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Abstract—A second-order Schrödinger differential operator of parabolic type is considered, for which an
explicit form of a fundamental solution is derived. Such operators arise in many problems of physics, and the
fundamental solution plays the role of the Feynman propagation function.
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In [1] (see also [2]), a fundamental solution of a
parabolic equation with real coefficient (a Fokker–
Planck–Kolmogorov equation) was obtained. In this
paper, we use similar methods to investigate a para-
bolic equation with complex coefficients (the
Schrödinger equation) and special initial conditions.
For this equation, we obtain a complex fundamental
solution, which is the Feynman propagation function.

1. STATEMENT OF THE PROBLEM
AND THE RESULT

Let  be a vector variable of
dimension n, and let  be a distin-
guished one-dimensional variable playing the role of
time. We denote the class of complex-valued functions

 having continuous partial deriv-

atives , , and  ( ) on 

by .
We say that an operator  is a second-order com-

plex operator if it has the form
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where the , , , , and  with k,
, and  are real-valued functions

depending only on time.
Accordingly, a second-order complex equation is

an equation of the form

. (1)

Remark 1. Note that Eq. (1) is an analogue of the
multidimensional Schrödinger equation with Hamil-
tonian of the form

on the right-hand side, where  is the

momentum coordinate of a quantum particle (see,
e.g., [4]).

Assumption A. The coefficients , , :
 of a second-order complex operator

 are continuous functions on  having finite limits
, respectively, as . It is

assumed that the matrix  is symmetric and the
matrix is positive definite.

Suppose that a solution of the Cauchy problem

(2)

( )kjA t ( )kjB t ( )kc t ( )kjF t ( )kg t
= , ,…1 2,j n ( )h t

− =�� [ ]i u u+

( )

, =

= =

, = =

=

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+ + +
⎜ ⎟
⎝ ⎠

∑

∑ ∑

∑ ∑

1

1 1

1 1

1 ( )
2

( ) ( )

( ) ( ) ( )

n

kj k j

k j

n n

kj j k k

k j

n n

kj k j k i

k j k

A t p p

B t x c t p

F t x x g t x h t

*

∂= −
∂k

k

p i
x

( )A t ( )B t ( )F t
+ ×→� �( )n nM

+ +�

×, , ∈ �0 0 0 ( )n nA B F M → 0t
( )A t

0A

( )⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

×=

= − + − + − ,

= ∈ ,0

� � � � �

�

T
2

0

1 2 1 2 2'

( )n nt

P P SA B AS B P A

P M

MATHEMATICS

Mechanics and Mathematics Faculty, 
Moscow State University, Moscow, 119991 Russia
* e-mail: a.g.chechkin@gmail.com
** e-mail: sham@rambler.ru



DOKLADY MATHEMATICS  Vol. 95  No. 2  2017

ON A COMPLEX FUNDAMENTAL SOLUTION 123

where  is a symmetric solution of the problem

(3)

can be represented in a neighborhood of zero in the
form

, (4)

where  is a matrix defined on the interval  for
some constant .

We introduce the following notation:

, (5)

, (6)

, (7)

. (8)

Assumption B. For , the following
improper integral exists and is finite:

.

Suppose given the systems of differential equations

(9)

and

(10)

Consider the Cauchy problem for the operator

 introduced above:
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where  is the delta-function with singularity at
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Theorem 1. If assumptions A and B hold, then a solu-
tion of the Cauchy problem (11) is the function 
equal to

(12)

where , , , and  are solutions of system
(9) with initial conditions Skj(0) = ql(0) = r(0) =

 for any ;  and 
are solutions of the first two equations of system (10) with
initial conditions  for any ;

; and  is a particular solution of the third
equation of system (10) having the form

(13)

2. AUXILIARY ASSERTIONS

The following assertion (an analogue of Theorem 3.1
in [3]) holds.

Lemma 1. A nonvanishing function ρ ∈
 of the form

, (14)

where , is a solution of the second-order
complex equation (1) if and only if its coefficients ,

, and  satisfy the Riccati-type system of equations

(15)

The following two lemmas are similar to those
given in [1].
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form
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(17)

and

(18)

and the function  satisfies (14), is a solution of the
equation

(19)

in which  and  if and only if,
after the change , its coefficients satisfy
system (10).

Let  and  be solutions of the first two
equations in system (10) with initial conditions

 for  and , and let
 be a particular solution of the third equation in

system (10) of the form (13).
Consider the function G(t, x; y):

Lemma 3. Let  be a function of class

. Suppose that

.

Then  as .

3. PROOF OF THE MAIN STATEMENT
Proof of Theorem 1. Let us represent the solution of

the Cauchy problem (11) as a product:

.

It is easy to see that the problem decomposes into the
two subproblems

(20)

and

(21)

where  is a second-order operator and  is the oper-
ator corresponding to the right-hand side of Eq. (19).

By virtue of Lemma 1, there exists a solution 
of problem (20) which has the form (14), where ,

, , and  are solutions of system (9) with ini-
tial conditions  for any
i, j, .

Next, by virtue of Lemma 2, there exists a function
 of the form (16), where , , and  are

solutions of system (10). By virtue of Lemma 3, under the
initial conditions  for any ,

 and

we have  as .
Obviously, under the initial conditions on ,
, , , , , and  specified above,

the product  also tends to  as .
This completes the proof of the theorem.
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