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Introns comprise a considerable portion of eukaryotic genomes; however, their evolution is understudied. Numerous works of the
last years largely disagree on many aspects of intron evolution. Interpretation of these differences is hindered because different
algorithms and taxon sampling strategies were used. Here, we present the first attempt of a systematic evaluation of the effects of
taxon sampling on popular intron evolution estimation algorithms. Using the “taxon jackknife” method, we compared the effect
of taxon sampling on the behavior of intron evolution inferring algorithms. We show that taxon sampling can dramatically affect
the inferences and identify conditions where algorithms are prone to systematic errors. Presence or absence of some key species
is often more important than the taxon sampling size alone. Criteria of representativeness of the taxonomic sampling for reliable
reconstructions are outlined. Presence of the deep-branching species with relatively high intron density is more important than
sheer number of species. According to these criteria, currently available genomic databases are representative enough to provide
reliable inferences of the intron evolution in animals, land plants, and fungi, but they underrepresent many groups of unicellular
eukaryotes, including the well-studied Alveolata.

1. Introduction

Introns are noncoding sequences inside many eukaryotic
genes. Their abundance may vary several orders of magni-
tude, from hundreds of thousands in mammalian genomes
to less than 100 in the genome of Saccharomyces cerevisiae.
The origin and evolution of introns is a highly controversial
topic despite 25 years of research. The variation of intron
content between different lineages suggests a high variation
in the rate of intron gain and loss, which may relate to
differences in population size, absence or presence of the
sexual process, activity of transposable elements, properties
of the splicing mechanism, and many other characteristics of
genomes, organisms, and populations.

Intron sequences evolve at a high rate, and the negative
selection typically stabilizes only few nucleotide positions in
splicing sites and the branch point. Interestingly, a signif-
icant portion of introns occupy the same positions in the
same genes in species that diverged billions years ago (20%
of common introns in mammals and Arabidopsis thaliana

for the set of 684 conservative genes [1]). These introns
were interpreted either as ancestral, originating before the
divergence of major eukaryotic lineages, or as convergently
inserted in the same positions due to sequence properties
(the “protosplice sites”). Both explanations can be true for
different subsets of introns in same genome; however, the
proportion of ancestral and convergent intron positions in
shared introns is controversial. Its estimates vary from 2%
to 18% [2] and even more than 50% [3]. The latter estimate
was obtained using ad hoc algorithm and datasets and is
not directly comparable to others. Functional explanations
of the extremely low rate of intron loss are not known.
Many introns were found to contain functional elements,
such as transcriptional and splicing regulators [4], small
regulatory RNAs which produced during the subsequent
cleavage of the excised intron, nonsense-mediated decay
signals, signals of nuclear export, and others. However, these
processes are not evolutionarily conserved, which therefore
does not explain the survival of introns for billions of
years.

http://dx.doi.org/10.1155/2013/671316


2 International Journal of Genomics

With the influx of new genomic data, our view of intron
evolution changes. For example, the high intron content in
vertebrate genomes was initially interpreted as a derived
feature of this lineage. However, genomic analysis of the
polychaete Platynereis dumerili [5] suggested that most ver-
tebrate introns were already present in ancestral Bilateria
and subsequently lost in insect and nematode lineages. In
next years, analyses of genomic sequences of cnidarians [6],
Placozoa [7], sponges [8], choanoflagellate [9], and early-
diverging fungi [10] pushed the origin of abundant vertebrate
introns back to the ancestral metazoans and, for some, even
earlier, to the unicellular common ancestor of animals and
fungi. A recent study of the intron evolution in Alveolata and
stramenopiles with data on 23 species infers a highly intron-
rich ancestors of Alveolata and Alveolata+stramenopiles,
with latter containing more introns per gene as humans
[11]. This is unexpected, because all extant members of
these groups exhibit a low or at best moderate (Thalassiosira
pseudonana) intron density [12]. These examples raise the
following questions.

(i) How does the available taxon sampling affect our
studies of the evolution of introns?

(ii) How can the taxon sampling be tested to provide
accurate reconstructions?

(iii) Which species should be added to compensate for an
incomplete taxon sampling?

2. Materials and Methods

To address these questions, we compiled dataset of intron-
exon structures of two ribosomal protein genes (rpS5 and
rpL12) for 80 species representing three major eukaryotic
groups, Opisthokonta, Plantae, and SAR (Stramenopiles-
Alveolata-Rhizaria), using data from publicly available
databases of completed and ongoing genome projects.
Phylogenetic relations of the analyzed species according
to recent studies [13–20] are depicted on Figure 1. For
unannotated data, putative rpS5 and rpL12 cDNA and
genomic sequences were found with BLAST, and intron-
exon boundaries were established using Genscan [21]. We
generated 660 random subsamplings ranging from 15 to 75
species from the initial 80 species set using custom Python
scripts (100 subsamplings with 15 and 20 species, 80 with 25,
60 with 30 and 35 each, 40 with 40, 45, 50 and 55 each, 30
with 60 and 65, and 20 with 70 and 75 species). The Csuros
[22] and NYK [2] algorithms of inferring intron evolution
were run on each of these subsamplings.

Results were imported in STATISTICA 8 for statistical
analysis and scatterplot generation. If no members of a
taxon were present in a subsampling, this subsampling was
discarded from calculations and scatterplots for this taxon.

3. Results

3.1. Overview. We reconstructed intron phylogenies for the
full set of 80 species and for 660 random subsamplings using
the algorithms by Csuros and NYK. As depicted in Figure 2,

different taxon samplings produce different results. In many
smaller subsets, there were no members of a particular taxa.
These subsets were excluded from calculations of average
ancestral intron densities for these taxa. For example, in 105
out of 660 subsets, there were no nematodes, and they were
excluded from calculations of average intron density in the
ancestor of Nematoda.

For the NYK algorithm, the most striking difference is
observed in the internal nodes of the bikont half of the
eukaryotic tree. Using subsets of 20 species, one can see
a more or less constant intron density among the inter-
nal branches in different bikont groups such as Alveolata,
stramenopiles, and Viridiplantae. The analysis of original
set of 80 species inferred almost intronless ancestors for
these groups and recent episodes of intron gain along ter-
minal branches. A similar, but less pronounced, pattern is
also observed for the Ascomycota, Basidiomycota, and the
animal-fungal ancestor. These internal nodes also appear
more intron rich when sparse taxon coverage is used. Among
the Metazoa and their closest relatives, Choanoflagellata,
the results do not change significantly varying the taxon
coverage.

For the Csuros algorithm, significant differences were
also observed between broader and narrower taxon sam-
plings. Again, these differences are most prominent on
internal branches of the Bikonta and Fungi. For small species
sets, the output of Csuros algorithm is similar to that of
NYK. Analysis of the complete taxon set of 80 species returns
very high intron densities for the ancestors of Sporozoa,
Apicomplexa, Alveolata, and Ascomycota, far exceeding the
observations in recent organisms. Particularly, in the ancestor
of Apicomplexa, the estimated intron density in analysis of
80 taxa equals 22/kb, which is three times higher than in
mammals (7/kb).

3.2. Specific Effects of Taxon Sampling on Different Nodes.
As can be noticed, varying the taxon sampling size affects
particular nodes (such as Alveolata and Viridiplantae) more
than others (e.g., Metazoa). Figure 3 reproduces this pattern
in more detail. For the Bilateria, one can see that average
statistics are the same for both algorithms and do not
correlate with sampling size. The only observed effect of
sampling is a significant dispersion of estimates between
smaller taxon sets and uniform patterns when the sampling
size is 40 or more species. At internal nodes of Bilateria,
such as Nematoda, Insecta, and Spiralia, a significant positive
correlation is observed between the intron number and
taxon sampling size. Dispersion between samplings of same
size is large for smaller samplings and decreases on larger
taxon sets. For the Fungi, Basidiomycota, Opisthokonta, and
Viridiplantae, a high dispersion is observed for all sampling
sizes, albeit less on the larger ones.The average intron density
in Fungi and Opisthokonta shows a negative correlation with
the sampling size for the both NYK and Csuros algorithms
(Table 1), while for the Basidiomycota and Viridiplantae,
these correlations are insignificant. The Alveolata exhibit
a high correlation of the inferred intron density with the
sampling size, however correlation patters are different for
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Figure 1: The phylogenetic tree for the initial species set according to [13–20].

the Csuros and NYK algorithms. The two algorithms behave
similarly with smaller samplings; however, with larger sets,
Csuros infers extremely high intronnumbers, andNYK infers
their complete absence. Similar patterns were also observed
for the common ancestors of Apicomplexa, Sporozoa, and
Ascomycota.

3.3. Factors Affecting the Reconstruction. One may discuss
three factors that influence ancestral reconstructions under
varying the taxon sampling. First, broader sampling usually
produces more descendants of a given internal node in
analyses. Second, the number of outgroup taxa also depends
on the sampling size. Third, particular key taxa may strongly
affect reconstruction when present in the dataset, which

are more likely be found in larger samplings. These three
factorsmay contribute differently and produce amixed effect.
To evaluate their contributions separately, we performed a
multiple regression analysis using the numbers of descen-
dants and outgroup species and the presence/absence of
particular descendants as independent variables. The results
are presented in Table 1.

The regression analysis shows that for the Insecta and
Spiralia, themain affecting factor is the presence of particular
species in the dataset for both Csuros and NYK algorithms.
These species are Rhodnius prolixus for the Insecta and Lottia
gigantea for the Spiralia (partial correlation coefficients beta
equal 0.65 and 0.67). Correlationswith the number of descen-
dants for these nodes range within 0.35–0.37 for Csuros and
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Figure 2: Examples of the intron evolution reconstructed with different taxon samplig size.The intron density on each branch (in introns/kb)
is color-coded according to scale in the upper left corner. Upper row: Csuros algorithm, lower row: NYK algorithm. Left column: averaged
intron densities using 100 subsets of 20 species each. Right column: full set of 80 species.

0.12–0.30 for NYK. Correlations with the sampling size are
less pronounced. For Insecta, we also found that correlation
of results with the sampling size is significant only when
Rhodnius prolixus is not sampled (Figures 4 and 5).

For Nematoda, presence of each of the four of its descen-
dants shows a significant effect, with beta positive, ranging
within 0.33–0.39 for Trichinella spiralis, Brugia malayi, and
Pristionchus pacificus, and negative −0.20 for Caenorhabditis
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Figure 3: Continued.
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same scatterplot coordinates.

elegans.These correlations are almost the same forCsuros and
NYK algorithms.

For other nodes, significance of different factors depends
on the algorithm choice.

When the Csuros algorithm is used, for the nodes of Fungi,
Basidiomycota, Apicomplexa, andViridiplantae, the presence
of some species affects inferences of intron evolution more
than other factors. These species are Allomyces macrogynus
and Batrachochytrium dendrobatidis for the Fungi (beta =
−0.48 and −0.53), Phakopsora pachyrhizi for the Basidiomy-
cota (beta = −0.32), Chlorella variabilis for the Viridiplantae
(beta = −0.23), and Perkinsus marinus for the Apicomplexa
(beta = −0.26). Furthermore, a significant correlation of
the ancestral intron density with the sampling size and the
number of descendants is observed only when the critical
species are absent (both species absent in case of Fungi).

For the Ascomycota, Alveolata, and Sporozoa, critical
species are not easily identified. Presence of every descen-
dant of these nodes shows a significant correlation with
the inferred ancestral intron density. Still, some species are
more important than others. Among Ascomycota, these
are yeasts Saccharomyces cerevisiae and Schizosaccharomyces
pombe (beta = 0.46 and 0.41, while for other species is
lower than 0.20). For the Sporozoa, most variation is due
to Cryptosporidium parvum (beta = 0.45, for others less
then 0.23), and in the Alveolata, these are two ciliates
Paramecium tetraurelia and Tetrahymena thermophila (beta
= 0.35 and 0.61, while lower than 0.15 in other cases). Unlike
the aforementioned nodes, for the Ascomycota, Sporozoa,
and Alveolata, most significant correlation of the ancestral

intron density with sampling size and descendants number
is observed only when critical species are present in subsets.

For NYK algorithm, certain species usually show the
highest impact on reconstructions of ancestral introns, but
the overall picture is often more complicated. For the Fungi,
similarly to the Csuros algorithm, the critical species are
Allomyces macrogynus, Batrachochytrium dendrobatidis, and
Encephalitozoon cuniculi. Presence of any of them greatly
reduces the dispersion between subsamplings and prevents
very high or very low estimates. For the Alveolata, the
critical species are again ciliates, but presence of Paramecium
tetraurelia positively correlated with the ancestral intron
density, and that of Tetrahymena thermophila—negatively.
In the Sporozoa, the highest correlation is observed for
Cryptosporidium parvum and Eimeria tenella, again with
opposite signs. In the Apicomplexa, there are four species
that exhibit significant effects—Cryptosporidium parvum,
Eimeria tenella, Paramecuim tetraurelia, and Tetrahymena
thermophila. Among the Viridiplantae, there are two impor-
tant descendants, Ostreococcus tauri and Oryza sativa, and
two important outgroup species, Paramecuim tetraurelia
and Tetrahymena thermophila. A significant effect on the
variations of ancestral intron count for the Basidiomycota
was found for six species: four descendants (Cryptococcus
neoformans, Phakopsora pachyrhizi, Ustilago maydis, and
Coprinus cinereus) and two outgroup species (Allomyces
macrogynus and Batrachochytrium dendrobatidis). Analyses
for the Ascomycota robustly produce the estimation of 2
introns/kb, with only 13 out of 660 subsamplings exhibiting
much higher estimates.
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Figure 4: Effects of critical species sampling on the behavior of the Csuros algorithm. Horizontal axis: number of species in the sampling.
Vertical axis: inferred intron density at the node (introns/kb).

One can see that many key species are the same for both
algorithms—for Fungi or ciliates for Alveolata. However,
there are significant differences in the importance of out-
group species. They are often important for the NYK algo-
rithms but show only minor effects for the Csuros.

4. Discussion

4.1. Cases of Overestimation of the Ancestral Intron Count.
The Csuros algorithm in many cases outputs unrealistic,
very high intron densities of 15–20/kb, which is three times
higher than the observed values in any recent organism and
seems unlikely if we consider the spliceosome positioning
on pre-mRNA. Such overestimation is commonly found for
the Alveolata, Sporozoa, and Ascomycota and also occurs
in a portion of subsamplings for the Apicomplexa, Fungi,
and Basidiomycota. Our analysis of these anomalies shows
that they occur when very intron-poor taxa occupy the
basal position among descendants of a node. Yeasts, ciliates,
and Cryptosporidium parvum are intron-poor and basal for
the Ascomycota, Alveolata, and Sporozoa, respectively, in

our full set of 80 species. The chance that these species
are present in the analysis increases with the subset size,
leading to a high positive correlation of the inferred intron
density with sampling size. With the Fungi, Basidiomycota,
and Apicomplexa, the full set contains relatively intron-
rich basal species (Allomyces macrogynus, Batrachochytrium
dendrobatidis, Phakopsora pachyrhizi, and Perkinsus mar-
inus), followed by intron-poor branches (yeasts, Ustilago
maydis, and Cryptosporidium parvum). For these nodes, the
inferred ancestral intron densities show a bimodal distribu-
tion, depending on which species happens to be basal in
subsamplings. Interestingly, even for the Metazoa, there are
several cases when the Csuros algorithm overestimates the
ancestral intron density to exceed 10/kb. In all such cases, we
found that the extremely intron-poor ctenophoreMnemiopsis
leydi in these subsamplings falls in the basal position within
Metazoa, while all intron-rich poriferan species are absent.

The NYK algorithm is also prone to overestimation of
the ancestral intron count. This is often observed with the
Fungi and sometimes with the Basidiomycota, Ascomycota,
and Alveolata. As we have found, the prerequisite for such an
overestimation is the absence of Allomyces macrogynus and
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Figure 5: Effects of critical species sampling on the behavior of the NYK algorithm. Horizontal axis: number of species in the sampling.
Vertical axis: inferred intron density at the node (introns/kb).

Batrachochytrium dendrobatidis (for Fungi, Basidiomycota,
and Ascomycota), presence of Saccharomyces cerevisiae and
Schizosaccharomyces pombe (for Ascomycota only), and pres-
ence of Paramecuim tetraurelia andTetrahymena thermophila
(for Alveolata).

These conditions are similar for those for the Csuros
algorithm, but NYK shows amuch lesser degree of systematic
overestimation. It is especially shown with the example of
Ascomycota; the overestimation byCsuroswas found inmore
than half of subsamplings, while by NYK—only in 13 out of
660 subsamplings. The factor analysis also shows that the set
of outgroup taxa does not affect the reconstructions with the
Csuros algorithm but is important in the case of NYK.

4.2. HowMany TaxaAre Enough? Using the nodes where dif-
ferent algorithms produce similar results, we could evaluate
the number of descendants required for accurate reconstruc-
tions of intron evolution. In the Spiralia and Insecta, basal
intron-rich species (Lottia gigantea and Rhodnius prolixus)
strongly affect the results, while in the case of 8-species
sets, the results with and without Rhodnius prolixus are very
similar (Figure 6). For the Spiralia, a similar trend exists,
however, less pronounced due to only 5 available descendants.
For the Bilateria and Metazoa, reconstructions are the same

with the both algorithms and almost do not depend on
sampling, possibly due to a high number of descendants in
the sampling (24 and 32, resp.). The average intron count
for these nodes does not correlate with the sampling size
even if all subsamplings with more than 10 descendants of
these nodes are discarded. So, the Metazoa and Bilateria
are not very useful for estimating the sampling adequacy.
With the results for Insecta, we conclude that 8–10 species
should be enough given no catastrophic intron loss among
the descendants of the analyzed node. The results obtained
for the Bilateria and Metazoa do not contradict with this
conclusion.

4.3. Comparison with Earlier Intron Evolution Studies. The
recent work by Csuros et al. [23] uses an MCMC-based
algorithm for the reconstruction of the intron evolution
and a broad sampling of 99 species. It also shows that the
reliability of the reconstruction of the intron evolution differs
between nodes. Their algorithm produced not only inferred
estimates of the ancestral intron density, but also its Bayesian
posterior distributions. Similarly to our results, the estimates
for the Metazoa and Bilateria are robust, the Alveolata
exhibit a significant uncertainty, and the stramenopiles-
Alveolata (SAR) group or Amoebozoa posterior distribution
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shows that the estimations are unreliable. Despite the broad
taxon sampling, the authors do not use data on such deep-
branching intron-rich species as Perkinsus marinus in the
Alveolata and Physarum polycephalum in the Amoebozoa.
We predict that adding these species to the authors’ 99-
species set will stabilize the results for the Alveolata and
Amoebozoa, respectively.

The Csuros’s algorithm tested in our work was used, for
example, in the study [11] of intron evolution in the Alveolata
and stramenopiles. The authors report unusually high esti-
mates of the ancestral intron densities for many nodes. The
highest was 7.5 introns/kb in ancestor of Alveolata, which is
20% higher than in the most intron-rich modern organisms.
Our observations suggest that this is likely a systematic bias
of the Csuros algorithm.This view is supported by the results
obtained with the MCMC algorithm from [14], where the
inferred intron density in the ancestral Alveolata is more
conservatively estimated at 5.0 introns/kb.

It is of interest to compare the results of our study with
[10]. Stajich et al. studied the intron evolution in Fungi,
using a sampling of 25 species and four algorithms, NYK,
Csuros, Roy-Gilbert, and EREM.The results of all algorithms
were in good agreement for most nodes, including the
Ascomycota. No systematic overestimations by any algorithm
were detected, unlike our work and [11]. There might be
two reasonable explanations: (1) a broad gene sampling
(1161) allowed to correctly estimate the rate of intron loss
even under the low intron density in the basal ascomycete
Schizosaccharomyces pombe; (2) a broad species sampling
(5) of extremely intron-poor hemiascomycete yeasts and a
differential intron loss in themallowed for the conservation of
a considerable subset of the ancestral introns. Unfortunately,
a broader gene sampling is not always available for groups
with an extensive gene loss. For example, for 23 species in
[11] (11 stramenopiles and Alveolata and 12 outgroup species),
only 394 orthologous genes were present in at least 18 out of
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23 taxa.Withmethods that do not allow for missing data, like
NYK, gene sampling would be even poorer.

5. Conclusions

We observe that the number and composition of taxa often
have a strong impact in reconstructions of the intron evolu-
tion.While insignificant for some nodes, such as the Bilateria
and Metazoa in our analyses, it can be significant for many
others. A stronger influence of taxon sampling is observed in
nodes with descendants possessing an intensive intron loss. If
such a descendant occupies the basal position, the ancestral
intron reconstructions are often unreliable. In the indicated
cases, the Csuros algorithm exhibits a trend to systematically
overestimate the ancestral intron count. Overestimations also
occur with the NYK algorithm, however, under a more
complex set of conditions and in our analyses were frequently
observed only in the node of Fungi. If a group suffers from
massive intron loss, a recommended strategy to improve
the accuracy of inferring the intron evolution is to identify
and add to dataset a deep-branching member of this group
with a high intron density, such as Perkinsus marinus in the
Apicomplexa.
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