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functions on a space-time.

Singularities remain one of the principal problems
of contemporary gravitation theory [1]. One faces
them in the majority of physically significant solu-
tions of Einstein’s equations, but even the notion of
gravitation singularties still remains under discussions.
(Here we are dealing with Einstein general refativity.)

[t seemed natural to identify gravitation singulari-
ties with singular values of metric or curvature compo-
nents and their scalar combinations. However, firstly,
such a notion depends on choosing a reference frame
and includes fictious singularities which being real for
some observers are absent for others. Secondly, even
reguiarity of all metric and curvature quantities fail
to garantee one against facing such singular situations
as noncomplete geodesics and causality breaking. At
present the criterion of gravitation singularities which
is ased vn the notion of so called “bundle-complete-
ness” generalizing the familiar geodesic completeness
is that mostly considered [2]. In virtue of this criterion
2 Zravitation singularity is absent if 2ach smooth curve
in a space-time can be prolonged up to any finite value
of its generalized affine parameters. But this criterion
is not devoid of defects too. We ses the main of them
in that a behaviour of one or two curves tells only a
little about the structure of gravitation singularities,

We try to base our approach to the problem of gra-
itation singularities on the fact that a gravitation
singularity leads to a singularity of a space-time struc-
ture, and we aim to describe gravitation singularities
via their space-time images.

In the gravitation theory a space-time is usually de-
fined to be a 4-dimensional smooth manifold X ¢ ad-
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Gravitation singularities are examined as singularities of space-time foliations which represent critical points of real

mitting a pseudo-Riemanian metric g and a g<om-
patible space-time structure representing the (3 + 1)
decomposition of a tangent space at each point of
X* into space and time directions. £ the (3 + 1) de-
composition is integrable, one finds a space-time ¥+
to be foliated in spatial hypersurfaces. A space-time
foliation represents a certain topological construction
on a space-time [3], and its behaviour around a singu-
larity point may display a topological structure of
gravitation singularities.

1. Gravitational fields. A gravitational field on a
orientable smooth manifold X* is defined to be a
global section g of the fiber bundle of pseudo-
euclidean bilinear forms in tangent spaces over ¥4,
This bundle is associated with the tangent bundle
T(X*) possessing the structure group GL(4, R), and is
isomorphic with the fiber bundle I in quotient spaces
GL(4, R)/SO(3,1), whose global sectiont describes
a gravitational field in the tetrad form.

 The necessary and sufficient condition for a gravi-
tational field g to exist on a manifold X4 is the contrac-
tion of the structure group GL(4, R) of the tangent
bundle to the Lorentz group SO(3.1), and consequernt-
ly to SO(3). This means the existence of an atlas W&
= {Uy, ¥£} of T(X*) such that the transition func-
tions gluing charts (U, ¢, of trivializations of T(Y)
reduce to elements of the gauge groups SO(3,1)(Y)
or SO(3)(.X), but the gravitational field functions
{g, = £z} are the constant Minkowski metric 2. (x)
=n,x €U, in all charts of the atlas W&,

The tetrad gravitational field /# written in this
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atlas takes on values in the center of the quotient
space GL(4, R)/SO(3, 1). Then in any other atlases
‘W the field /1 can be represented by a family of ma-
trix functions {i,, U, } which act in the typical fiber
R4 of the tangent bundle and realize a gauge transfor-
mation between atlases W& and ¥ = {U,, ¥, =k, gbﬁ}
such that the known relation g, = h,n holds. The te-
trad functions {/1, } are determined up to multiplica-
tion of them on the right by gauge Lorentz transfor-
mations, and this freedom reflects the nonuniqueness
of choosing the atlas W3, ;
The diagram

o SO(4)

GL*(4,R) ‘SO(S)

s03. 1)

of contractions of the structure group of the tangent
bundle results in the following theorem.

Theorem [. Let g be a gravitational field on a
manifold X*. There exists a nonvanishing 1-form w
and a Riemannian metric g® such that
g=gt —2weuw/lwi®, (n
where |w]? =gR(w, w) = —g(w, w). Inversely, let w
be a nonvanishing 1-form on a manifold X4. Forany
Riemannian metric g8 on X% there exists a pseudo-
Riemannian metric g on.X* such that the collection
(g w.,gR) satisfies eq. (1). And for any such a col
lection there is an atlas W¥ such that the forms g, g
w/lew| look respectively as the Minkowski metric 7,
the Euclidean metrie nE, and the constant form w/
|wl=(l,0,0,0)in the frame of W§.

The last point indicates that the form wflul in
theorem 1 coincideswith a tetrad form At =1 dx“ of
a gravitational fieid g, and that forms w and w de-
fining the same gravitational fleld g by eq. (1) differ
from each other in some gauge Lorentz transforma-
tions and gauge dilatations. Such forms fail to be
antipodal in any point x € X4, and thereby they are
homotopic with each other as sections of the bundle
in 3-spheres under X*.

A pair (w, gR) defining a gravitational field g by
eq. (1) defines also the (3 + 1) decomposition of the
tangent bundle T(X)=T"(X) e T*(X) in a 3-sub-
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bundle T!(X) evaluated from the equation w(T*(X))
=0 and in its orthocomplement T+(X) relative 10 the
Riemannian metric gR. MetricsgR and g coincide
with each other y=glT1(X) =gRIT1(X) in a sub-
bundle 7(X).

2. Space-time foliations. Let X be an n-dimensional
connected smooth manifold without boundary. One
says that a smooth manifold foliation £ of codimen-
sion p < nis given on X, if X is represented as a union
of disjoint sets possessing the following properties. For
each point x € X there is a coordinate chart (U, 3 x,
¢, ) such that , maps linearly connected components .
of intersections F, N U, onto (1 — p)-planes in R7,
which are parallel to the plane x! = ... =xP =0. The
sets are named slices of a foliation F = { £}, and X'is
called a total manifold of F. Slices of a foliationare  ~
provided with a topology of (n - p)-manifolds.

The tangent bundle 7(.X) of a foliation total mani-
fold .X has a subbundle T(F) of dl tangent vectors
to foliation slices. The corresponding quotient bundle
N(F) is called a normal bundle of a foliation.

A smooth map /: ¥ — X of 2 monifold Y intoa
foliation total manifold X is called transversal to £,
if T.(F) and Im(df),, where df: T(Y) = T(X), gener-
ate the whole tangent space 7,.(.X') at each point x %
€ X. If fis transversal to F, then preimages of slices
of F compose the induced foliation /™ F on a mani-
fold Y.

For foliation mathematics see, e.g., ref. [4.5]. Our
application of foliations is based on the following
theorem:

Theorent 2. Any orientable foliation £ of codimen-
sion | on a manifold .Y can be evaluated from the
equation dw = 0, where w is some nonvanishing -
form on .Y, which satisties the integrability condition . _
A BRRE
The form w is determined up to its multiplication bY
arbitrary nonvanishing real function on X, and any
such a form defines a l-codimensional foliation on
X : .

We shall say that an orientable 1-codimensional
foliation F on a smooth connected manifold X+ with-
out boundary is a space-time foliation relative to 3
gravitational field g, if a generating form wof Fisa
tetrad form At of a given field g.

w A dw=0.
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The following theorem is a corollary of theorems
1,2

Theorem 3. Any 1<odimensional foliation on a
manifold X4 is a space-time corresponding to a cer-
tain gravitational field on X4, Inversely, a gravitation-
al field g whose tetrad form A satisfies the integrability
condition (2) defines a space-time foliation generated
by the form w = At.

A gravitational field g on a manifold X'* admits a
family of space-time foliations whose generating forms
differ from each other in gauge Lorentz and dilation
transformations. To choose a certain space-time folia-
tion means in a sense to choose a certain reference
frame and also to fix a Riemannian metric gR on X¢
such that observers connected with different foliation
frames perceive the same space-time as different
Riemannian spaces. The well-known relativistic change
of sizes of moving bodies exemplifies this phenome-
non.

We shall say that a space-time foliation F is causal
if nobody moving along any transversal curve to £ in-
tersects any slice of £ more than once. It means that
slices of a causal foliation are linearly ordered, and for ,
verifying the causality to travel along one or two trans-
versals is sufficient. The effective description of causal
foliations can be found as follows:

Theorem 4. A space-time foliation £ is causal only
if it represents a foliation of level surfaces of some
smooth function f possessing the nonvanishing dif-
ferential df on X9,

A tetrad form Al generating a causal foliation takes
the form

ht=Ndf, (3)

where .V denotes a nonvanishing real function on X4.

Remark also that the integrability of a (3 + 1) de-
composition may be interpreted as the condition of
sui generis local causality which claims that there
exist a neighborhood of any point x € X where the
tetrad form At of a given (3 + 1) decomposition can
take the form (3). For comparison, Hawking's strong
causality (2] is local in space and global time.

There are gravitational fields not admitting space-
time foliation or causal foliation. Such fields being
regular themselves define singular space-time structures
on a manifold X4.
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3. Space-time singularities. Now some more remarks
about a space-time manifold X4, Until now we have
failed to discuss singularities destroying the structure
of a connected smooth manifold without boundary
on X*. Such a manifold is metrizable, and its diffeo-
morphisms must be uniformly continuous. Also it
seems reasonable to think that X+ is complete as a
metric space.

Thus we shall restrict our discussion to singulari-
ties retaining the locally euclidean topological structure
of a space-time at singularity points.

We shall say that a gravitational field g on a mani-
fold X* possesses a singularity, if there is no g com-
patible space-time foliation on X4,

It makes sense to distinguish two types of gravita-
tion singularities. The first type includes gravitational
fields admitting regular (3 + 1) decompositions, but
no causal space-time foliations. Such singularities,
destroying only the causality of a space-time, need
not possess singular values of gravitational quantities.
The second type of gravitation singularities includes
gravitational fields not admitting (3 + 1) decompositions
and regular space-time foliations.

Singular foliations are defined as closing the class
of foliations under the operation of the foliation
induction when a smooth map f: ¥ — X fails to be
transversal to a foliation # on .. However in this case
the induced construction f *F makes a certain geometric
sense too, and may be interpretated as a singular folia-
tion [5].

The following theorem describes singularities in
causal space-time foliations:

Theorem 5. Singular foliations closing the class of
causal space-time foliations represent foliations of
level surfaces of real smooth functions f on a space-
time.

Singularities in such foliations are identified with
critical points of functions f, i.e. with points where
df=0. It may look promising for describing corre-
spondent gravitation singularities because such points
are well studied and classified.

In a general case, however, a*1-form «w going to zero
at some points of x 4 fails to define any singular folia-
tion (Haefliger structure). But such a form may be
considered as defining a singular (3 + 1) decomposi-
tion on X%, and a singular gravitational field as fol-
lows.
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Let gR be a Riemannian metric on X4 and let S
denote a closed set of points where a given form w
comes to zero. Then the forms gR and w being restrict-
ed on the manifold (X*—8) define a gravitational
field z on (X% — §) in virtue of eq. (1), which in a
general case cannot be expanded on the whole mani-
fold X4. In so fir as forms w defining the same singu-
lar gravitational field g on X4 differ from each other
in gauge Lorentz and dilatation transformations the
following theorem is true:

Theorem 6. If a gravitational field g admits a singu-
lar (3 + 1) decomposition generated by a form w, any
other g-compatible (3 + 1) decomposition or a space-
time foliation generated by some form w’ possesses
a singularity w' =0 at the same point where w does,
and if this point is isolated, this singularity is charac-
terized by the same index of w as the index of .

However there are situations when a form w going
to zero at a point x, .X can define a regular (3 + 1) de-
composition or foliation on X*. It takes place when
the form w/|w| existing on the manifold (X* - x)
can be expanded regularly on the whole manifold
X*. In this case the (3 + 1) decomposition and a gravi-
tational field defined by on (X* — x) can be expand-
ed regularly on X* too, and thereby a singularity in-
dicated by the vanishing of such a form w tums out
to be fictitious.

For to discern such a fictional singularity one can
use the additional criterium that the divergence of
the vector field &, =/}3, must enlarge infinitely
about a true singularity. For instance, it takes place
when the field /1, possesses a nontrivial index at an
isolated singular point.

Let a form e define a singular foliation £ on a
manifold X*. Then in virtue of the known theorems
the divergence div /i1, can be connected with values
of the second fundamental form (the exterior curva-
ture) on slices of F as follows:

K= _‘:{abr‘ab =—diV}lJ_ - % al ]-nlgR] H

where [ is a gravitational connection, but g, b =1,
2, 3 denote the basis indices on slices. It shows that.
the exterior curvature of foliation slices enlarges in-
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finitely about a foliation singularity, and this fact
can play the role of the criterium of a foliation singu- -
larity too.

The last criterium seems especially preferable be-
cause the Einstein equations can be rewritten as the
evolution equations for components of the extedor
curvature K [6]. For instance, the evolution equation
for the scalar exterior curvature reads

3, K=K KR +5T - N1V, @)

where T is the Euclidean spur of the energy-momen- *
tum tensor of matter sources, but /V is a time scale s
function which can be set equal to a constant because
of our thesis about regularity of a space-time as a
Riemannian space. Let T = 0, which is natural for
most matter sources. Then, taking into account the
algebraic relation K"K, > K ?/3, one can rewrite the
evolution equation (4) in the form: ;

dK/as<iK? (5)

where s denotes a parameter along an integral curve
of the field /,. [t is easy to prove that any K # 0
obeying eq. (5) becomes infinite at some finite value
of a parameter s. This means that space-time singula-
rities are the inevitable attribute of the most physical-
ly significant solutions of the Einstein equations.

In a sense this result correlates with the known 5
theorems by Hawking and Penrose, because if a gravi- - -
tational field possesses a singularity from the foliation
point of view, it possesses also a singularity expressed
by the noncompleteness of some curve, namely, an
integral curve of the field /,.

.
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