On a Complex Fundamental Solution of the Schrödinger Equation

A. G. Chechkin* and A. S. Shamaev**
Presented by Academician of the RAS V.V. Kozlov October 28, 2016

Received November 2, 2016

Abstract

A second-order Schrödinger differential operator of parabolic type is considered, for which an explicit form of a fundamental solution is derived. Such operators arise in many problems of physics, and the fundamental solution plays the role of the Feynman propagation function.

DOI: 10.1134/S106456241702003X

In [1] (see also [2]), a fundamental solution of a parabolic equation with real coefficient (a Fokker-Planck-Kolmogorov equation) was obtained. In this paper, we use similar methods to investigate a parabolic equation with complex coefficients (the Schrödinger equation) and special initial conditions. For this equation, we obtain a complex fundamental solution, which is the Feynman propagation function.

1. STATEMENT OF THE PROBLEM AND THE RESULT

Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ be a vector variable of dimension n, and let $t \in \mathbb{R}_{+}=[0,+\infty)$ be a distinguished one-dimensional variable playing the role of time. We denote the class of complex-valued functions $u(t, x): \mathbb{R}_{+} \times \mathbb{R}^{n} \rightarrow \mathbb{C}$ having continuous partial derivatives $\partial_{t}, \partial_{x_{k}}$, and $\partial_{x_{k} x_{l}}^{2}(k, l=1,2, \ldots, n)$ on $\mathbb{R}_{+} \times \mathbb{R}^{n}$ by $C^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}^{n} ; \mathbb{C}\right)$.

We say that an operator \mathscr{L} is a second-order complex operator if it has the form

$$
\begin{gathered}
\mathscr{L}[v]=\frac{(-i)^{2}}{2} \sum_{k, j=1}^{n} A_{k j}(t) \frac{\partial^{2} v}{\partial x_{k} \partial x_{j}} \\
+(-i) \sum_{k=1}^{n}\left(\sum_{j=1}^{n}\left(B_{k j}(t) x_{j}+c_{k}(t)\right) \frac{\partial v}{\partial x_{k}}\right. \\
+\left(\sum_{k, j=1}^{n} F_{k j}(t) x_{k} x_{j}+\sum_{k=1}^{n} g_{k}(t) x_{i}+h(t)\right) v,
\end{gathered}
$$

[^0]where the $A_{k j}(t), B_{k j}(t), c_{k}(t), F_{k j}(t)$, and $g_{k}(t)$ with k, $j=1,2, \ldots, n$, and $h(t)$ are real-valued functions depending only on time.

Accordingly, a second-order complex equation is an equation of the form

$$
\begin{equation*}
-i \hbar \dot{u}=\mathscr{L}[u] . \tag{1}
\end{equation*}
$$

Remark 1. Note that Eq. (1) is an analogue of the multidimensional Schrödinger equation with Hamiltonian of the form

$$
\begin{gathered}
\mathscr{H}=\frac{1}{2} \sum_{k, j=1}^{n} A_{k j}(t) p_{k} p_{j} \\
+\sum_{k=1}^{n}\left(\sum_{j=1}^{n}\left(B_{k j}(t) x_{j}+c_{k}(t)\right)\right) p_{k} \\
+\left(\sum_{k, j=1}^{n} F_{k j}(t) x_{k} x_{j}+\sum_{k=1}^{n} g_{k}(t) x_{i}+h(t)\right)
\end{gathered}
$$

on the right-hand side, where $p_{k}=-i \frac{\partial}{\partial x_{k}}$ is the momentum coordinate of a quantum particle (see, e.g., [4]).

Assumption A. The coefficients $A(t), B(t), F(t)$: $\mathbb{R}_{+} \rightarrow \mathbf{M}_{n \times n}(\mathbb{R})$ of a second-order complex operator \mathscr{L} are continuous functions on \mathbb{R}_{+}having finite limits $A_{0}, B_{0}, F_{0} \in \mathbf{M}_{n \times n}(\mathbb{R})$, respectively, as $t \rightarrow 0$. It is assumed that the matrix $A(t)$ is symmetric and the matrix A_{0} is positive definite.

Suppose that a solution of the Cauchy problem

$$
\begin{gather*}
P^{\prime}=-\frac{1}{\hbar} P\left(\frac{2}{\hbar} S A+B^{\mathrm{T}}\right)-\frac{1}{\hbar}\left(\frac{2}{\hbar} A S+B\right) P-\frac{2}{\hbar^{2}} A, \tag{2}\\
\left.P\right|_{t=0}=\mathbf{0} \in \mathbf{M}_{n \times n}(\mathbb{R}),
\end{gather*}
$$

where $S(t)$ is a symmetric solution of the problem

$$
\begin{gather*}
S^{\prime}=\frac{2}{\hbar^{2}} S A S+\frac{1}{\hbar}\left(S B+B^{\mathrm{T}} S\right)+\frac{1}{2}\left(F+F^{\mathrm{T}}\right), \tag{3}\\
\left.S\right|_{t=0}=\mathbf{0} \in \mathbf{M}_{n \times n}(\mathbb{R}),
\end{gather*}
$$

can be represented in a neighborhood of zero in the form

$$
\begin{equation*}
P(t)=-\frac{2 t}{\hbar^{2}} A_{0}+\frac{1}{\hbar^{2}} R(t), \tag{4}
\end{equation*}
$$

where $R(t)$ is a matrix defined on the interval $[0, \varepsilon]$ for some constant $0<\varepsilon \ll 1$.

We introduce the following notation:

$$
\begin{gather*}
Q(t)=-\frac{1}{2 t} R(t) A_{0}^{-1}, \tag{5}\\
\bar{Q}(t)=[E+Q(t)]^{-1}-E, \tag{6}\\
\tilde{Q}(t)=\bar{Q}(t)+\left(A(t)-A_{0}\right) A_{0}^{-1}[E+\bar{Q}], \tag{7}\\
\tilde{q}(t)=\frac{1}{n} \operatorname{tr} \tilde{Q} . \tag{8}
\end{gather*}
$$

Assumption B. For $0 \leq t<\varepsilon$, the following improper integral exists and is finite:

$$
\int_{0}^{t} \frac{\tilde{q}(s)}{S} d s<+\infty
$$

Suppose given the systems of differential equations

$$
\begin{align*}
& S^{\prime}= \frac{2}{\hbar^{2}} S A S+\frac{1}{\hbar}\left(S B+B^{\mathrm{T}} S\right)+\frac{1}{2}\left(F+F^{\mathrm{T}}\right), \\
& q^{\prime}=\frac{1}{\hbar^{2}}\left(2 S A+\hbar B^{\mathrm{T}}\right) q+\frac{2}{\hbar} S c+g, \tag{9}\\
& r^{\prime}= \frac{1}{2 \hbar^{2}} q^{\mathrm{T}} A q+\frac{1}{\hbar} q^{\mathrm{T}} c+h, \quad \psi^{\prime}=-\frac{1}{\hbar} \operatorname{tr}(A S)
\end{align*}
$$

and

$$
\begin{gather*}
P^{\prime}=-\frac{1}{\hbar} P\left(\frac{2}{\hbar} S A+B^{\mathrm{T}}\right)-\frac{1}{\hbar}\left(\frac{2}{\hbar} A S+B\right) P-\frac{2}{\hbar^{2}} A, \\
m^{\prime}=-\frac{1}{\hbar}\left(\frac{2}{\hbar} A S+B\right) m-\frac{1}{\hbar^{2}} A q-\frac{1}{\hbar} c, \tag{10}\\
C^{\prime}=C \cdot \frac{1}{\hbar^{2}}\left(\operatorname{tr}\left(A P^{-1}\right)\right) .
\end{gather*}
$$

Consider the Cauchy problem for the operator $i \hbar \frac{\partial}{\partial t}+\mathscr{L}$ introduced above:

$$
\begin{align*}
& -i \hbar \frac{\partial u}{\partial t}=\mathscr{L}[u], \tag{11}\\
& \left.u\right|_{t=0}=\delta_{y}(x),
\end{align*}
$$

where $\delta_{y}(x)$ is the delta-function with singularity at $y \in \mathbb{R}^{n}$.

Theorem 1. If assumptions A and B hold, then a solution of the Cauchy problem (11) is the function $u(t, x)$ equal to

$$
\begin{align*}
& \exp \left\{-\frac{x^{\mathrm{T}} S(t) x+q^{\mathrm{T}}(t) x+r(t)+i \psi(t)}{i \hbar}\right\}(1+i) C(t) \\
& \times \exp \left\{-\frac{\left\langle P^{-1}(t)(x-m(t ; y)),(x-m(t ; y))\right\rangle}{i \hbar}\right\}, \tag{12}
\end{align*}
$$

where $S(t), q(t), r(t)$, and $\psi(t)$ are solutions of system (9) with initial conditions $S_{k j}(0)=q_{l}(0)=r(0)=$ $\psi(0)=0$ for any $k, j, l \in 1,2, \ldots, n ; P(t)$ and $m(t ; y)$ are solutions of the first two equations of system (10) with initial conditions $P_{k j}(0)=0$ for any $k, j \in 1,2, \ldots, n$; $m(0)=y$; and $C(t)$ is a particular solution of the third equation of system (10) having the form

$$
\begin{equation*}
C(t)=\frac{\sqrt{\hbar^{n}}}{\sqrt{2 i(-2 i)^{n}(\pi t)^{n} \operatorname{det} A_{0}}} \exp \left\{-\frac{n}{2} \int_{0}^{t} \frac{\tilde{q}(s)}{s} d s\right\} . \tag{13}
\end{equation*}
$$

2. AUXILIARY ASSERTIONS

The following assertion (an analogue of Theorem 3.1 in [3]) holds.

Lemma 1. A nonvanishing function $\rho \in$ $C^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}^{n} ; \mathbb{C}\right)$ of the form

$$
\begin{equation*}
\rho(t, x)=\exp \left\{\frac{i}{\hbar}\left(x^{\mathrm{T}} S(t) x+q^{\mathrm{T}}(t) x+\tilde{r}(t)\right)\right\}, \tag{14}
\end{equation*}
$$

where $S \in \mathbf{M}_{n \times n}(\mathbb{R})$, is a solution of the second-order complex equation (1) if and only if its coefficients $S(t)$, $q(t)$, and $\tilde{r}(t)$ satisfy the Riccati-type system of equations

$$
\begin{gather*}
S^{\prime}=\frac{1}{2 \hbar^{2}}\left(S^{\mathrm{T}} A S+S A S^{\mathrm{T}}+2 S A S\right) \\
+\frac{1}{\hbar}\left(S B+B^{\mathrm{T}} S^{\mathrm{T}}\right)+\frac{1}{2}\left(F+F^{\mathrm{T}}\right), \\
q^{\prime}=\frac{1}{2 \hbar^{2}}\left(2 S A+2 S^{\mathrm{T}} A+2 \hbar B^{\mathrm{T}}\right) q+\frac{1}{\hbar}\left(S c+S^{\mathrm{T}} c\right)+g, \tag{15}\\
\tilde{r}=\frac{1}{2 \hbar^{2}}+\frac{1}{2} q^{\mathrm{T}} A q+\frac{1}{\hbar}\left(q^{\mathrm{T}} c-i \operatorname{tr}(A S)\right)+h .
\end{gather*}
$$

The following two lemmas are similar to those given in [1].

Lemma 2. A function $\mathrm{v} \in C^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}^{n} ; \mathbb{C}\right)$ of the form

$$
\begin{gather*}
v(t, x)=\frac{\widetilde{C}(t)}{\rho(t, x)} \tag{16}\\
\times \exp \left\{\frac{i}{\hbar}\left\langle P^{-1}(t)(x-m(t)),(x-m(t))\right\rangle\right\},
\end{gather*}
$$

where the coefficients $\widetilde{C}(t)$ and $m(t)$ are defined by

$$
\begin{equation*}
m=-\frac{1}{2} P q \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{C}=\exp \left\{\frac{i}{\hbar}\left(\tilde{r}-\frac{1}{4}\langle P q, q\rangle\right)\right\} \tag{18}
\end{equation*}
$$

and the function $\rho(t, x)$ satisfies (14), is a solution of the equation

$$
\begin{equation*}
-i \hbar \frac{\partial v}{\partial t}=-\left\langle\frac{1}{2} A, \frac{\partial^{2} v}{\partial x^{2}}\right\rangle-\frac{i}{\hbar}\left\langle\hat{B} x+\hat{c}, \frac{\partial v}{\partial x}\right\rangle \tag{19}
\end{equation*}
$$

in which $\widehat{B}=2 A S+\hbar B$ and $\hat{c}=A q+\hbar c$ if and only if, after the change $\widetilde{C}(t)=C(t)(1+i)$, its coefficients satisfy system (10).

Let $P(t)$ and $m(t ; y)$ be solutions of the first two equations in system (10) with initial conditions $P_{i j}(0)=0$ for $i, j \in 1,2, \ldots, n$ and $m(0)=y$, and let $C(t)$ be a particular solution of the third equation in system (10) of the form (13).

Consider the function $G(t, x ; y)$: $\mathbb{R}_{+} \times \mathbb{R}^{n} \times R^{n} \rightarrow \mathbb{C}$

$$
\begin{gathered}
G(t, x ; y)=(1+i) C(t) \\
\times \exp \left\{\frac{i}{\hbar}\left\langle P^{-1}(t)(x-m(t ; y)),(x-m(t ; y))\right\rangle\right\}
\end{gathered}
$$

Lemma 3. Let $\phi(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function of class $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Suppose that

$$
f(t, x)=\int_{\mathbb{R}^{n}} \phi(y) G(t, y ; x) d y
$$

Then $f(t, x) \rightarrow \phi(x)$ as $t \rightarrow 0$.

3. PROOF OF THE MAIN STATEMENT

Proof of Theorem 1. Let us represent the solution of the Cauchy problem (11) as a product:

$$
u(t, x)=\rho(t, x) v(t, x)
$$

It is easy to see that the problem decomposes into the two subproblems

$$
\begin{gather*}
-i \hbar \frac{\partial \rho}{\partial t}=\mathscr{L}[\rho] \tag{20}\\
\left.\rho\right|_{t=0}=1
\end{gather*}
$$

and

$$
\begin{gather*}
-i \hbar \frac{\partial v}{\partial t}=\mathscr{F}[v] \tag{21}\\
\left.v\right|_{t=0}=\delta_{y}(x)
\end{gather*}
$$

where \mathscr{L} is a second-order operator and \mathscr{F} is the operator corresponding to the right-hand side of Eq. (19).

By virtue of Lemma 1, there exists a solution $\rho(t, x)$ of problem (20) which has the form (14), where $S(t)$, $q(t), r(t)$, and $\psi(t)$ are solutions of system (9) with initial conditions $S_{i j}(0)=q_{k}(0)=r(0)=\psi(0)=0$ for any $i, j, k \in 1,2, \ldots, n$.

Next, by virtue of Lemma 2, there exists a function $v(t, x)$ of the form (16), where $P(t), m(t)$, and $C(t)$ are solutions of system (10). By virtue of Lemma 3, under the initial conditions $P_{i j}(0)=0$ for any $i, j \in 1,2, \ldots, n$, $m(0)=y$ and

$$
C(1)=\frac{\sqrt{\hbar^{n}}}{\sqrt{2 i(-2 i)^{n} \pi^{n} \operatorname{det} A_{0}}} \exp \left\{-\frac{n}{2} \int_{0}^{1} \frac{\tilde{q}(s)}{s} d s\right\}
$$

we have $v(t, x) \rightarrow \delta_{y}(x)$ as $t \rightarrow 0$.
Obviously, under the initial conditions on $S(t)$, $q(t), r(t), \psi(t), P(t), m(t)$, and $C(t)$ specified above, the product $\rho(t, x) v(t, x)$ also tends to $\delta_{y}(x)$ as $t \rightarrow 0$.

This completes the proof of the theorem.

REFERENCES

1. A. G. Chechkin, Probl. Mat. Analiza 81, 179-188 (2015).
2. A. G. Chechkin and A. S. Shamaev, Dokl. Math. 95 (1) (2017).
3. S. S. Yau, Quart. Appl. Math. 62 (4), 643-650 (2004).
4. R. Cordero-Soto, R. M. Lopez, E. Suazo, and S. K. Suslov, Lett. Math. Phys. 84 (2-3), 159-178 (2008).

Translated by O. Sipacheva

[^0]: Mechanics and Mathematics Faculty,
 Moscow State University, Moscow, 119991 Russia

 * e-mail: a.g.chechkin@gmail.com
 ** e-mail: sham@rambler.ru

