Главный редактор Ю.Т. Дьяков

Заместитель главного редактора Ю.В. Сергеев

Редакционная коллегия

Белозерская Т.А.	Левитин М.М.
Бибикова М.В.	Марфенина О.Е.
Биланенко Е.Н.	Мокеева В.Л.
Бурова С.А.	Озерская С.М.
Бондарцева М.А.	Сергеев А.Ю.
Воронина Е.Ю.	Сидорова И.И.
Гагкаева Т.Ю.	Ткаченко О.Б.
Еланский С.Н.	Тремасов М.Ю.
Журбенко М.П.	Толпышева Т.Ю.
Коваленко А.Е.	Шнырева А.В.
Кураков А.В.	Чекунова Л.Н.

С56 Современная микология в России. Том 7. Ред.: Ю.Т. Дьяков, Ю.В. Сергеев. М.: Нац. акад. микол. 2017. Том 7. 458 с.

УДК 58-616.5 ББК 28.591

Издано в Российской Федерации в рамках программы Национальной академии микологии

Научное издание

Современная микология в России

Том 7

Главный редактор **Ю.Т. Дьяков**

Заместитель главного редактора **Ю.В. Сергеев**

Издание

Национальной Академии Микологии

http://www.mycology.ru

Компьютерная обработка и печать ИП «Мильграм A&B»

Подписано в печать 8.04.2017 Формат 60х90/8 Гарнитура Minion. Печать цифровая.
Усл печ. л. 55. Тираж 500 экз.

тами Зуммер и Ширлан 488 и 460 ед. соответственно (рис. 2).

Урожайность картофеля соответствовала полученым динамикам болезни в сравниваемых вариантах: контроль (без обработки) – 352 ц/га, в вариантах спрепаратами Зуммер и Ширлан соответственно 621 и620,5 ц/га (рис.3). Таким образом, прибавка урожая составила +269 и +268,5 ц/га.

Через месяц хранения урожая оценивали качество клубней; было установлено, что в варианте с препаратом Зуммер, равно как и в варианте с препаратом Ширлан, пораженность клубней была снижена на 21,4 и 21,5%, по сравнению с контролем, а товарность клубней повышена на 29,1 и 29,3% (рис. 3 и 4).

Таким образом, в условиях эпифитотийного развития фитофтороза проведение защитных обработок растений препаратами Зуммер и Ширлан позволило получить высокую эффективность в снижении вредоносности болезни, что продлило период вегетации растений, и, соответственно, обеспечить

более высокий урожай картофеля, его товарность и качество.

Список литературы

- 1. Анисимов Б.В., Белов Г.Л., Варицев Ю.А., Еланский С.Н., Иванюк В.Г., Г.К. Журомский, С.К. и др. / Защита картофеля от болезней, вредителей и сорняков М.: Картофелевод, 2009. 256 с.
- 2. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований) М.: Агропромиздат, 1985. 351 с.
- 3. Кузнецова М.А. Защита картофеля. / Защита и карантин растений (Приложение). 2007. № 5. С. 1-42.
- 4. Кузнецова М.А., Козловский Б.Е., Рогожин А.Н., и др. / Фитофтороз и альтернариоз картофеля: программа защитных действи . Картофель и овощи. 2010. № 3. С. 27-30.
- 5. James W.C., Shih C.S., Hodson W.A. and Callbeck L.C. The quantitative relationship between late blight of potato and loss in tuber yield. Phytopathology. 1972. No. 62. + P. 92-96.

НЕРИБОСОМНЫЕ ПЕПТИДЫ, ОБРАЗУЕМЫЕ МИКРОМИЦЕТАМИ ПОРЯДКА HYPOCREALES: БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ И ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ В КАЧЕСТВЕ АНТИМИКОТИКОВ

Садыкова В.С.¹, Баранова А.А.¹, Якушев А.В.², Георгиева М.Л.^{1,2}, Кураков А.В.², Кулько А.Б.³, Рогожин Е.А.^{1,4}, Бычкова О.П.¹, Тренин А.С.¹, Коршун В.А.^{1,4} ¹Научно-исследовательский Институт по изысканию новых антибиотиков им. Г.Ф. Гаузе, Москва ²Московский государственный университет им. М.В. Ломоносова ³Московский городской научно-практический центр борьбы с туберкулезом ⁴ Институт биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова РАН, Москва

Грибные нерибосомные пептиды — соединения с молекулярный весом от 500 до 1800 Да, в их состав могут входить помимо «кодируемых» и «некодируемые» аминокислоты, а также различные непептидые фрагменты, что обусловливает разнообразие синтезируемых молекул (Хие et al., 2012). Такие пептиды обладают сложным составом, включающим диклические, разветвленные циклические структуры и линейные молекулы, модифицированные протеиногенными и непротеиногенными аминокислотами (Chiang et al., 2008; Nagaray et al., 2009). Роль таких пептидов в жизнедеятельности самого продуцента недостаточно ясна, но их участие в экологии и комминкационных взаимодействиях весьма вероятно.

Антимикробные пептиды (АМП) грибов, за исшочением неоифрапептинов, продуцируются, в основном, тремя семействами: *Hypocreaceae*, *Clavicipi*шеее, и *Bionectriaceae* порядка Hypocreales. На стодняшний день 18 родов несовершенных грибов прибов аскомицетов были признаны в качестве продудентов приблизительно 700 АМП, которые относятся к пептаибиотикам. Большинство структур были обнаружены у представителей рода *Trichoderma* лето телеоморфы *Hypocrea*, а также грибов из родов детемопіит, *Tolypocladium*, *Paecilomyces*, *Emericellopsis* п Sepedonium. Гораздо реже они выявляются у видов из родов Verticimonosporium, Stilbella, Mycogone, Mariannaea, Myrothecium, Clonostachys, Culicinomyces, Cordyceps, Geotrichum и Dendrodochium (Stoppacher et al., 2013).

Интерес к таким пептидам связан с перспективами их использования для разработки лекарственных препаратов нового поколения. Они рассматриваются в качестве молекул-кандидатов, с помощью которых можно преодолеть устойчивость к антибиотикам у патогенных микроорганизмов (в том числе патогенных грибов) и опухолевых клеток. Пептиды, выделенные из грибов, обладают более выраженной антимикотической (антифунгальной) активностью, чем пептиды, выделенные из бактерий (Abid et al., 2014).

Среди уже известных пептидных грибных антимикотиков, используемых в медицинской практике, наиболее широко применяются эхинокандины: капсофунгин (продуцент Glarea lozoyensis), пневмокандин (продуцент Zalerionar arboricola), мулундокандин (продуцент A. syndosi). Спектр их активности включает виды родов Aspergillus (включая изоляты и штаммы, резистентные к амфотерицину В), Candida (в том числе изоляты резистентные к флуконазолу и итраконазолу). Кроме эхинокандинов известны ауреобазидины (А и В) (продуцент

- Aureobasidium pullulans), они практически не токсичны и обладают высокой биодоступностью. Активность проявляют в отношении клинических изолятов рода Candida и Cryptococcus neoforman.

Перспективную группу антимикробных пептидов представляют собой пептаиболы и похожие на них пептиды (пептаибиотики). Они продуцируются преимущественно почвенными сапротрофами или патогенами растений из родов Trichoderma, Emericellopsis, Fusarium и обладают необычными физико-химическими и биологическими свойствами, Кроме того, считается, что к ним практически не возникает резистентность у клеток-мишеней. Наиболее изученными являются зервамицины (продуцент Emericellopsis salmosynnemata), находящиеся в настоящее время на стадии клинических испытаний.

В ближайшие годы можно ожидать, что при целенаправленном скрининге не только среди известных, но и слабо изученных таксонов грибов, а также штаммов, выделенных из труднодоступных и необследованных местообитаний и регионов, будут обнаружены продуценты новых АМП.

Целью работы была оценка антимикотической активности у микроскопических грибов порядка Hypocreales, выделенных из мало изученных и экстремальных местообитаний и создание на этой основе коллекции штаммов – продуцентов пептидных антибиотиков.

Антимикотическая активность была изучена у 288 штаммов, относящихся к порядку Hypocreales, при этом 211 были коллекционными штаммами, а 77 были изолированы из природных образцов, отобранных в различных регионах и экотопах, включая экстремальные местообитания. Из 288 штаммов умеренной и высокой антифунгальной активностью обладали, соответственно, 52% и 9%. Высокоактивные штаммы были выделены из экониш, богатых органическими веществами: почв зональных типов (верхних гумусовых горизонтов и торфяные почвы) и разлагающихся растительных субстратов (растительные остатки, переработанная короедами древесина).

В образцах из местообитаний, которые характеризуются экстремальными условиями — содовые почвы и донные отложения с высоким содержанием солей и рН, встречались, в основном, умеренно активные культуры. Еще одним экотопом, из которого часто выделяли изоляты с антимикотической активностью, были местообитания, связанные с деятельностью различных членистоногих, в частности, буровая мука и ходы, образуемые в древесине личинками короедов, а также содержимое кишечного тракта и экскрементов многоножек.

Наиболее часто способность к образованию соединений с антимикотической активностью проявляли представители рода Trichoderma (виды Т. asperellum, T.gamsii, Т. citrinoviride, T.harzianum). Значительное число штаммов с высокой и/или умеренной активностью принадлежало к родам Emericellopsis (преимущественно вида Emericellopsis alkalina), Cladosporium, Tolypocladium, Acrostalagmus. Ряд видов – Bipolaris sorghicola, В. secalis, Scopulariopsis brevicaulis и Sodiomyces tronii (алкалофил из экстре-

мальных содовых биотопов), представляются также интересными для скрининга продуцентов антимикотиков. Была создана коллекция продуцентов с антимикотической активностью из 35 активных штаммов, 20 из которых относятся к роду *Trichoderma*, 1 – к роду *Fusarium*, 5 – к роду *Emericellopsis*, 2 – к роду *Acremonium*.

Из созданной коллекции для дальнейшего исследования были отобраны 3 штамма рода Trichoderma, поскольку они обладали не только высокой антимикотической активностью при росте в жидких питательных средах, но также содержали в составе антибиотического комплекса искомые пептидные фракции. Для этих суммарных фракций была установлена минимальная ингибирующая концентрация в отношении условно-патогенных грибов и бактерий. Максимальной активностью обладали фракции, выделенные из T. citrinoviride ВКПМ F-1228, которые в низкой концентрации (3,7х10-1 ед.к.ж.) подавляли рост M.luteus ATCC 9341, а также были активны в отношении S.aureus ATCC 21027. МИК в отношении A.niger ATCC 16404, F. oxysporum VKM F-140 составляла 5 и 10 мкл/мл, соответственно.

Была разработана и апробирована методика выделения индивидуальных компонентов полипептидной природы на основе сочетания их спиртовой экстракции из внеклеточной жидкости с последующим концебнтрированием и разделением комбинацией методов гидрофобной хроматографии высокого давления с использованием обращенно-фазового сорбента. Используемый подход позволил обеспечить эффективную очистку полученного экстракта от низкомолекулярных компонентов преимущественно гидрофильной природы, а также компонентов самой культуральной жидкости (к.ж.). В итоге по каждому из трех штаммов был выделен комплекс гидрофобных соединений, спектральный анализ которых послужил основанием для выявления среди них пептаиболов (пептаибиотиков).

В проводимых в настоящее время исследованиях со штаммом *Т. citrinoviride* ВКПМ F-1228 показано, что он синтезирует комплекс из 5-ти пептаиболов, один из которых – трихозин, а 4 других могут быть не известными ранее соединениями (Садыкова и др., 2015). Они способны ингибировать рост патогенных клинических изолятов рода *Aspergillus: A. ochraceus* 497М и *А. niger* 646М – резистентных к амфотерицину В возбудителей бронхолегочного аспергиллеза, а также клинических изолятов дрожжевых грибов рода *Candida: C. tropicalis* и *C. krusei*, резистентных к азолам.

Работа выполнена при поддержке грантов РФФИ 15-04-06260а (выделение чистых культур грибов и исследование особенностей их физиологии) и Правительства Красноярского края, Красноярского краевого фонда поддержки научной и научно-технической деятельности» в рамках научного проекта № 16-44-240509 (определение спектра антимикотической активности и выделение антибиотического комплекса грибов).

Список литературы

- 1. Xue G., Ames B.D., Haynes S.W et. al Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat Chem. Biol. 2012; 8(10): 823-30.
- 2. Chiang Y.M. Molecular genetic mining of the *Aspergillus* secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem. Biol. 2008; 15: 527-32.
- 3. Nagaray G., Balaram H., Shivayoigi M.S. et. al Antimalarial Activities of Peptide Antibiotics Isolated from Fungi. Antimicrob. agents chemotherapy. − 2009. − V. 45, № 1. − P. 145 − 149.
- 4. Stoppacher N., Brückner H., Burgstaller L. et. al The Comprehensive Peptaibiotics Database. Chemistry & Biodiversity. 2013. V. 10, T. 5. P. 734-743.
- 5. Abid A., Ahmad B., Bacha N. et. al Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites. Asian Pac J Trop Biomed. 2014. V. 4, № 11. P. 859-870.
- 6. Садыкова В.С., Кураков А.В., Коршун В.А. и др. Антимикробная активность штамма *Т. citrinoviride* TYVI 4/11 продуцента пептаиболов в условиях жидкофазного и твердофазного культивирования. Антиб. химиотер. 2015; 11-12: 3-8.

ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ АНТИГРИБКОВЫХ ПОЛИЕНОВЫХ АНТИБИОТИКОВ РАЗЛИЧНОЙ ХИМИЧЕСКОЙ СТРУКТУРЫ В КЛЕТОЧНЫХ МЕМБРАНАХ

Самедова А.А.

Институт Ботаники Национальной Академии Наук Азербайджана, Баку

Макроциклические полиеновые антибиотики (ПА) имеют широкий спектр действия. Прежде всего, необходимо отметить медицинское значение этих соединений в качестве лекарственных препаратов, действие которых направлено против грибковых инфекционных заболеваний. Главный критерий применения ПА в практической медицине в качестве антигрибковых препаратов -это высокая фунгицидная активность, хотя в последнее время макролидные антибиотики также используются в клинике и как антибактериальные препараты [1,2]. Как известно, представители этой многочисленной группы антибиотиков (наиболее известные ПА-это нистатин, амфотерицин В, микогептин и леворин) являются продуцентами микроорганизмов Streptomyces. Все они в какой-то степени обладают фунгицидным действием, механизм которого всесторонне изучается молекулярными биологами и биофизиками. Функциональная деятельность вышеуказанных соединений, как оказалось, связана с взаимодействием этих антибиотиков с мембранами клеток, представляющих липидно-белковую структуру в виде «сэндвича[3]. Взаимодействие антибиотиков со стериновым компонентом плазматических мембран клеток приводит к образованию проводящих структурных единиционных каналов избирательно проницаемых для ионов и низкомолекулярных соединений, через которые клетки начинают терять жизненно важные метаболиты, что приводит их к гибели. Каналы в проводящем состоянии делают возможным дальнейшее изучение механизма мембранного транспорта ионов. Исследование кинетики проводимости и свойств одиночных ионных каналов полиеновых антибиотиков с установленной структурой молекул позволило определить основные принципы процессов сборки и разборки ионных каналов в мембранах. Химическая модификация молекул антибиотиков позволяет расширить фронт исследований для создания новых

препаратов и более целенаправленного применения их в практической медицине в качестве эффективных препаратов не только против грибковых, вирусных и бактериальных инфекций, а в перспективе и против онкологических заболеваний. Многочисленные исследования доказали, что ионная проницаемость клеточных мембран меняется в присутствии ПА. Эти исследования проводились рядом ученых многих стран [3,4] и были продолжены и в нашей лаборатории на протяжении многих лет [5]. Исследование механизма действия ПА проводилось на анализе данных по проводимости клеточных и бислойных липидных мембран амфотерицина В, нистатина, леворина и филипина и их производных [5].

Надо отметить, что во многих исследованиях клеточные мембраны были заменены на модельные, являющиеся альтернативой природных мембран и имеющих идентичные физико-химические характеристики.

Так, в наших исследованиях были использованы бислойные липидные мембраны (БЛМ), выделенные из фосфолипидов бычьего мозга. Они используются в комплексе с холестерином или эргостерином в различных соотношениях с фосфолипидами и считаются более совершенными по сравнению со своими клеточными аналогами [6]. ПА в зависимости от химической структуры ведут себя по-разному. Процесс комплексообразования ПА со стеринами изучали методами электронной микроскопии, кругового дихроизма, УФ-спектроскопии, флуоресценции Относительно биологической активности ПА в мембранах, нужно определить главный критерий, в данном случае - это изменение клеточной проницаемости. Как отмечалось выше, взаимодействие ПА со стериновым компонентом приводит к образованию ионных каналов и, соответственно, к изменению проводимости клеточных мембран. Ионные каналы осуществляют транспорт ионов и низкомолекуляр-