on X*, that takes place on non-compact manifolds X* and compact manifolds X* possessing the
trivial Euler characteristic.

The second step of the topological classification of gravitational fields is to classify them on the same
manifold X*.

For this purpose it is convenient to use the one-to-one correspondence between pseudo-Riemannian
metrics ¢ and non-vanishing vector fields 7 on a manifold X*, which follows from the contraction of the
Lorentz structure group of T(X*) to SO(3) and reads

g;B = _gSB + 2gaRyg[l§eTyTe/72 . (13.3)

where g® is some Riemannian metric on X*. The vector field 7 is time-like with respect to the
pseudo-Riemannian metric g".

Every field as such determines a one-codimension transversal (e.g., orthogonal) foliation on X*
[66, 29], which defines a space-time structure on a manifold X*, corresponding to the gravitational field
g" evaluated from (13.3). Inversely, any one-codimension foliation on X* may be considered as
describing a certain space-time structure on X*, and a gravitational field corresponding to it can be
reconstructed.

Hence, the investigation of gravitational fields on a manifold can be reduced to describing one-
codimension foliations on X*. Their characteristic classes correspond to homotopy classes of morphisms
of X* into a certain universal space, whose entire topological structure remains unknown up to this time.
The single characteristic class of foliations which we have in our hands is the Godbillon-Vey class vy. It
is defined as a cohomology class of the closed Godbillon-Vey 3-form y = 8 A d6, where the 1-form 6 is
evaluated from the expression dr* = 7* A 6, which holds for the dual 1-form 7* corresponding to the
vector field 7, defined by a given one-dimensional foliation on X*.

In particular, if a foliation is a bundle, i.e., its leaves represent fibers of some bundle 7: X*—T', the
forms 6 and y are zero, but such a foliation can be described by a real function f evaluated from
the expression 7* = df, when the form 7* turns out to be exact. The latter is a typical situation in
gravitation models, and, e.g., gravitation singularities may be described apparently in terms of critical
points of such real functions [57, 93].

We have indicated the chief topological attributes of the pseudo-Riemannian gravitation. At the
same time as in the Yang-Mills theory the quantization of gravity in the framework of the path integral
formalism urges us to work with the Euclidean version of gravitation theory, i.e., with the Riemannian
gravitation. In this theory the finite action solutions of the Einstein equations with self-dual curvature
are especially appealing because they have interesting mathematical properties and bear the strongest
similarity to the self-dual Yang-Mills instantons. Many four-dimensional manifolds admitting metrics
with self-dual Riemannian curvatures have been discovered and, in particular, their Euler and
Pontrjagin numbers have been computed (for a review, see [24]).

14. Some more radical versions
We have pointed out the general unification goal as the main stimulus for gauge treatment of gravity.

We observe that the gauge gravitation theory, although possessing some specificities, is analogous to the
theories of electroweak and strong interactions.
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The Grand unified theories try to unify all types of interactions and all types of fields and particles
(hadrons built from fermionic quarks of 3 colours and leptons which themselves represent lepto-quarks
of the fourth colour, where the interactions are mediated by various gauge (compensating) bosonic
fields: gluons, photons, intermediate heavy bosons W*, Z). The minimal GUT is based on SU(5) group
unifying hadronic baryons and mesons with weak (atenonic) leptons, predicting, e.g., important proton
decay due to mediation via ultra heavy X bosons.

To include gravity one intensively develops now the supergravity theory which is the gauge theory of
supersymmetry unifying bosons and fermions in a single multiplet; this necessitates the existence of a
fermionic gravitino particle with spin 3/2 as a supersymmetric partner of the s =2 conventional
graviton. We may emphasize here that one must take into account the inclusion of not only Einstein’s
GR, but of some gauge extensions of GR in a supergravity theory (e.g., Einstein—Cartan torsionic
versions). Nevertheless, the arguments preventing the supersymmetry theory to be fully successful is
that a priori supersymmetries themselves fail to contain internal symmetries.

Our program of unification is proposed on the Coxeter symmetry groups, whose generator
elements {S} like reflections satisfy the conditions $* = 1, and the individuality of each group is defined
by establishing the conditions (SS’)” =1 for all pairs of generator elements. The well-known Weyl
groups of the simple Lie algebras are examples of Coxeter groups, and finite-dimensional represen-
tations of these algebras, including ones describing particle multiplets, may be built as representations
of corresponding Coxeter groups. At the same time the space-time symmetry groups are Coxeter groups
generated by reflections in different hyper-planes of a space-time too. That’s why, in our opinion,
Coxeter groups are apparently a good pretender for a Grand unified group, and “prespinors” possessing
the simplest Coxeter “‘yes-no”’ symmetry may play the role of universal preons, whose various
composites (when “yes—no” transformations of different prespinors fail to commute) form quarks,
leptons, etc. [51]. ‘

Moreover, the functor from the category of Coxeter groups into the category of topological space
exists, and the Coxeter symmetry groups may be realized as first homotopy groups of some topological
spaces playing the role of topological models of particles and subparticles. Such topological models are
produced by different gluing of real projective spaces RP' corresponding to prespinors themselves.
Prespinors may play also the role of sui generis ‘“space-time” preons in the spirit of Wheeler’s
“pregeometry’’.

Just the conceptions of the unified “prematter-pregeometry’”” complex, which seem to be plausible at
extremal conditions of superhigh density, temperature, curvature (and torsion), etc. realized presumably
inside particles, inside collapsed stars, and in pre-Big Bang conditions, when violent transmutations of
gravitons and particles and fluctuations of the metric in the Planck-length region could break the
space-time topology (leading to discrete space, worm holes, etc.), may represent the essence of the
unification program.

Let us draw our attention on the “Big numbers” =~ 10* which are met in many strange relations
between gravitational, cosmological and quantum atomic quantities (e.g., the ratio of Coulomb and
Newton forces, the ratio of observed Metagalaxy and nuclear dimensions, etc.). Dirac even tried to
develop a new cosmology including “Big numbers™ as a fundamental feature [22]. The ratio of Salam’s
strong gravity and Newton—Einstein gravity constants is also of the order of such “Big numbers”. We
have with V. Krechet obtained some exact solutions of Einsteinian gravity coupled to the vector Proca
field which with a strong gravity constant imitates an elementary particle in the spirit of modernized
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hierarchical ideas and modernized Machian ideas (Bertotti, Goldoni, etc.). It may be that the cooling of
the universe from its “prematter-pregeometry” preonic state by means of a chain of phase transitions
passes through some hierarchical stages before reaching the present quark particle state.
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