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Abstract—A second-order Schrodinger differential operator of parabolic type is considered, for which an
explicit form of a fundamental solution is derived. Such operators arise in many problems of physics, and the
fundamental solution plays the role of the Feynman propagation function.
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In [1] (see also [2]), a fundamental solution of a
parabolic equation with real coefficient (a Fokker—
Planck—Kolmogorov equation) was obtained. In this
paper, we use similar methods to investigate a para-
bolic equation with complex coefficients (the
Schrodinger equation) and special initial conditions.
For this equation, we obtain a complex fundamental
solution, which is the Feynman propagation function.

1. STATEMENT OF THE PROBLEM
AND THE RESULT

Let x =(xy, ..., x,) € R” be a vector variable of
dimension n, and let r€ R, =10, +0) be a distin-
guished one-dimensional variable playing the role of
time. We denote the class of complex-valued functions

u(t, x): R, x R" — C having continuous partial deriv-
atives 9,, 9, , and aim (k,1=1,2,...,n)onR, xR"
by C*(R, xR";C).

We say that an operator & is a second-order com-
plex operator if it has the form
9’v

0x,0x;

_E) S
Hv] === 2 Ay(0)
k,j=1

Y| X (By(0x; +e,(0) | 9%
k

k=1 \_j=1

+| D Fytxex, + Y g (0)x; + h(t) |v,

k,j=1 k=1
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where the A4,,(7), B, (1), ¢, (?), Fy; (1), and g, (¢) with k,
j=12 ...,n, and A(f) are real-valued functions
depending only on time.

Accordingly, a second-order complex equation is
an equation of the form

—iti = Plul. (1)

Remark 1. Note that Eq. (1) is an analogue of the
multidimensional Schrodinger equation with Hamil-
tonian of the form

H = % ZAkj(t)pkp ;

k,j=1

+ D1 D U(By)x; + ¢, (0) | by

k=1 \_j=1

+| D Fy0xex; + Y g (0)x; + ht)

k,j=1 k=l

on the right-hand side, where p, = —i 9 is the
Xk
momentum coordinate of a quantum particle (see,

e.g., [4]).

Assumption A. The coefficients A(¢), B(¢), F(r):
R, - M,,(R) of a second-order complex operator
& are continuous functions on R, having finite limits
Ay, By, Fy e M, ,(R), respectively, as t —> 0. It is
assumed that the matrix A(¢) is symmetric and the
matrix A,is positive definite.

Suppose that a solution of the Cauchy problem

P= —lP[ZSA + BTj—l(gAS+ B)P—%A,
no\n n\n )

P|,:O =0e M, (R),
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where S(7) is a symmetric solution of the problem

§=2

5548 + %(SB +B'S) + %(F +FT,

(3)
S, =0eM,,R),

can be represented in a neighborhood of zero in the

form

2 1
P() = —h—ﬁAo +- RO, (4)

where R(¢) is a matrix defined on the interval [0, €] for
some constant 0 < € < 1.

We introduce the following notation:

0 =~ R4, 5)

0N =[E+00)]" - E, (6)

0(r) = O(0) + (AG) — A)A; ' + 01, )
a0 = 0. @®)

Assumption B. For 0<7<g,
improper integral exists and is finite:

the following

t
J‘@ds < oo,
0 S

Suppose given the systems of differential equations

2

S = ;SAS + %(SB +B'S) +%(F +F",

q = #(2&4 + 7B g + %Sc tg 9)

' 1 T 1 T ' 1
r'=s—q Ag+—-q c+h, = —=tr(4S
2hzq q+.4d v 5 (AS)
and

P'=—lP[gSA+BT}—1(2AS+B)P—%A,
no\n n\n h
L 1(2 ) 1 1
m=—=|=AS+B|m—-— Aq — —c, 10
h\h PR (10)

c =C-Lrpr™y).
h

Consider the Cauchy problem for the operator
ihag + & introduced above:
1t

—ihQ = Fu],
ot (11)
”|r:o =98, (x),

where 6,(x) is the delta-function with singularity at

ye R".
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Theorem 1. [f assumptions A and B hold, then a solu-
tion of the Cauchy problem (11) is the function u(t, x)
equal to

Lo (12)
y {_ (P (0) (x = m(t; ). (x = m(; y>>>}
P in ’

exp {_ x"SO)x +q" Ox + r(t) + iw(t)} L+ D00

where S(¢), q(t), r(t), and \y(t) are solutions of system
(9) with initial condifions 8,(0) = q(0) = r0) =
y(0) =0 forany k, j,l€1,2,..., n; P(t) and m(t; y)
are solutions of the first two equations of system (10) with
initial conditions P;(0) =0 for any k, je 1,2,..., n;
m(0) = y; and C(t) is a particular solution of the third
equation of system (10) having the form

0= I exp —EI@ds . (13)
\/2i(—2i)"(1tt)"detA0 20 s

2. AUXILIARY ASSERTIONS

The following assertion (an analogue of Theorem 3.1
in [3]) holds.

Lemma 1. A nonvanishing function
C" (R, xR"; C) of the form

p €

. %) = exp{L (T S0x 4" x + 7). (14)
where S € M, ,(R), is a solution of the second-order
complex equation (1) if and only if its coefficients S(¢),
q(t), and F(¢) satisfy the Riccati-type system of equations

S = #(STAS +SAST +2545)

+ %(SB +B'ST)+ %(F +Fh),

(15)
q = ?(%’A +25"A+21B")q + ;l_l(Sc +S8To) +g,
s 1 17 L t._
F=—5+2q Ag+-(q'c—itr(AS)) +h.
Rl h(q (AS))

The following two lemmas are similar to those
given in [1].

Lemma 2. A function ve C”(R, xR"; C) of the
form

C(0)
Z‘, [ A
D=

_ (16)
X exp {éu’"(r) (x — m(r)), (x — m(t)»},

where the coefficients 5(t) and m(t) are defined by
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m= —%Pq (17)
and
C = exp{%(? - i(Pq, q>)} (18)

and the function p(t, x) satisfies (14), is a solution of the
equation

2 N
inY =Ly 9 —i<Bx+é, a—">,
ot 2 ox h ox

in which B = 2AS + hB and ¢ = Aq + hc if and only if,

after the change 6'(t) = C(t)( + i), its coefficients satisfy
system (10).

Let P(¢) and m(t; y) be solutions of the first two
equations in system (10) with initial conditions
P;0)=0 for i, je1,2,...,n and m(0) =y, and let
C(r) be a particular solution of the third equation in
system (10) of the form (13).

Consider the
R,xR"XR"—C
G(t, x; ) =1+ DC@)

x exp{% P7(0) (x = m(t; ), (x — mi(s; y>>>}.

(19)

function G(t, X; »):

Lemma 3. Let ¢(x): R" — R be a function of class
Cy (R"). Suppose that

%) =[0G, v; 0dy.
.

Then f(t, x) > O(x)ast — 0.

3. PROOF OF THE MAIN STATEMENT

Proof of Theorem 1. Let us represent the solution of
the Cauchy problem (11) as a product:

u(t, x) = p(t, x)v(t, x).

It is easy to see that the problem decomposes into the
two subproblems
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.. 0p
“in%P = gjp],
iy = AP (20)
p|t:0 =1

and
—iha—v = F|v],
ot 21)
V|z:0 =38,(x),
where & is a second-order operator and % is the oper-
ator corresponding to the right-hand side of Eq. (19).

By virtue of Lemma 1, there exists a solution p(#, x)
of problem (20) which has the form (14), where S(¢),
q(t), r(t), and y(r) are solutions of system (9) with ini-
tial conditions 5;;(0) = g,(0) = r(0) = y(0) = 0 for any
i,j,kel 2, ..., n.

Next, by virtue of Lemma 2, there exists a function
v(¢, x) of the form (16), where P(¢), m(t), and C(¢) are
solutions of system (10). By virtue of Lemma 3, under the
initial conditions P;(0) =0 for any i, jel,2,..., n,
m(0) = y and

1
ca)y = I exp —Qj@ds
J2i(=2)"n" det A, 27 s

we have v(t, x) — 6,(x) ast — 0.

Obviously, under the initial conditions on S(¢),
q(t), r@), y(), P@), m(t), and C(¢) specified above,
the product p(#, x)v(#, x) also tends to 6 ,(x) ast — 0.

This completes the proof of the theorem.
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