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Free massless fields of any spin in flat D-dimensional spacetime propagate at the speed of

light. But the retarded fields produced by the corresponding point-like moving sources

share this property only for even D. Since the Green’s functions of the d’Alembert equa-

tion are localized on the light cone in even-dimensional spacetime, but not in odd dimen-

sions, extraction of the emitted part of the retarded field in odd D requires some care.

We consider the wave equations for spins 0, 1, and 2 in five-dimensional spacetime and

analyze the fall-off conditions for the retarded fields at large distances. It is shown that

the farthest part of the field contains a component propagating at the speed of light,

while the non-derivative terms propagate with all velocities up to that of light. The gen-

erated radiation will contain a radiation tail corresponding to the complete prehistory

of the source’s motion preceding the retarded moment of time. We also demonstrate

that dividing the Green’s function into a part localized on the light cone and another

part that is not zero inside the light cone gives separately the divergent terms in the

Coulomb field of a point source. Their sum, however, is finite and corresponds to the

usual power-law behaviour.

Keywords: Extra dimensions, radiation, scalar field, electromagnetic field, gravitational

waves

1. Introduction

The recent interest in the theory of radiation in spacetime dimensions other than

four is mostly related to the development of the theories with extra dimensions of

spacetime. While the superstring theory, pretending to the status of fundamental

theory, predicts the existence of extra dimensions, there is a number of phenomeno-

logical multi-dimensional gravity theories1–4 solving some problems of elementary

particles physics and cosmology. However, the characteristics of extra dimensions,

such as their number, geometry and size, vary widely from one theory to another.

The actively developing gravitational-wave astronomy is the one of the most

promising tools to probe the extra dimensions. So, the first constraints on

the characteristics of extra dimensions have already been obtained by use of

the GW170817/GRB170817A event data5–7. The possibility of using the future

gravitational-wave observatories, such as LISA, to constrain the extra dimensions

on cosmological scales has also been discussed8,9. Also, it is worth to note the

recent advances in the constraining extra dimensions by the photograph of the su-

permassive black hole M87* shadow10,11.

However, in most of the literature, only the radiation in even-dimensional space-

http://arxiv.org/abs/2109.10586v2
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times is considered12–16, while the odd dimensions have been mainly discussed in

the context of radiation reaction force17–20. It is mostly due to the Huygens prin-

ciple violation in odd dimensions known since the classical works of Hadamard,

Courant and Hilbert, Ivanenko and Sokolov21–23. In any dimensions, the signal

from the instant flash of the source reaches an observer in the interval of time re-

quired for it to propagate at the speed of light. However, in odd dimensions, the

endless tail signal decaying with time is observed after that, which is not the case

in even dimensions. Mathematically, the Huygens principle violation consists in

odd-dimensional retarded Green’s functions being localised not only on the light

cone, as they are in even dimensions, but also inside it. As a result, the retarded

fields in odd dimensions propagate in space with all velocities up to that of light.

However, free massless fields propagate exactly at the speed of light in any dimen-

sions. Therefore, there is the apparent mismatch as the radiation being the free

field far from the source is determined by its retarded field.

In this paper, we demonstrate that despite the Huygens principle violation in

odd dimensions the radiation can be computed by the integration of the energy-

momentum flux in the wave zone. We use the Rohrlich-Teitelboim radiation def-

inition24–26 (see, also,27–29) based on the Lorentz-invariant decomposition of the

on-shell energy-momentum tensor. Considering the radiation of spin-0, spin-1 and

spin-2 fields in five spacetime dimensions we show that the emitted part of the

field energy-momentum propagates in space exactly at the speed of light, while it

depends on the entire history of the source motion preceding the retarded time, in

contrast with the four-dimensional theory.

The paper is organised as follows. In second section we consider the scalar

radiation from the point charge in five spacetime dimensions. We briefly recall

the recurrent relation for the odd-dimensional retarded Green’s functions and the

Rohrlich-Teitelboim approach to radiation. Based on the latter, we compute the

emitted part of the on-shell energy-momentum tensor. In Sec. 3, we consider

the analogous problem for the five-dimensional electromagnetic field. Section 4 is

devoted to the calculation of the gravitational radiation from the point particle

moving along an arbitrary world line in five dimensions. In the last section we

briefly discuss our results.

2. Scalar radiation in five dimensions

Action of the massless scalar field ϕ(x) interacting with the massive point parti-

cle moving along an arbitrary world line zµ(τ) in the five-dimensional Minkowski

spacetime is written as

S =
1

4π2

∫

d4+1x∂µϕ(x)∂µϕ(x) −
∫

dτ
√

żαżα(m+ gϕ(z)), żµ =
dzµ

dτ
, (1)

where m is the particle’s mass, g its scalar charge, and Minkowski metric is

ηµν = diag(1,−1,−1,−1,−1). We assume that particle’s motion is governed by
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the external forces and is not affected by the radiation of scalar field, so here the

world line variables are non-dynamical.

The action (1) leads to the scalar field equation of motion in form

�ϕ(x) = −2π2j(x), (2)

j(x) = g

∫

dτ
√

żαżαδ
(4+1)(x− z), (3)

where j(x) is the scalar current, and � = ∂µ∂µ is the d’Alembert operator on the

five-dimensional Minkowski space. To determine the radiation energy-momentum

flux carried by the scalar field, we use its canonical energy-momentum tensor

Tµν(x) =
1

2π2

(

∂µϕ∂νϕ− 1

2
ηµν∂

αϕ∂αϕ

)

. (4)

The retarded solution of the Eq. (2) is given as

ϕ(x) = −2π2

∫

d4+1x′ j(x′)G4+1
ret (x − x′), (5)

where G4+1
ret (x) is the retarded Green’s function of the five-dimensional d’Alembert

equation. It is defined by the equation

�G4+1
ret (x) = δ(4+1)(x), (6)

G4+1
ret (x) = 0, x0 < 0. (7)

In the odd-dimensional Minkowski spacetimes, retarded Green’s functions are de-

termined by the following recurrent relation23 (see, also,30)

G2ν+1
ret (x) =

(−1)ν−1

(2π)ν
dν−1

(rdr)ν−1

θ(t) θ(t2 − r2)√
t2 − r2

, ν ∈ N, (8)

where t = x0 and r = |x|. Considering the expression under derivatives in Eq. (8)

as a product of separate distributions and taking into that dθ(x)/dx = δ(x), we

find the five-dimensional retarded Green’s function as

G4+1
ret (x) =

θ(t)

2π2

[

δ(t2 − r2)

(t2 − r2)1/2
− 1

2

θ(t2 − r2)

(t2 − r2)3/2

]

. (9)

As discussed above, it is localised not only on the light cone, but also inside it,

leading to the propagation of the retarded field in space with all velocities up to

that of light. Also, retarded field depends on the entire history of the source’s

motion preceding the retarded time and is given by the sum of separately divergent

on the light cone t2 − r2 = 0 terms. However, one can show that the divergences

contained in each of the terms in Eq. (9) mutually cancel out and the resulting field

is finite.
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2.1. Field of a static charge

Let us consider the case of static particle, to demonstrate the absence of divergences

in the retarded field. In our calculations, we will use the ”finite lifetime” trick to

show the cancellation of divergences between the two terms.

We assume that the particle is at the origin and it is ”switched on” for a finite

interval of the proper time a < τ < b, where a < 0 and b > 0 for concreteness. For

this interval its world line has the form zµ = [τ, 0, 0, 0, 0]. Then, by use of Eqs. (5),

(3) and (9) the scalar field is written as

ϕ(x) =
g

2

∫ b

a

dτ

[

θ(t− τ − r − ǫ)

[(t− τ)2 − r2]3/2
− δ(t− τ − r − ǫ)

r[(t− τ)2 − r2]1/2

]

, (10)

where we introduced the regularising parameter ǫ → +0 into the delta and Heaviside

functions to shift the divergences from the light cone. Preforming the integration

we obtain

ϕ(x) =
g

2























0, t < a+ r,

− t− a

r2[(t− a)2 − r2]1/2
, a+ r ≤ t < b+ r,

t− b

r2[(t− b)2 − r2]1/2
− t− a

r2[(t− a)2 − r2]1/2
, t ≥ b+ r.

(11)

In the limit of eternal particle, we arrive at the finite Coulomb-like field

lim
a,b→±∞

ϕ(x) = − g

2r2
, (12)

with the power-law behaviour corresponding to the increased dimensionality of

space. Similar cancellation of divergences has been shown to take place, also, for

the moving particle30.

2.2. The Rohrlich-Teitelboim radiation definition

The structure of the odd-dimensional Green’s functions (8) makes the extraction of

the emitted part of the retarded field in a standard manner non-trivial and requires

a more sophisticated approach.

Such an approach was suggested by Rohrlich24,25 and Teitelboim26 (see,

also,27–29). It is based on the use of certain covariantly defined quantities, so we

briefly recall their definitions. Let us consider the point particle moving along the

world line zµ(τ) with velocity vµ = dzµ/dτ in the D-dimensional spacetime. The

observation point coordinates are denoted as xµ. Assume the observation point to

be a top of the light cone in the past and denote the intersection point of this light

cone with the particle’s world line as zµ(τ̂ ) ≡ ẑµ. The corresponding moment of

proper time τ̂ is called the retarded proper time and is defined by equation

(xµ − ẑµ)2 = 0, x0 ≥ ẑ0. (13)

Further, all the hatted quantities correspond to that moment. Then, we introduce

three spacetime vectors: a lightlike vector X̂µ = xµ− ẑµ directed from the retarded
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point of the world line to the observation point, a spacelike vector ûµ orthogonal to

the particle’s velocity at the retarded moment of proper time, and a lightlike vector

ĉµ = ûµ + v̂µ aligned with the vector X̂µ. Introduced vectors have the following

properties

X̂2 = 0, (ûv̂) = 0, û2 = −v̂2 = −1, ĉ2 = 0, (14)

where (ûv̂) ≡ ûαv̂α. Using these vectors we, also, introduce the Lorentz-invariant

distance ρ̂ being the scalar product of two spacetime vectors

ρ̂ ≡ (v̂X̂), X̂µ = ρ̂ĉµ. (15)

It is equal to the spatial distance in the Lorentz frame comoving with the particle at

the retarded proper time. If the particle moves inside the compact region of space,

then the Lorentz-invariant distance ρ̂ is equivalent to the spatial distance

ρ̂
r≫|ẑ|−−−−→ r. (16)

In accordance with the Rohrlich-Teitelboim approach, it is the Lorentz-invariant

distance ρ̂ that is used in the long-range expansion of tensors and definition of the

wave zone.

In the Rohrlich-Teitelboim approach, the radiation is determined by the most

long-range part of the on-shell energy-momentum tensor expansion in the inverse

powers of the Lorentz-invariant distance ρ̂. In D dimensions, the retarded field’s

on-shell energy-momentum tensor is expanded as12,16,26–29

T µν = T µν
Coul + T µν

mix + T µν
rad (17)

T µν
Coul ∼

Aµν

ρ̂2D−4
, T µν

mix ∼ Bµν

ρ̂2D−5
+ . . .+

Cµν

ρ̂D−1
, T µν

rad ∼ Dµν

ρ̂D−2
. (18)

Here, the first term T µν
Coul is the energy-momentum tensor of the deformed Coulomb-

like part of the retarded field. The second one is the mixed part, which consists of

more than one term for D > 4 and is absent in D = 3. The most long-range part

T µν
rad of the on-shell energy-momentum tensor expansion has the properties allowing

to associate it with the radiation energy-momentum:

• It is separately conserved ∂µT
µν
rad = 0, corresponding to its dynamical inde-

pendence from the other parts;

• It is proportional to the direct product of two null vectors T µν
rad ∼ ĉµĉν ,

corresponding to its propagation exactly with the speed of light ĉµT
µν
rad = 0;

• It falls down as T µν
rad ∼ 1/rD−2 and gives positive definite energy-momentum

flux through the distant (D − 2)-dimensional sphere of area ∼ rD−2.

Therefore, the radiation power in D-dimensions can be computed as the energy flux

associated with T µν
rad through the distant (D − 2)-dimensional sphere of radius r

WD =

∫

T 0i
rad ni rD−2 dΩD−2; i = 1, D − 1, (19)



September 24, 2021 0:37 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in mg16at2 page 6

6

where ni = xi/r is the unit spacelike vector in the direction of observation, and

dΩD−2 is the angular element on the (D − 2)-dimensional sphere. This structure

holds in both even and odd dimensions with the only difference that in odd di-

mensions the emitted part of the energy-momentum tensor depends on the entire

history of the particle’s motion preceding the retarded proper time τ̂ .

Note that, usually, the energy-momentum tensor is just the bilinear form of the

field derivatives, as, e.g., in Eq. (4). Then, one can define the emitted part of the

retarded field derivative, by analogy with that of the energy-momentum tensor,

(∂µΦ)
rad ∼ 1/ρ̂D/2−1. (20)

This definition is valid in the cases of scalar and electromagnetic fields and linearised

gravity considered below.

2.3. Emitted part of the scalar field

Now we turn to the calculation of the emitted part of the retarded scalar field deriva-

tive. The computations below are similar to that in30, where we have considered

the scalar synchrotron radiation in three and five spacetime dimensions.

Using the Eq. (5) together with Eqs. (9) and (3) we obtain the retarded scalar

field of the moving particle as

ϕ(x) = −g

∫

dτ θ(X0(τ))

[

δ(X2(τ))

(X2(τ))1/2
− 1

2

θ(X2(τ))

(X2(τ))3/2

]

, (21)

where we introduced the vector Xµ(τ) = xµ − zµ(τ). In what follows, we omit its

dependence on the proper time for brevity.

Its derivative is found to have the form

∂µϕ(x) = −2g

∫

dτ θ(X0)

[

3

4

θ(X2)

(X2)5/2
+

δ′(X2)

(X2)1/2
− δ(X2)

(X2)3/2

]

Xµ, (22)

where δ′(x) = dδ(x)/dx. Integrating by parts the term containing derivative of

delta function by use of the relation

dX2

dτ
= −2(vX), (23)

we obtain the scalar field derivative in form

∂µϕ(x) = −g

∫

dτ θ(X0)

[

3

2

θ(X2)

(X2)5/2
Xµ − δ(X2)

(X2)3/2
Xµ−

− δ(X2)

(vX)2(X2)1/2
[(aX)− 1]Xµ − δ(X2)

(vX)(X2)1/2
vµ

]

, (24)

where we introduced the acceleration vector aµ = d2zµ/dτ2.

To obtain its emitted part, we extract the leading ρ̂-asymptotic of the Eq. (24).

We transform the products of delta and Heaviside functions by use of the relation

for the delta function of complex argument

θ(X0)δ(X2) =
δ(τ − τ̂)

2ρ̂
. (25)
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We, also, rewrite the vector Xµ in terms of the Lorentz-invariant distance

Xµ = Zµ + ρ̂ĉµ, Zµ = ẑµ − zµ. (26)

Then, by use of Eqs. (25) and (26) we arrive at the emitted part of the scalar field

derivative in form

(∂µϕ(x))
rad = − gĉµ

25/2ρ̂3/2

∫ τ̂

−∞

dτ

[

3

2

1

(Zĉ)5/2
− δ(τ − τ̂ )

(Zĉ)3/2
− 2(aĉ)δ(τ − τ̂)

(vĉ)2(Zĉ)1/2

]

, (27)

where we have taken into account that up to the leading order X2 ∼ 2ρ̂(Zĉ) and

(vX) ∼ ρ̂(vĉ). Note that each integral in the Eq. (27) diverges on the upper

integration limit τ → τ̂ , as (Zĉ) → (v̂ĉ)(τ̂ − τ) = (τ̂ − τ). However, one can

show that the last two terms of the integrand do not carry physical information

concerning the field in the wave zone and just eliminate the divergences contained

in the first one. To do this, we introduce the regularising parameter ǫ → +0 into

the argument of delta function and perform integration by use of it, obtaining the

divergent result
∫ τ̂

−∞

dτ
δ(τ − τ̂ + ǫ)

(Zĉ)3/2
=

1

ǫ3/2
, (28)

which can be rewritten as

1

ǫ3/2
=

3

2

∫ τ̂−ǫ

−∞

dτ

(τ̂ − τ)3/2
. (29)

By analogy, the second term with the delta function transforms to
∫ τ̂

−∞

dτ
(aĉ)δ(τ − τ̂ )

(vĉ)2(Zĉ)1/2
=

1

2

∫ τ̂−ǫ

−∞

dτ
(âĉ)

(τ̂ − τ)3/2
. (30)

Then, omitting the regularising parameter in the upper integration limit we find

the emitted part of the scalar field derivative as

(∂µϕ(x))
rad = − gĉµ

25/2ρ̂3/2

∫ τ̂

−∞

dτ

[

3

2

1

(Zĉ)5/2
− 3

2

1

(τ̂ − τ)5/2
− (âĉ)

(τ̂ − τ)3/2

]

. (31)

In practice, calculating the radiation from the particle moving along some trajectory

one needs to make the convergence of the integral in Eq. (31) explicit. To achieve it,

one has to reintroduce the regularising parameter ǫ → +0 into the upper integration

limit and perform some transformation of the first term in the integrand: usually, it

is the integrations by parts, which extract the divergences from it and cancel them

out by use of the remaining two integrals. The above structure of the emitted part

of the field holds in any odd spacetime dimensions30.

Substituting the emitted part of the scalar field derivative into the Eq. (4) we

find the radiated part of the energy-momentum tensor

T rad
µν (x) =

g2ĉµĉν
64π2ρ̂3

A2(x), (32)

A(x) =

∫ τ̂

−∞

dτ

[

3

2

1

(Zĉ)5/2
− 3

2

1

(τ̂ − τ)5/2
− (âĉ)

(τ̂ − τ)3/2

]

. (33)
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In accordance with the Rohrlich-Teitelboim approach, it is proportional to the direct

product of two null vectors ĉµĉν corresponding to the propagation of this part of

field’s energy-momentum exactly with the speed of light. Also, as was discussed

above, the emitted part of the energy-momentum tensor depends on the entire

history of the source’s motion preceding the retarded proper time τ̂ , as well as the

radiation power determined by it.

3. Electromagnetic radiation in five dimensions

Having found the emitted part of the five-dimensional scalar field and the corre-

sponding radiation energy-momentum tensor, let us now briefly discuss the electro-

magnetic and gravitational radiation in five dimensions. We start with the former.

3.1. The setup

Action of the electromagnetic field Aµ(x) interacting with the massive point particle

moving along an arbitrary world line zµ(τ) in five dimensions is analogous to that

of the scalar field (1) and has the form

S = − 1

8π2

∫

d4+1xFµνFµν − e

∫

dτ żµAµ(z), Fµν = ∂µAν − ∂νAµ, (34)

where e is particle’s electric charge. Here, we omit the particle’s kinetic term in

the action, given that its motion is completely governed by the external forces and,

thus, the world line variables are non-dynamical.

The action (34) yields the standard equation of motion of the electromagnetic

field

�Aµ(x) = 2π2jµ(x), (35)

jµ(x) = e

∫

dτ żµ δ(4+1)(x− z). (36)

where we imposed on the field the Lorentz gauge condition to fix its gauge symmetry

∂µA
µ = 0. (37)

Note that this condition requires the current to be conserved

∂µj
µ = 0, (38)

and it is, when the observation point is off the world line, as can be easily seen from

the Eq. (36).

To determine the energy flux carried by the electromagnetic radiation we use

symmetric energy-momentum tensor of the electromagnetic field

Θµν =
1

2π2

[

F α
µ · Fαν +

1

4
ηµνFαβF

αβ

]

. (39)

By analogy with that of the scalar field, it is the bilinear functional of the field

derivatives Θ ∼ ∂A∂A and, thus, admits defining the emitted part of the electro-

magnetic field derivative.
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3.2. Emitted part of the electromagnetic field

By use of the Eqs. (36) and (9) we obtain the retarded electromagnetic field of the

point charge in form

Aµ(x) = e

∫

dτ żµ θ(X
0)

[

δ(X2)

(X2)1/2
− 1

2

θ(X2)

(X2)3/2

]

. (40)

We calculate its derivative using the relation (23)

∂νAµ(x) = e

∫

dτ θ(X0)

[

3

2

θ(X2)

(X2)5/2
vµXν −

δ(X2)

(X2)3/2
vµXν−

− δ(X2)

(vX)2(X2)1/2
[(aX)− 1]vµXν +

δ(X2)

(vX)(X2)1/2
[aµXν − vµvν ]

]

. (41)

Using the relations (25) and (26), and transforming the terms with delta functions

by analogy with the Eqs. (28–30) we obtain the emitted part of the retarded

electromagnetic field as the long-range part of its derivative with respect to the

Lorentz-invariant distance

(∂νAµ)
rad =

eĉν
25/2ρ̂3/2

∫ τ̂

−∞

dτ

[

3

2

vµ
(Zĉ)5/2

− 3

2

v̂µ
(τ̂ − τ)5/2

− (âĉ)v̂µ − âµ
(τ̂ − τ)3/2

]

. (42)

By analogy with the scalar field, in Eq. (42) all the physical information concerning

the electromagnetic field in the wave zone is contained in the first term of the

integrand, while the remaining ones just subtract the divergences contained in it at

the upper integration limit.

Substituting the Eq. (42) into the symmetric energy-momentum tensor (39) we

arrive at the five-dimensional electromagnetic radiation energy-momentum tensor

Θrad
µν = − e2ĉµĉν

64π2ρ̂3
A2

α(x), (43)

Aα(x) =

∫ τ̂

−∞

dτ

[

3

2

vα
(Zĉ)5/2

− 3

2

v̂α
(τ̂ − τ)5/2

− (âĉ)v̂α − âα
(τ̂ − τ)3/2

]

. (44)

The obtained tensor structure of the radiated part of the energy-momentum tensor

corresponds to the propagation of the associated energy flux exactly with the speed

of light. Also, by analogy with the scalar field (32), it depends on the history of

charge’s motion preceding the retarded proper time.

4. Five-dimensional gravitational radiation

Now we turn to the calculation of the gravitational radiation produced by the point

particles. If interaction between them is also gravitational, the problem is not

described by the linearized approximation, and the quadratic terms in expansion of

the Einstein tensor are required to take into account the contribution of field stresses

to radiation32. If the dominant forces are non-gravitational, the corresponding field

stresses are also required, making the calculation rather difficult. Here we calculate
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only the local contribution of particles themselves, so the result is incomplete. We

give it just to reveal difference with the scalar and electromagnetic cases and to

show how to deal with polarisations.

4.1. The setup

We start with the generally covariant Einstein-Hilbert action for the five-

dimensional gravity interacting with massive point particle and some external field

governing its motion

S =
1

2κ5

∫

d4+1x
√−gR−m

∫

dτ
√

gαβ(z)żαżβ + SF, (45)

where κ5 is the five-dimensional gravitational constant, g is the determinant of

metric tensor, and SF is the action for the external field moving point particle.

We linearise the Einstein’s equation over the background Minkowski metric

gµν(x) = ηµν + hµν(x), |hµν | ≪ 1. (46)

Introducing the reduced metric perturbations

h̄µν = hµν − 1

2
ηµνh, h = ηαβhαβ , (47)

we arrive at the linearised Einstein equation

�h̄µν(x) = 2κ5

(

TP
µν(x) + TF

µν(x)
)

, (48)

TP
µν(x) = m

∫

dτ żµżν δ
(5)(x − z), TF

µν(x) = − 2√−g

δSF

δgµν

∣

∣

∣

∣

g=η

(49)

where TP
µν(x) is the energy-momentum of point particle moving on the flat

Minkowski background and interacting with some external field, which energy-

momentum tensor is given by TF
µν(x). To obtain the Eq. (48) we, also, imposed the

Lorentz gauge condition on the metric perturbations

∂µh̄µν = 0, (50)

to fix the gauge symmetry of the system. Such a condition requires the particle’s

and external field’s energy momentum-tensors to be jointly conserved

∂µ
(

TP
µν + TF

µν

)

= 0, (51)

which is assumed to be valid on-shell.

To determine the energy-momentum flux carried by the gravitational radiation

we use the effective energy-momentum tensor of metric perturbations, by analogy

with31,

tµν =
1

4κ5

〈

∂µh̄
TT
ij ∂ν h̄

TT
ij

〉

, h̄TT
ij (x) = Λij,kl(n)h̄kl(x), (52)

Λij,kl(n) = PikPjl −
1

3
PijPkl, Pij = δij − ninj , ni =

xi

r
, (53)
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where we assume the particle’s motion to be periodic, and 〈. . .〉 is the averaging over
the period. Here, we turned into the transverse-traceless gauge by the contraction

of metric perturbations (52) with the projector (53) defined by analogy with31.

Note that differentiation of the projector would increase the fall-off asymptotic of

the field, so its derivative can be neglected when one computes the emitted part of

the gravitational field in the transverse-traceless gauge.

4.2. Emitted part of the gravitational field (incomplete)

Using the Eqs. (9) and (49) we find the retarded gravitational field of the point

particle as

h̄P
µν(x) =

mκ5

π2

∫

dτ żµżν θ(X
0)

[

δ(X2)

(X2)1/2
− 1

2

θ(X2)

(X2)3/2

]

. (54)

We compute its derivative integrating by parts by use of the relation (23) arriving

at

∂αh̄
P
µν =

mκ5

π2

∫

dτ θ(X0)

[

3

2

θ(X2)

(X2)5/2
vµvνXα − δ(X2)

(X2)3/2
vµvνXα−

− δ(X2)

(vX)2(X2)1/2
[(aX)− 1]vµvνXα +

δ(X2)

(vX)(X2)1/2
[2a(µvν)Xα − vµvνvα]

]

, (55)

where aµ = d2zµ/dτ2 is the acceleration vector, and we define the symmetrisation

over two indices as A(µBν) = (AµBν +AνBµ)/2.

Extracting the long-range part of the gravitational field derivative by use of the

relations (25) and (26) and transforming the terms with delta functions by analogy

with Eqs. (28–30) we obtain the emitted part of the gravitational field as

(

∂αh̄
P
µν

)rad
=

mκ5ĉα
25/2π2ρ̂3/2

∫ τ̂

−∞

dτ

[

3

2

vµvν
(Zĉ)5/2

− 3

2

v̂µv̂ν
(τ̂ − τ)5/2

− (âĉ)v̂µv̂ν − 2â(µv̂ν)

(τ̂ − τ)3/2

]

.

(56)

By analogy with the scalar (31) and electromagnetic (42) fields, it consists of one

integral determining the properties of the gravitational field in the wave zone and

two integral being counter-terms eliminating the divergences from the first one.

Substituting the obtained expression for the emitted part of the retarded gravi-

tational field (56) into the Eq. (52) we find the energy-momentum tensor of gravi-

tational radiation generated by the point particle

(

tPµν
)rad

=
m2κ5ĉµĉν
128π4ρ̂3

ATT
ij (x)ATT

ij (x), ATT
ij (x) ≡ Λij,kl(n)Akl(x), (57)

Aij(x) =

∫ τ̂

−∞

dτ

[

3

2

vivj
(Zĉ)5/2

− 3

2

v̂iv̂j
(τ̂ − τ)5/2

− (âĉ)v̂iv̂j − 2â(iv̂j)

(τ̂ − τ)3/2

]

. (58)

As in the cases of scalar (32) and electromagnetic (43) radiation, the emitted part

of the gravitational field energy-momentum tensor has the tensor structure corre-

sponding to the propagation of the associated energy-momentum flux exactly at the
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speed of light and depends on the entire history of the particle’s motion preceding

the retarded proper time τ̂ .

5. Conclusions

In this short article, we have demonstrated that despite the Huygens principle

violation in odd spacetime dimensions, radiation can be computed by the integration

of the energy-momentum flux in the wave zone. However, it requires the Lorentz-

invariant modification of the radiation and wave zone definitions, in accordance with

the Rohrlich-Teitelboim approach. Also, due to the Huygens principle violation, the

emitted part of the field depends on the history of the source’s motion preceding

the retarded proper time, in contrast with even dimensions, where properties of

radiation at given moment of time are determined only by the state of the source at

the retarded time. Another feature of the odd dimensions is that the retarded field

is given by the sum of separately divergent integrals. Nevertheless, these divergence

mutually cancel out and the resulting field is finite.

Based on the Rohrlich-Teitelboim approach, we have considered the radiation of

the scalar, electromagnetic and gravitational fields by point particle in five dimen-

sions. We computed the emitted parts of the fields’ energy-momentum tensors. The

obtained expressions have the tensor structures corresponding to the propagation

of the radiated energy-momentum in space exactly with the speed of light. Also,

they are given by the sum of separately divergent integrals over the history of par-

ticle’s motion, one of which carries all the physical information concerning the field

in the wave zone, while the remaining ones are just the counter-terms subtracting

the divergences from the former. To make the convergence of the resulting tensor

explicit, one has to integrate the first term by parts.

In our previous work30, we have considered the scalar synchrotron radiation

in three and five dimensions. The results were checked by the calculation of the

spectral decompositions of the radiation power, which are indifferent to the dimen-

sionality of the spacetime. Based on this, we assume that the obtained similar

expressions for the emitted parts of the electromagnetic and gravitational fields

should, also, be valid.
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