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Abstract—A new method for analyzing resonance states based on the Harmonic-Oscillator Represen-
tation of Scattering Equations (HORSE) formalism and analytic properties of partial-wave scattering
amplitudes is proposed. The method is tested by applying it to the model problem of neutral-particle
scattering and can be used to study resonance states on the basis of microscopic calculations performed
within various versions of the shell model.
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1. INTRODUCTION

In recent years, considerable advances have been
made in developing microscopic methods for describ-
ing continuum states of nuclei, the widths of their
resonance states, and nuclear reactions. Some of
these methods are worthy of special note. These in-
clude the method that is based on the integral Lorentz
transformation [1, 2] which was implemented in the
hyperspherical-harmonic approximation and was ex-
tended [3] in such a way as to employ it together with
the No-Core Shell Model (NCSM); the continuum
shell model [4]; first attempts at studying nucleon
scattering by nuclei within the quantum Monte Carlo
method [5]; and the Gamow shell model—in par-
ticular, the no-core Gamow shell model [6]. The
most significant results in the modern ab initio the-
ory of nuclear reactions were obtained by employ-
ing the NCSM approach in combination with the
resonating-group method (for reviews, see [2, 7, 8]).

In the present study, we develop a simple method
for estimating the resonance energiesEr and widthsΓ
and for approximating phase shifts at low energies
on the basis of the dependence of the energy of the
lowest state E0(�Ω) on the oscillator parameter �Ω
and on the dimension of the model space. Our group
proposed this method earlier [9–11] and used it to
analyze resonance states in the 5He nucleus [9–11]
and in the four-neutron system (tetraneutron) [12,
13]. The method relies on that version of the J-matrix
formalism of scattering theory [14] which employs
the harmonic-oscillator basis—this is the so-called
HORSE (Harmonic-Oscillator Representation of
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Scattering Equations) method [15]. Here, we propose
developing the method introduced in [9–11] in such
a way as to ensure a correct behavior of phase shifts
in the region of low energies on the basis of analytic
properties of partial-wave scattering amplitudes.

The method is tested by applying it to a model
two-body problem with a potential is fitted to neutron
scattering by alpha particle in the 3/2− and 1/2−

partial waves [16].

2. SS-HORSE METHOD

Let us consider the HORSE equations describing
the scattering of neutral particles having the reduced
mass μ = m1m2/(m1 +m2) and interacting via the
potential V in the partial wave characterized by the
orbital angular momentum l. Within the HORSE
method [15], the wave function for relative particle
motion is expanded in an infinite series in harmonic-
oscillator functions. The basis functions are char-
acterized by the oscillator parameter �Ω, the radial
quantum number n, and the orbital angular momen-
tum l.

In the harmonic-oscillator basis, the kinetic-
energy matrix is tridiagonal, its nonzero elements
Tn,n and Tn,n±1 becoming larger in magnitude as the
radial quantum number n grows. At the same time,
the matrix elements Vn,n′ of the short-range potential
decrease with increasing n and n′. Starting from
some n or n′ > N , it is therefore possible to disregard
the matrix elements Vn,n′ . As a result, the space of
basis states splits into the internal region n ≤ N ,
where the interaction is fully taken into account, and
the external region n > N , where only the matrix
elements of the kinetic energy are retained in the
Hamiltonian.

The eigenvectors of the infinite matrix of this
Hamiltonian can be found if the eigenenergies Eν
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and the eigenvectors 〈n|ν〉 of the Hamiltonian matrix
HN

n,n′ in the internal region n, n′ ≤ N are known.
The quantities Eν and 〈n|ν〉 satisfy the set of linear
equations

N∑

n′=0

HN
n,n′〈n′|ν〉 = Eν〈n|ν〉, (1)

n ≤ N, ν = 0, 1, ..., N.

The eigenvectors 〈n|ν〉 are orthonormalized; that is,
N∑

n′=0

〈ν ′|n′〉〈n′|ν〉 = δνν′ , (2)

N∑

ν′=0

〈n′|ν ′〉〈ν ′|n〉 = δnn′ .

The phase shifts can be calculated by the for-
mula [15]

tan δl(E) (3)

= − SN,l(E)−GN,N (E)TN,N+1SN+1,l(E)

CN,l(E)−GN,N (E)TN,N+1CN+1,l(E)
,

where

GN,N (E) = −
N∑

ν=0

|〈N |ν〉|2

Eν − E
(4)

and Sn,l(E) and Cn,l(E) are, respectively, the regular
and the irregular harmonic-oscillator solution for the
free Hamiltonian. The explicit form of these solutions
is known from [15].

The calculation of scattering observables becomes
substantially simpler if the energy coincides with one
of the eigenvalues. In particular, it follows from
Eqs. (3) and (4) that, under the condition Eν > 0, the
phase shift reduces to a very simple expression,

tan δl(Eν) = −SN+1,l(Eν)

CN+1,l(Eν)
. (5)

It is important that not only does the summation
over the entire set of eigenstates disappear, but also
the dependence on the wave-function components
〈N |ν〉 becomes nonexistent. The phase shift δl(Eν)
is fully determined by the eigenenergy Eν alone. The
eigenenergies depend on the boundary N at which
the internal region Hamiltonian is truncated and on
the parameter �Ω of the harmonic-oscillator basis. It
follows that, by varying �Ω and N within reasonable
limits, one can calculate, with the aid of Eq. (5), phase
shifts in the respective range of energies Eν(�Ω).
Expressions similar to that in (5) can also be obtained
for other scattering attributes—in particular, for the
S matrix and for the partial-wave scattering ampli-
tude. In the following, we will refer to this method for

calculating the features of scattering as the Single-
State (SS) HORSE method [9–11], since, from the
standard HORSE formalism, we use the energy of
only one eigenstate, Eν , and the explicit expres-
sions for the harmonic-oscillator solutions Sn,l(E)
and Cn,l(E).

It should be noted that, if the dependence of phase
shifts on the energy δl(E) is known—for example,
from an analysis of experimental data—Eq. (5) at
fixed values of the parameters N and �Ω can be
considered as a transcendental equation for deter-
mining the eigenvalues Eν . Thus, one can find, on
the basis of Eq. (5), values that the eigenenergies
of a finite Hamiltonian matrix should have within a
theory that employs an expansion of wave functions
in terms of a harmonic-oscillator basis—for example,
within standard versions of the nuclear shell model—
in order to be consistent with experimental data on
scattering. The use of Eq. (5) simplifies substantially
the approach that our group proposed earlier [17]
in studying resonance nucleon scattering by alpha
particle within the inverse scattering approach.

By and large, the developed SS-HORSE method
can be applied together with other approaches that
employ a harmonic-oscillator basis. In particular, it
can be used to extend the applicability range of the
nuclear shell model to problems dealing with the con-
tinuous spectrum. In that case, the internal subspace
is associated with the model space of the multipar-
ticle shell-model basis, while the external subspace
is used to describe open channels. Within the shell
model, the basis space is usually specified by the
maximum number of excitation quanta, Nmax. For
each specific problem, one can readily establish the
correspondence between Nmax and the parameter N
of the SS HORSE method.

Within the SS-HORSE formalism, we can cal-
culate the phase shifts δl(E) at the energies E(i) =

Eν(N
(i), �Ω(i)) that cover some interval. Parametriz-

ing the values obtained for the phase shifts δl(E),
we can extrapolate δl(E) to a broader energy range
and, if the system being studied has a resonance
state, calculate the resonance energy and width. For
this, the result of a complete diagonalization of the
Hamiltonian matrix is not needed, which is especially
important for applications in many-body problems—
for example, in the shell model—where the number
of basis states grows exponentially with Nmax; we are
interested only in the energy of only one or few lowest
eigenstates of the system. It is also of importance
that Eq. (5) does not feature a dependence on wave-
function components—that is, this equation is valid
for any channel. It should also be noted that, in
principle, the phase shift can be continued analytically
to the region of negative energies in order to obtain
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information about the properties of bound states—
such a continuation is briefly discussed in the follow-
ing [see expressions (13)–(15) below].

The convergence of the results of HORSE cal-
culations depends on the choice of values for the
parameters N and �Ω and has specific features in-
herent in each specific problem. The following fact
permits simplifying the problem of choosing model-
parameter values for employing them within the SS-
HORSE method. In the low-energy region, the use of
large-N asymptotic expressions for SN+1,l(Eν) and
CN+1,l(Eν) [18] under the condition

Eν � 1

8
�Ω(N + 1)2 (6)

makes it possible to obtain

tan δl(Eν) =
jl(2ζν)

nl(2ζν)
, (7)

ζν =
√

Eν/s, s =
�Ω

2N + l + 7/2
,

where jl(x) and nl(x) are spherical Bessel and Neu-
mann functions. Expression (7) reflects the following
scaling property: the phase shift does not depend
onN and �Ω individually, but it depends on their ratio,
which is a scaling variable s.

In calculations with the harmonic-oscillator basis,
the scaling was first proposed in [19] in studying
bound states. In contrast to s, the scaling variable

L =
√

2(2N + l + 7/2)/(�Ω) (8)

×
√

�2/μ ∼ 1/
√
s,

which was introduced in [19] with the correction pro-
posed in [20], has the dimensions of length. Expres-
sion (7), which we obtained from the HORSE equa-
tions, generalizes the scaling property to scattering
states.

It should be noted that, under the additional con-
dition

4Eν

s
� 1, (9)

which is equivalent to

Eν � �Ω

4(2N + l + 7/2)
, (10)

the asymptotic expressions can be used for the spher-
ical Bessel and Neumann functions in question. As a
result, expression (7) reduces to a simpler form; that
is,

δl = −2
√

E/s+ πl/2. (11)

Figure 1 shows that the values of the function

fN,l = − arctan
(
SN,l(Eν)/CN,l(Eν)

)
(12)

are in excellent agreement with the asymptotic ex-
pression arctan(jl(2

√
E/s)/nl(2

√
E/s)) in the re-

gion of low energies even in the case of N = 1; as N
increases, the energy range over which the approxi-
mation being considered is valid becomes broader. At
the same time, the asymptotic expression (11) is valid
in the region of large values of the argument

√
E/s,

and higher are the values of l, larger are the
√

E/s
values at which this asymptotic expression becomes
valid. The case of l = 0, in which the asymptotic
expressions for the spherical Bessel and Neumann
functions under study at large values of the argument
in terms of sines and cosines coincide with the func-
tions j0(x) and n0(x) themselves, is an exception.
Thus, the energy range in which it is legitimate to use
expression (11) becomes broader with increasing N
and decreasing l. But while the simplified scaling
relation (11) cannot be applied at low values of the
energy Eν , in which case the inequality in (10) is
invalid, the more general scaling relation (7) can be
used down to zero energy.

Here, it is of interest to consider in more detail
the connection with the expressions from [19, 20] for
bound-state energies. It is well known that, in the
vicinity of a ground-state pole, the S matrix can be
approximated as [21]

Sl ≡ exp(2iδl) =
Dl

k − ikb
, (13)

where E = −�
2
κ
2/2μ, Eb = −�

2k2b/2μ is the bound-
state energy, κ = k/i and kb are the respective
imaginary parts of the momenta, and Dl is ex-
pressible in terms of the asymptotic normalization
constant Al as [21]

Dl = (−1)l+1i|Al|2, (14)

and is purely imaginary. Expression (7) remains valid
at negative energies. From Eqs. (7), (13), and (14),
we can then obtain

κν = kb − |Al|2 exp
(
− 4κν�√

2μs

)
, (15)

where Eν = −�
2
κ
2
ν/2μ. Instead of this, the authors

of [19, 20] proposed the expression, which, in our
notation, takes the form

Eν = Eb + Cl exp

(
− 4kb�√

2μs

)
. (16)

Expressions (15) and (16) are similar, but there are
also substantial distinctions between them: Eq. (16)
for the bound-state eigenenergies Eν in a finite
harmonic-oscillator basis involves these energies
themselves and the energy Eb that one could expect
in the limit the infinite basis, while Eq. (15), which
we derived, contains, instead of the energies, the
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respective momenta κν ∼
√

|Eν | and kb ∼
√

|Eb|;
moreover, the constant kb appears in the exponential
function in (16), but the momentum κν , which
changes as a function of the energy Eν , takes its
place in the exponent in our equation (15). A detailed
comparison of Eqs. (15) and (16) and especially
of the energy estimates obtained with the aid of
them in an infinite harmonic-oscillator basis, Eb, in
particular nuclear-physics problems, is of a great
interest for applications. We plan to perform such
an investigation in our future studies.

In general, the phase shift should be a smooth
function of the scaling parameter s. In accordance
with Eq. (7), the eigenenergies Eν calculated for
different sets of model parameters N and �Ω should
therefore lie on the same smooth curve representing
the dependence Eν(s). A deviation of any result from
this curve would indicate that we have not reached
the convergence and that it is necessary to exclude
the respective value from the data set for the further
analysis within the SS-HORSE framework. By con-
sidering a model problem, we will demonstrate below
the selection of the eigenenergies Eν .

3. PARAMETRIZATION OF PHASE SHIFTS
IN THE LOW-ENERGY REGION

ON THE BASIS OF ANALYTIC PROPERTIES
OF SCATTERING AMPLITUDES

Let us consider a quantum system that has one
resonance state in a partial wave characterized by the
orbital angular momentum l. Resonance states are
associated with the S-matrix poles (or the poles of the
partial-wave scattering amplitude fl) situated on the
second (unphysical) sheet of complex energy at the
point Ep = Er − iΓ/2 (or at the point kp = kr − iγ
of the lower half-plane of the complex momentum)
[21–23]. The resonance energy (Er) and width (Γ)
are related to the respective momentum pole by the
following obvious equations:

Er =
�
2

2μ
(k2r − γ2),

Γ

2
=

�
2

μ
krγ.

The partial-wave scattering amplitude for neutral
particles, fl(E), is expressed in terms of the partial-
wave S matrix Sl(E) and the partial-wave phase shift
δl(E) as

fl(E) =
Sl(E)− 1

2ik
=

eiδl(E) sin δl(E)

k
(17)

=
k2l

k2l+1 cot δl(E)− ik2l+1
,

where E = �
2k2/2μ is the c.m. energy of relative

particle motion. The additional factor k2l in the nu-
merator and denominator on the right-hand side of

the last equality in (17) was introduced for the sake
of convenience, since, in the region of E → 0, the
effective-range expansion yields [23]

k2l+1 cot δl(E) = − 1

al
+

rl
2
k2 − Pl

4
k4 + . . .

Below, we restrict ourselves to the approximation
where one retains only the first three terms of the
exact expansion; that is,

k2l+1 cot δl(E) � − 1

al
+

rl
2
k2 − Pl

4
k4. (18)

It should be noted that the function k2l+1 cot δl(E)
can be expanded in a series in even powers of the
momentum k (or in integer powers of the relative-
motion energy E) not only in the low-energy region
but also at any energies.

In order to parametrize scattering amplitudes and
phase shifts, we will generalize the method proposed
in [24] to the case of resonance scattering. For this
purpose, we introduce an auxiliary complex-valued
function Fl defined as

Fl(E) ≡ Rl(E) + iIl(E) (19)

=
k2l+1 cot δl(E) − i(kr − iγ)2l+1

E − (Er − iΓ/2)
.

The numerator of the function Fl coincides with the
denominator of the scattering amplitude upon the
substitution of a fixed value kp = (kr − iγ) for the
variable k in the second term. The function Fl does
not have singularities at E = Er − iΓ/2, so that we
can approximate it by a polynomial in energy, but, by
construction, the functionFl then leads automatically
to the appearance of a pole in the scattering ampli-
tude fl(E) at the resonance energy E = Er − iΓ/2.

We now introduce the following notation:

Qr = Re
[
i(kr − iγ)2l+1

]
, (20)

Qi = Im
[
i(kr − iγ)2l+1

]
.

As a result, the following expressions can readily
be obtained for the real and imaginary parts of the
function Fl:

Rl(E) (21)

=
(k2l+1 cot δl −Qr)(E − Er)− 1

2QiΓ

(E − Er)2 + (Γ/2)2
,

Il(E) (22)

= −
1
2(k

2l+1 cot δl −Qr)Γ +Qi(E − Er)

(E − Er)2 + (Γ/2)2
.

By construction of the auxiliary function Fl(E) and
due to the effective-range expansion (18), both the
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Fig. 1. Illustration of the scaling property. The curves endowed with symbols represent the functions fN,l [see Eq. (12)] versus
ζ =

√
E/s for various values of N . The solid curves correspond to Eq. (7); the regions where they agree with the respective

functions fN,l are regions of the scaling behavior. The dashed straight lines correspond to the asymptotic expression (11).

real [Rl(E)] and the imaginary [Il(E)] parts of this
function can be expanded in a series in even powers
of k on the real momentum axis.

The function Il(E) is unambiguously determined
by the function Rl(E). Indeed, we can obtain the
following relation from Eqs. (21) and (22):

Il(E)(E − Er) = −1

2
Rl(E)Γ −Qi. (23)

Obviously, the function Il(E) then does not have a
singularity at the point E = Er only if the free term
in the expansion of the function Rl(E) in the Taylor
series in powers of (E − Er) coincides with −2Qi/Γ.
In particular, the approximation of the function Rl(E)

by a second-order polynomial R(2)
l (E − Er) in (E −

Er) should have the form

R(2)
l (E − Er) (24)

=
2

Γ

[
−Qi + w1(E − Er) +w2(E − Er)

2
]
.

One can readily see that, in this case, the approxi-
mation (18) is valid in the low-energy region; finding
k2l+1 cot δl from Eq. (21) and taking into account
Eq. (24), we can then obtain the following expres-
sions for the scattering length al and the effective
range rl:

al = −Γ

2

[
Qr

Γ

2
+QiEr (25)

+ (w1 −w2Er)
(
E2

r + (Γ/2)2
)]−1

,

rl =
�
2

μ

2

Γ
(26)

×
[
−Qi − 2w1Er − w2

(
3E2

r − (Γ/2)2
)]

.

Thus, a parametrization of phase shifts that guar-
antees their correct behavior both in the vicinity of
the threshold and in the resonance region can be
constructed on the basis of Eq. (21) alone. The pro-
cedure used to fit the parameter values is as follows.

Let E(i)
0 (i = 1, 2, . . . , d) be the set of lowest positive

eigenvalues E0 calculated at various values of the
model parameters N (i) and �Ω(i) (d is the number of
energies in this set). At some fixed values of w1, w2,
Er, and Γ, we find those energies E(i) for each of the
values of N (i) and �Ω(i) that satisfy the equation

(
CN+1,l(E)
SN+1,l(E)k

2l+1 +Qr

)
(E − Er) +

1
2QiΓ

(E − Er)2 + (Γ/2)2
(27)

=
2

Γ

[
Qi − w1(E − Er)− w2(E −Er)

2
]
,

which combines Eqs. (5), (21), and (24). The ultimate
values of the adjustable parameters are determined by
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Fig. 2. Energies E0 of the lowest state as a function of the scaling variable s in the p3/2 partial wave. The solid line represents
the solution of Eq. (29).
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Fig. 3. Energies E0 of the lowest state as a function of �Ω in the p3/2 partial wave. The results lying outside the shaded region
are not used in the SS-HORSE calculations. The solid curves represent the solution of Eq. (29) after rescaling for each model
space.

minimizing the functional

Ξ =

√√√√1

d

d∑

i=1

(
E

(i)
0 − E(i)

)2
. (28)

From Eqs. (7), (21), and (24), one can readily
obtain the transcendental equation

2

Γ

[
−Qi + w1(E − Er) + w2(E − Er)

2
]

(29)
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Fig. 4. Phase shifts in the 3/2− partial wave. The solid curve stands for precisely calculated phase shifts, while the dashed and
dash-dotted curves represent the phase shifts approximated on the basis of the SS-HORSE method [calculations according
to Eq. (31)] for, respectively, the N = (2−10) and the N = (2−3) versions; the results obtained in the rest versions are
indistinguishable from the N = (2–10) curve in the scale of the figure. Symbols display the calculations according to Eq. (5) in
various model spaces specified by the value ofN . The arrows indicate the boundaries of the values of δl(E

(i)
0 ) in the calculations

for N = 3 and N = 10.
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Fig. 5. Same as Fig. 4, but for the 1/2− partial wave.

=

(
k2l+1 nl

(
2
√

E/s
)

jl

(
2
√

E/s
) −Qr

)
(E − Er)− 1

2QiΓ

(E − Er)2 + (Γ/2)2
.

Solving this equation with respect to E, we can ob-

tain a smooth dependence of the energy on the scal-

ing variable, E(s), for fixed values of the adjustable

parameters w1 and w2 and the resonance parameters

Er and Γ.
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Fig. 6. Comparison of the functions R(2)
l (E −Er) (dashed line) obtained by the fit using the selected set of eigenvalues

E
(i)
0 from the N = (2–10) model spaces with the set of values that was calculated for the function Rl(E

(i)
0 ) according to

expression (21) with the phase shifts δl(E
(i)
0 ) obtained using the results E

(i)
0 of the diagonalization of the Hamiltonian,

expression (5) and the fitted values of the 3/2−-resonance from the N = (2−10) version.

4. ILLUSTRATION OF HOW THE METHOD
WORKS

We will now demonstrate how the method works
by applying it to a model problem of neutral-particle
scattering on a Woods–Saxon potential with a sur-
face spin–orbit term,

Vnα =
V0

1 + exp [(r −R0)/α0]
(30)

+ (l · s) 1
r

d

dr

Vls

1 + exp [(r −R1)/α1]
.

With the parameter [16] V0 = −43.0 MeV, Vls =

−40.0 MeV fm2, R0 = 2.0 fm, α0 = 0.70 fm, R1 =
1.5 fm, and α1 = 0.35 fm, this potential simulates
well phase shifts and resonance features for neu-
tron scattering by alpha particle—in particular, a
comparatively narrow resonance in the p3/2 partial
wave and a broader resonance in the p1/2 partial
wave. The precise values obtained for resonance-
state energies and widths in the case of scattering on
the potential (30) from calculations with the reduced
mass μ = 4

5mnucl (where mnucl is the nucleon mass)
are given in the table.

We have calculated the energy of the lowest state,
E0, by diagonalizing the Hamiltonian matrix with
this potential in a harmonic-oscillator basis for N =
2, 3, . . . , 10 at �Ω values varied between 7.5 and

50 MeV with a step of 2.5 MeV. The calculated
eigenvalues E0 for the p3/2 partial wave are given
in Fig. 2 versus the scaling variable s. One can see
that these results mostly lie on a smooth curve. This
is not so only for the results obtained in the case of
model spaces where N and �Ω are small, in which
case the values of s are also modest. These results
were discarded and were not taken into account in
the subsequent analysis. The selection of the results
of diagonalization are visualized in Fig. 3, which gives
the dependence E0(�Ω).

The results for our analysis of scattering in the p1/2
partial wave were selected in a similar way.

The phase shifts δl(E
0
i ) calculated within the

SS-HORSE approach according to Eq. (5) for the
eigenenergies E0

i selected in the way outlined above
are in excellent agreement with the precise phase
shifts in the p3/2 and p1/2 partial waves (see Fig. 4
and 5, respectively). We note that the SS-HORSE
calculations at small values of N lead to phase shifts
lying higher in energy and outside the resonance
region. As N increases, the δl(E

0
i ) values are shifted

to the region of resonance energies.
Our numerical calculations reveal that, in order

to parametrize the function Rl(E), it is sufficient to

use a second-order polynomial R(2)
l (E −Er) in (E −

Er) [see expression (24)]. This parametrization is
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Fig. 7. Same as Fig. 6, but for the 1/2− partial wave.

illustrated in Figs. 6 and 7. These figures show that

the approximations R(2)
l (E −Er) (dashed curves) are

in excellent agreement with the values calculated for

the functions Rl(E
(i)
0 ) (points) by using Eq. (21)

with the phase shifts δl(E
(i)
0 ) obtained by means of

expression (5) and the results E
(i)
0 of diagonalization

of the Hamiltonian together with the fitted values of
the resonance energies and widths.

The parameters w1 and w2 of the functionR(2)
l (E−

Er) and the resonance parameters Er and Γ were
determined by minimizing the functional Ξ. The
fitted results and the root-mean-square deviations of
Ξ are given in the table for various versions of the
calculation. Versions of SS-HORSE calculations
differ by sets of the results of diagonalization of the
Hamiltonian matrix that are used in these calcu-
lations. By way of example, we indicate that we
use in the N = (2−3) version the eigenenergies E0

from the shaded region in Fig. 3 that correspond to
the calculations for N = 2 and 3; the eigenenergies
from the shaded region in the N = (2−4) version
correspond to the calculations for N = 2, 3, and 4;
and so on. In the N = (2−10) version, we use all
eigenenergies E0 from the shaded region in Fig. 3.

The table demonstrates that the resonance ener-
gies and widths converge rather fast to precise values
as the set of energies E0 is extended. It is important
to note, however, that, even in the minimal version of
those considered in our present study [N = (2−3)],

where the input data are beyond the resonance region,
we obtain reasonable estimates for resonance param-
eters, and this is of particular importance for multi-
particle applications within the shell model, where the
computational burden increases rapidly with the basis
size.

A smooth energy dependence of phase shifts at the
fitted values of the parameters w1, w2, Er, and Γ can
be calculated by the formula

k2l+1 cot δl = Qr (31)

+
R(2)

l (E − Er)
[
(E − Er)

2 + (Γ/2)2
]
+ 1

2QiΓ

E −Er
,

which, upon taking into account Eq. (24), follows
from Eq. (21). The result given by this formula
differs from the precise dependence δl(E) only in
the case of employing the parameters of the min-
imal version [N = (2−3)], this being due primarily
to an overestimated (underestimated) energy of the
3/2− (1/2−) resonance as compared to the respec-
tive precise values. On the scales of Figs. 4 and 5,
the results obtained within other versions are virtu-
ally undistinguishable from precise phase-shift val-
ues. That the phase shifts are accurately reproduced
within the SS-HORSE approach is demonstrated
also by good agreement of the scattering lengths and
effective ranges calculated on the basis of Eqs. (25)
and (26) with their precise counterparts (see table).
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Energies Er and widths Γ of the 3/2− and 1/2− resonances, along with the scattering lengths al in the model problem of
neutron scattering by alpha particle (given for various versions of the SS HORSE calculation are the parameters of the
R(2)

l parametrization and the root-mean-square deviations Ξ obtained by the fit)

Er, MeV Γ, MeV al, fm3 rl, fm−1 w1, fm−3 MeV−1 w2, fm−3 MeV−2 Ξ, keV

3/2− resonance

N = (2−3) 1.016 0.861 −41.6 −1.031 6.815× 10−4 −2.128× 10−5 121

N = (2−4) 0.888 0.787 −53.6 −0.881 4.628× 10−4 −1.067× 10−5 268

N = (2−5) 0.882 0.785 −54.4 −0.871 4.485× 10−4 −9.783× 10−6 232

N = (2−10) 0.848 0.777 −59.6 −0.806 3.501× 10−4 −2.782× 10−6 181

Precise value 0.837 0.780 −61.7 −0.777

1/2− resonance

N = (2−3) 1.371 5.384 −20.0 −0.126 3.562× 10−3 4.878× 10−5 174

N = (2−4) 1.752 5.533 −15.5 −0.362 4.711× 10−3 1.821× 10−5 155

N = (2−5) 1.718 5.559 −15.8 −0.330 4.566× 10−3 2.446× 10−5 157

N = (2−10) 1.688 5.556 −16.1 −0.309 4.459× 10−3 2.810× 10−5 90

Precise value 1.66 5.58 −16.3 −0.273

5. CONCLUSIONS

In the present study, we have proposed a new ap-
proach to analyzing resonance states. This approach
relies on the SS-HORSE method, which permits
calculating phase shift by using the eigenenergy value
alone. The parametrization constructed above for the
phase shifts in the low-energy region based on ana-
lytic properties of partial-wave scattering amplitudes,
makes it possible to describe correctly the behavior of
these phase shifts not only in the resonance region but
also for E → 0.

Testing this method by applying it to the model
problem of neutral-particle scattering, we have shown
that, as the size of the truncated-Hamiltonian matrix
corresponding to the internal region of the HORSE
model space grows, the method provides a rapid con-
vergence to precise results. The resonance energies
and widths calculated for the above model problem
agree with their precise counterparts.

The fact that the phase shifts in the low-energy
region and the resonance parameters can be obtained
by exclusively employing the results deduced from an
analysis of the dependence of the energy of a contin-
uum state on the harmonic-oscillator-basis param-
eters �Ω and N , is obviously an advantage of the
proposed method. The method can widely be used to
study resonances and nuclear reactions in the region
of low energies on the basis of microscopic calcu-
lations within the no-core shell model and within
other models and approaches that involve harmonic-
oscillator basis functions.

The method can be extended to the case of
charged-particle scattering. An extension of the
SS-HORSE method to the case of Coulomb scat-
tering will be the subject of our next publication.
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