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A B S T R A C T

A simple model of cardiac muscle was designed for multiscale simulation of heart mechanics. Relaxed cardiac
muscle was described as a transversally isotropic hyperelastic material. Active tension caused by actin-myosin
crossbridges depends on the ensemble averaged strain of myosin heads bound to actin. Calcium activation was
modeled by Ca2+ binding to troponin-C. To account for the dependence of troponin affinity for Ca2+ on myosin
heads strongly bound to actin, the kinetics of troponin binding to Ca2+ in the overlap zone of the thin and thick
filaments and outside it were separated. The changes in the length of these zones during muscle shortening or
lengthening were accounted for explicitly. Simplified version of the model contains only 5 ordinary differential
equations (ODE). Model parameters were estimated from a limited set of experiments with skeletal and cardiac
muscle. Simulations have shown that model reproduces qualitatively a number of experimental observations:
steady-state force-velocity and stiffness-velocity relations; mechanical responses to step changes in muscle
length or load; steep Ca2+-tension relationship and its dependence on sarcomere length tension (the Frank-
Starling mechanism); tension, shortening and Ca2+-transients in twitch isometric and isotonic contractions,
tension development and redevelopment upon fast change in Ca2+ concentration or muscle release followed by
re-stretch. We believe that the model can be effectively used for modeling contraction and relaxation of the
heart.

1. Introduction

Simulation of the pumping function of the heart requires a model
that describes mechanical properties of cardiac muscle during passive
stretch, contraction and relaxation. Such model should incorporate
macroscopic constitutive stress-strain relationship and its dependence
on molecular events including actin-myosin interaction and its regula-
tion by Ca2+ ions via troponin (Tn) and tropomyosin (Tpm). The model
should reproduce all main properties of cardiac muscle observed in
experiments with single cells or small tissue samples. On the other
hand, the model should be simple computationally to enable simula-
tion of 3D contraction of the left ventricle or all heart chambers. This
means that the material model should be described by a system of
ODE, not by partial differential equations like it was done in the first
kinetic model of muscle contraction (Huxley, 1957) and its modern
versions such as (Smith et al., 2008). The ODE system should not be
‘stiff’ to allow one to use rather large time steps of a solver. A number of
models of myocardial mechanics and regulation have been suggested in
last twenty five years (Izakov et al., 1991; Hunter et al., 1998;

Razumova et al., 1999, 2000) including several recent and most
advanced ones (Niederer et al., 2006; Rice et al., 2008; Markhasin
et al., 2003; see also review by Trayanova and Rice, 2011). These
models describe actin-myosin crossbridges and Ca2+ regulation (in
some cases together with cardiac electrophysiology) by a system of
ODEs. However there is no ‘standard’model, which completely satisfies
all criteria listed above. Some models contain too many differential
equations or ODE system is too stiff and requires too small time steps
for computer integration to be effectively used in 3D simulations; the
others do not reproduce some basic important features of contraction,
relaxation or regulation.

Here we present a simple model that was designed to fill the gap
between the ‘overcomplicated’ and ‘oversimplified’ models of cardiac
muscle. It was designed to reproduce the following set of experimental
data.

1. Steady-state force-velocity and stiffness-velocity relationships at full
and incomplete activation during shortening (Hill, 1938; Julian
Morgan, 1981; Ford et al., 1985) and lengthening (Lombardi and
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Piazzesi, 1990) of skeletal or cardiac (Chiu et al., 1987) muscles.
2. Mechanical transients induced by step changes in length or load at

full and partial activation of skeletal (Civan and Podolsky, 1966;
Ford et al., 1977, 1985, 1986; Piazzesi et al., 1992, 2002) or cardiac
(Chiu et al., 1982; Colomo et al., 1994) muscles.

3. Tension responses to ramp stretches of different velocity (Lombardi
and Piazzesi, 1990).

4. Frequency dependencies of the elastic and viscous moduli observed
in tension response to small-amplitude oscillations of muscle length
(Kawai et al., 1981; Saeki et al., 1991).

5. Steep Ca-force relationship even in the absence of myosin heads and
it modulation by actin-bound myosin heads (Sun et al., 2009; Sun
and Irving, 2010).

6. Increase in Tn affinity for Ca2+ Tn upon binding of myosin heads to
actin (Martyn and Gordon, 2001).

7. Length-dependent activation, i.e., the dependence of the Ca-force
relation on sarcomere length (Dobesh et al., 2002; de Tombe et al.,
2010).

8. Tension responses of single cardiac myofibrils to the fast increase in
Ca2+ concentration and tension redevelopment after mechanical
perturbation (Piroddi et al., 2007).

9. Load-dependent relaxation, i.e., acceleration of relaxation of cardiac
muscle after shortening during isotonic contraction (Parikh et al.,
1993).

On the other hand, we tried to reduce the number of ODE and the
number of the model parameters paying particular attention to
computational simplicity of the model. The latter means that we tried
to eliminate “fast variables” which lead to “stiffening” of an ODE
system. An earlier version of the model (Syomin and Tsaturyan, 2012;
Syomin, 2014) was essentially modified and simplified here.

As the experiments listed above were performed on different
muscles from different species we did not try to fit them all quantita-
tively with a single set of parameter. Instead we tried to use
dimensionless variables and parameters to facilitate model tuning for
a particular type of muscle from particular specie. When possible we
tried to reproduce the characteristics of cardiac muscle from human
ventricle. Currently our model is rather qualitative or semi-quantitative
than quantitative. We, however, believe its parameters can be adjusted
to describe properties of ventricular tissue from particular species.

2. Material and methods: model description

All model variables and parameter values are listed in Table 1.

2.1. Constitutive equation

We consider cardiac muscle as an anisotropic incompressible
continuous medium. Passive stress is assumed to be hyperelastic, while
active stress is postulated to be quasi-one-dimensional, as it was
suggested and experimentally verified for skeletal muscle (Bershitsky
and Tsaturyan, 1981). The Cauchy stress tensor T̂ is described by the
expression:
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where Φ is the isotropic strain energy density which depends on the
first two invariants of the left Cauchy–Green deformation strain tensor
F̂ , I1, I2. The third invariant of F̂ , I ≡13 due to incompressibility; Ê is the
unit tensor, p is the Lagrange factor caused by incompressibility, Ttit is
a scalar that describes the anisotropic passive tension of intra-
sarcomere cytoskeleton mainly caused by titin filaments; TA is active
tension produced by the actin-myosin interaction. B l lˆ = ⃗⨂ ⃗ is the

anisotropy tensor is equal to the tensor square of the unit vector l ⃗
aligned with the direction of muscle fibres in deformed muscle. The

Table 1
Model variables and parameters.

Variable or
parameter

Meaning Value

T̂ Cauchy stress tensor

F̂ , Ĝ Finger and right Cauchy-Green strain tensors

Φ Density of isotropic elastic energy
I1, I2, I3 Invariants of F̂
Ê Unit tensor

B̂ Tensor of transversal anisotropy

l ⃗, l
⎯→
0 Unit vector aligned with muscle fibres (l

⎯→
0 is l ⃗ in

undeformed state)
Ttit Titin tension

TA, TA
0 Active tension and its value at full activation and

full filament overlap
a0, kN/m2 Constant parameter 0.55
a1 Constant parameter 3
ls, μm Sarcomere length
ls0, μm Reference sarcomere length 1.9
E, pN/nm Crossbridge stiffness 2.5
e, nm Effective compliance of actin and myosin

filaments
2

N , 10M
14/m2 Number of myosin filaments per unit cross-section

area
2.5

Nxb The number of myosin heads per a half of a thick
filament

150

kB, 10
–23 J/K Boltzmann constant 1.38

T, K Absolute temperature 310
P, nm Persistence length of titin molecule 0.5
L, nm Contour length of titin in sarcomere 800
n, n1, n2 Fractions of myosin heads attached to actin (total,

and in states 1 and 2, respectively)
A1, A2 Fractions of troponin complexes in the C- and O-

states filament overlap zone and outside it,
respectively

f+, f−, g, H+, H− Rates of transitions between crossbridge states
0→1, 1→0, 2→0, 1→2 and 2→1, respectively

δ, δ1, δ2, nm Ensemble averaged crossbridge distortion (total
and in states 1 and 2, respectively)

h, nm Axial displacement of a crossbridge during
transition from state 1 to state 2 at zero load

10

W(ls), nm Length of overlap zone as function of sarcomere
length

δ δ h′ = / Dimensionless δ

f f= (0)+
0

+ , s−1 75

ε f H= /+
0

−
Ration of rate constants 0.05

F(δ), G(δ) Dimensionless rates of crossbridge binding and
unbinding

γ Constant parameter 4
θ n n= /2 Fraction of force generating crossbridges

δ* Upper limit for δ during stretch 0.4

b Constant parameter 1.5
c Constant parameter 8.5
α+, s

−1 Rate constant of Ca2+ binding to Tn 35

ks Constant parameter 2
kn Constant parameter 8
C0, μM Ca2+ concentration half-saturating Tn at ls0 in the

absence of myosin heads
2

CTn, μM Total concentration of Tn 70
B Normalized concentration of Ca2+ buffer in

cytoplasm (different from Tn)
50

KB Normalized equilibrium constant of cytoplasm
Ca2+ buffer

0.5

λ, s−1 Rate constant of Ca2+ uptake into sarcoplasmic
reticulum

500

m Hill parameter 3
Ki Normalized inhibitory constant of Ca2+ uptake to

SR
2

a(ls, nθ) Dimensionless rate of Ca2+ release from Tn
k1, s

−1 Rate constant of accelerated Ca2+ release 15
k2, s

−1 Rate constant of deceleration of Ca2+ release 200
Q*, s−1* Maximal rate of Ca2+ release from SR 700
c* Normalized Ca2+ concentration at rest 0.05

la, μm Length of an actin filament 1.1
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isotropic elastic potential Φ was taken in the form similar to that of
(Guccione et al., 1991):

Φ a exp a I I I= ( (( −3) −2( −2 +3))),0 1 1
2

2 1 (2)

where a0, a1 are constant parameters.
Sarcomere length ls can be determined as follows (Lurie, 1990):

l l l Gl=
⎯→ ˆ⎯→

,s s0 0 0 (3)

where ls0 is the reference sarcomere length, i.e., sarcomere length in
unloaded passive myocardium, and Ĝ is the right Cauchy-Green

deformation tensor, l
⎯→

0 is unit vector aligned with fibres in unstrained
muscle.

During stretch, Ttit is mainly determined by titin filaments while
upon compression it is governed by the resistance of the thick filaments
and other structures as follows:
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where NM is the number of the myosin filaments per unit cross-section
area of muscle in its initial reference state; expression in brackets in the
upper formula was suggested by Marko and Siggia (1995) for approx-
imation of the force caused by stretch of a worm like chain; L is the
total, or ‘contour’, length of titin; P is so called persistence length, kB
and T are the Boltzmann constant and absolute temperature. Factor 6
arises from the fact that there are six titin molecules which connect
each half of a myosin filament to a Z-disk (Liversage et al., 2001). At
sarcomere length below ls0 passive sarcomeric tension is assumed to be
Hookean. Our model of passive mechanics of cardiac muscle has four
parameters as widely accepted model of Guccione et al. does (Guccione
et al., 1991). It, however, is simpler because muscle anisotropy in our
model is essentially one-dimensional and fully attributed to titin
filaments which are aligned with muscle fibres. Mechanical properties
of titin are well described by a worm-like chain model on a single
molecular level (Leake et al., 2004).

2.2. Crossbridge kinetics

We used a kinetic scheme of the actin-myosin interaction based on
the Lymn-Taylor cycle (1971) similar to that of Razumova et al. (1999).
Just after binding to actin, a myosin head is in a pre-force-generating
state 1 and then it can either detach or undergo a transition to force-
generating state 2. The transition is associated with a tilt of myosin
head that is equivalent to displacement (filament sliding) of a distance
h. Following H.E. Huxley and A.F. Huxley we use term ‘crossbridges’
for actin-bound myosin heads. Active tension is given by an expression:

T EN N W l δ n n h δ= ( )( + ( + )),A M xb s 1 1 2 2

where Nxb is the total number of myosin heads per a half of a myosin
filament; W(ls) is the length of the overlap zone of the thick and thin
filaments in a half-sarcomere normalized by its maximal value; E is
constant crossbridge stiffness, n1 and n2 are the probabilities of being
in the states 1 and 2 respectively for a myosin head in the filament
overlap zone of a sarcomere. The probability for a head to be in
detached state is 1 - n1 - n2. Here δ1 and δ2 are the ensemble average
distortions of the crossbridges in states 1 and 2, respectively. These
values are similar to values x1 and x2 used in model of Razumova et al.
(1999) with the only difference that x2 in their model corresponds to
δ h+2 in our model. The kinetic equations for n1, n2 are as follows:

n
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n
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Here f f H H g, , , ,+ − + − are the rate constants. A1 the degree of the
muscle activation, i.e., the availability of actin site for myosin heads. Its
meaning is specified below. We used the main idea of Thorson and
White (1983), i.e., an assumption that all five rates f f h h g, , , ,+ − + −
depend only on the average strains, or the ensemble averaged, cross-
bridge distortions, δ1 and δ2.

The equations which describe the kinetics of the total average strain
of all crossbridges in states 1 and 2 can be written as:
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Here e is a parameter (assumed to be constant) that characterizes
the compliance of the thick and thin filaments in a sarcomere and TA

0 is
TA during steady-state isometric contraction at full activation, i.e., at
A =11 . In contrast to the model of Razumova et al. (1999) where H H,+ −
were small compared to f f g, ,+ − we use the idea of Huxley and
Simmons (1971) that was confirmed by time-resolved x-ray diffraction
data (Lombardi et al., 1995) that the force-generation transition and its
reversal are much faster than crossbridge detachment and attachment,
i.e., H H f f g, ≫ , ,+ − + − . The Eq. (5) are the same as those in the model of
Razumova et al. (1999), while in Eq. (6) they omitted the terms which
describe the change in the crossbridge distortion due to the transitions
between states 1 and 2.

Using Eq. (5), one can rewrite Eq. (6) as follows
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The difference between δ1 and δ2 obeys an equation:
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Therefore, if H H f f g, ≫ , ,+ − + − and n1 is not very small, one can
neglect the difference between δ1 and δ2 to use the approximation
δ δ δ= =1 2 as this was done in our earlier paper (Syomin and Tsaturyan,
2012). In this case the crossbridge kinetics is described by two Eq. (5)
and equation for δ in the form:

δ
t

l
t

e
T

T
t

A n
n

f δ∂
∂

= 1
2

∂
∂

−
∂
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−
( − )

,s

A

A
0

1
+

(7)

where n n n= + .1 2
We have shown previously that a model of this kind is able to

describe many principal steady and non-steady experiments with
skeletal muscle fibres at full activation and full overlap between the
thin and thick filaments. In particular, that model explained nonlinear
partial tension recovery after step length changes applied during
isometric contraction (Ford et al., 1977), during steady shortening
(Ford et al., 1985) or lengthening (Piazzesi et al., 1992) as well as
length responses to step change in load (Piazzesi et al., 2002).

Further simplification of the model that, importantly, leads to a
decrease in “stiffness” of the ODE system can be achieved if one
excludes from consideration very fast processes which take place
during the first two milliseconds after a length or force step change.
Following (Huxley and Simmons, 1971) and our earlier work (Syomin
and Tsaturyan, 2012) we assume that H const=− . We introduce dimen-
sionless distortion δ δ h′ = / and additionally assume that at δ′<0,
f δ f const( ) = =+ +

0 (Syomin and Tsaturyan, 2012). Using these constants

we introduce dimensionless time t f t′ = +
0 . Then the dimensionless rate

constants can be written in the form: H f ε= / ,− +
0 where ε ≪ 1.
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Following (Huxley and Simmons, 1971) we set H = f γδ
ε+

exp (− )+
0

, where α
is a constant. We then change for dimensionless variables and omit
prime in time and distortion every time when this cannot cause any
ambiguities. We introduce new variable θ n n= /2 and rewrite (5) and (7)
in the form

δ
t h
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0 , F δ( ) = f δ
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0 , G δ( ) = g δ
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0 and θ δ( ) = γδ

γδ0
exp (− )

1 + exp (− ) .

After omitting the last term in the last equation of (8) and applying
to this equation the method of the inner and outer expansions, we
obtained an equation for θ t( ) that is correct within the accuracy up to
the terms of the first order of ε:

⎛
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⎞
⎠⎟θ t θ t θ δ

t t
ε γδ

( ) = ( ( ) − ( )) exp −
−

(1 + exp (− ))
.0 0

0

The method the inner and outer expansions is based on the
separation of two time scales: the ‘fast’ dimensionless time t/ε and the
slow dimensionless time t. If ε≪1, one can ‘freeze’ the slow time t and
solve the equation for the θ as function of the fast time only. A useful
notation for the total dimensionless crossbridge detachment rate is:

δ G θ δ F θ δG( ) = ( ) + (1− ( )).− 0 − 0

We therefore can rewrite (8) in a simplified form as
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that is particularly useful for computational purposes as one can use a
relatively large time step of order of f1/ +

0 for first two equations while
the fast components of changes in variables can be calculated using an
approximate formula. For relatively slow processes lasting more than
2–3 ms one can assume that θ t θ δ( ) = ( )0 and omit the term that
contains filament compliance e in the 1st equation in Eq. (8′)

Functions F and G were set as follows:
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δ δ
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2
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2

2 (10)

where b, c, d, ε and δ* are model parameters specified in Table 1.

In Fig. 1 all normalized rate constants introduced above are
shown as functions of the dimensionless distortion δ. To describe
the mechanical properties of an activated muscle subjected to
stretch, we assumed the rate of crossbridge binding to actin F to
be an the increasing function of δ at positive δ. It was shown
(Brunello et al., 2007) that stretch promotes binding of the second
(partner) head of a myosin molecule to actin. As the two heads are
connected with a common coiled-coil sub-fragment 2 of myosin,
stretch of a head bound to actin probably brings its partner head to
the position where it readily and quickly binds neighbour actin site
of the same thin filament. A structural study (Ferenczi et al., 2014)
have shown that during ramp stretch the vast majority of myosin
heads is bound to actin in a non-stereospecific manner and they
detach and reattach quickly like a pair of legs when muscle is
subjected to lengthening. To simulate the fast binding of the second
head and to describe the force-velocity curve during muscle
elongation without explicit complicated consideration of two-
headed crossbridges, we simply set the attachment and detachment
rates to be increasing functions of the average crossbridge strain δ
at positive δ.

2.3. Calcium activation

Contraction of striated muscle is regulated by Ca2+ ions which
bind troponin-C (Tn) and enable myosin binding to actin.
According to the 3-state model (McKillop and Geeves, 1993) in
the absence of Ca2+ Tn binds actin and holds tropomyosin (Tpm) in
the blocked state, or B-state, where it covers actin from myosin
binding. Ca2+ binding to Tn releases Tpm which shifts to closed, or
C-state, where myosin heads can bind actin. Transition of the actin-
myosin bond from the weak and non-stereo-specific mode to the
strong stereo-specific one shifts the Tpm strands further to the
open, or O-state, where neighbour actin sites are available for
myosin binding. Initial Ca2+ binding to Tn was shown to be very
fast ( > 1000 s−1) and probably quickly reversible while the B- to C-
state transition has the rate constant of ~100 s−1 (Fusi et al., 2014).
To characterise the fraction of actin sites available for myosin
binding, i.e., those in the C- or O-states in the filament overlap zone
of sarcomere where myosin heads can bind actin and outside this
zone, we use separate variables, A1 and A2, respectively. In the
overlap zone strong stereo-specific binding of myosin heads to actin
increases the Tn affinity for Ca2+ and keeps Tmp in the O-state.
Recent data of Fusi et al. (2014), who have shown that Ca2+ binding
to Tn itself is very fast, justify a more simple one-step kinetics of
muscle activation by Ca2+ ions, as it was suggested by Izakov et al.
(1991) and was further developed by Markhasin et al. (2003),
compared to the two-step kinetic scheme used by Razumova et al.
(2000), Niederer et al. (2006), Rice et al. (2008): Ca2+ binding to
Tn followed by a Tpm transition from the B- to C-state. Indeed as
Ca2+ binding itself is fast, one can assume it to be infinitely fast and
to reduce the number of ODEs in the model.

In cardiac muscle Tn-C has only one binding site for Ca2+. However
there is high cooperativity in Ca2+ binding to Tn: even when strong
binding of myosin heads to actin was blocked by blebbistatin the
cooperativity Hill parameter for Ca2+ binding to Tn-C was ~3 (Sun
et al., 2009; Sun and Irving, 2010). The reason for the cooperativity is
probably the mechanical stiffness of Tpm and helical shape of the Tpm
strand that results in long-range interaction of Ca2+ binding-unbinding
to neighbour Tn molecules (Metalnikova, Tsaturyan, 2013). There is
another type of cooperativity between Ca2+ binding to Tn-C and myosin
binding to actin as well as the dependencies of both these processes on
sarcomere length (Gordon et al., 2000). The last type of cooperativity
called ‘length depended activation’ is the structural basis of the
‘Starling law of the heart’ (de Tombe et al., 2010).

The kinetic equations for A1 and A2 were then written in the form:
Fig. 1. The normalized rates of the crossbridge transitions between different crossbridge
states vs. dimensionless ensemble-averaged crossbridge distortion, δ.
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Here c C C= / 0 is normalized concentration of Ca2+ in muscle cell,
where C is its concentration in μM and C0 is characteristic value of C
that corresponds to half-maximal Tn saturation at ls = ls0 in the
absence of myosin heads; m is a constant that corresponds to the Hill
parameter of the standard Hill approximation of the force-calcium
relationship and accounts for the neighbour Tn interaction via elastic
Tpm (Metalnikova, Tsaturyan, 2013), and α+ is a characteristic rate
constant of the Tpm transition to the C- and O-states upon Ca2+

binding to Tn; a depends on sarcomere length ls to account for the
length-dependent activation and on the fraction n nθ=2 of myosin heads
which are strongly bound to actin in the overlap zone of sarcomere. The
two first terms in the right hand side of Eq. (9) describe the forward
and reverse transitions between the B- and C- and O-states, respec-
tively. The last ‘convective’ terms in Eq. (9) proportional to W l

t
∂ ( )

∂
a s occur

due to exchange between the overlap and non-overlap zone of a
sarcomere upon its shortening or lengthening when Tn sites from the
non-overlap zone move to the overlap zone or vice versa. The non-
linear kinetics used in Eq. (9) allows one to describe the cooperativity
of the first type (the dependence of the Tpm transition from the B- to C-
state and backwards on the state of neighbour Tmp molecules).

After identity transformations of the left and right sides of Eq. (9)
we obtained the equations:
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We used a in the form:

a l nθ
k l l l k nθ
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,s
s s s s n0 0

where ks and kn are constants. The first constant accounts for the
length dependence of activation of cardiac muscle, while the second
one describes the cooperativity of the second type (the dependence of
activation on the fraction of strongly bound crossbridges).

It was found that apart from Tn there are some other Ca2+ buffers in
the ventricular myocytes of mammals (Berlin et al., 1994). The buffers are
fast, they have the total Ca2+ capacity of B ≈100 μM and an effective
equilibrium constant KB ≈1 μM. Assuming that calcium binding to the
buffer is fast, we used the simplest calcium balance equations in the form:
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where

Q t Q k t k t( ) = *(exp(− ) − exp(− ))1 2

is the rate of Ca2+ inflow from sarcoplasmic reticulum and extracellular
space; k k Q c, , *, *1 2 are constants; λ is the rate constant of Ca2+ uptake
into sarcoplasmic reticulum and outside the cell; Ki is an equilibrium
constant, CTn is the total molar concentration of Tn; c* is the normalized
Ca2+ concentration in relaxed muscle, and la is the length of an actin
filaments. The model consists of Eqs. (8) or (8′) depending on the
presence of fast perturbation in length or load, (9′) and (10), i.e. of 5 or 6
ODEs (see Appendix). These ODE system was solved numerically using a
multistep Adams–Moulton method.

3. Results

3.1. Steady-state contraction at full activation and full filament
overlap

The most reliable experiments of this type have been mainly
performed with single intact muscle fibres of the frog under control of
sarcomere length, although some data obtained from cardiac muscles
were also reported. We compared the results of model simulation with
experiments with intact fast muscle fibres using dimensionless normalized
variables for further extension to other types of muscles including slow
skeletal and cardiac ones. As in skeletal muscle passive tension is
negligible compared to maximal active tension at full activation and full
filament overlap, only active tension TA is presented in figures below.

The steady-state force-velocity and stiffness-velocity relations for
the model are shown in Fig. 2 together with the dependence of the
fractions of actin-bound and force-generating myosin heads on the
velocity of shortening or stretching.

The model force-velocity relation during steady shortening is very

Fig. 2. a: continuous lines are simulated force-velocity and stiffness-velocity relationships. Stiffness S and active tension TA normalized for their isometric values S0 and TA° are plotted
against normalized velocity of shortening ( < 0) or stretch ( > 0). Maximal dimensionless shortening velocity expressed in hf+

0 units is 9.3 that correspond to 2.3 µm/s and 7.0 µm/s, for

f+
0 equal 25 s−1 and 75 s−1, respectively. Dotted line is the Hill force-velocity relation with parameter a =0.26. b: simulated dependencies of the fractions of actin-bound, n, and force-

generating, n2, myosin heads on the dimensionless velocity.
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close to that described by the Hill hyperbolic relation. Apparent half-
sarcomere stiffness decreases with shortening velocity as was described
by (Julian and Morgan, 1981; Ford et al., 1985). During stretch, active
tension and instantaneous stiffness quickly increase and saturate at the
levels above their isometric level (Fig. 2) as was found by Lombardi and
Piazzesi (1990). The apparent instantaneous stiffness tightly correlates
with the fraction of actin-bound heads. When muscle is stretched with
a reasonably high velocity, a vast majority of the heads becomes bound
to actin although very few of them are bound strongly and can generate
force (Fig. 2). This model features also agree with experimental data
showing that during ramp stretch a majority of the heads are bound to
actin in a non-stereo-specific manner (Ferenczi et al., 2014) and do not
consume much ATP (Bickham et al., 2011).

3.2. Mechanical transients caused by step changes in length or load

Simulated responses to fast changes in fibre length and load at full
activation and full filament overlap are shown in Figs. 3 and 4. The results
of simulation of the Huxley-Simmons transients (Huxley and Simmon,
1971; Ford et al., 1977) closely resemble experimental data (Fig. 3).

As was found experimentally (Ford et al., 1977) instantaneous
muscle stiffness is Hookean while the fast partial tension recovery
immediately after the step is nonlinear in its amplitude (Fig. 3b) and
rate (Fig. 3c). After small amplitude shortening tension quickly re-
covers to a near isometric level, while for larger steps fast tension
recovery in incomplete (Fig. 3b). The larger the shortening step the
faster the partial tension recovery in phase 2 (Fig. 3c).

Another type of unsteady experiments with contracting muscle is
monitoring of length changes induced by load step changes (Civan and

Podolsky, 1966; Piazzesi et al., 2002). The results of simulation of this
type of experiments are shown in Fig. 4.

The length changes following a step change in load have several
phases: instantaneous drop during the load step itself, fast shortening
at a constant load that corresponds to phase 2 of the Huxley-Simmons
transients, slowing of the shortening or a plateau followed by steady
state shortening at a constant velocity that corresponds to a point on
the force-velocity diagram (Fig. 4). All these features as well as the fact
that after large load changes the steady shortening begins earlier than
after small ones are observed experimentally (Piazzesi et al., 2002).

3.3. Tension response to ramp stretches

The results of simulation of this type of experiments by the model
are shown in Fig. 5.

As found by Lombardi and Piazzesi (1990) tension settling during
stretch depends on velocity. For slow stretch tension achieves a steady
level slowly and monotonically; at faster stretch there is an overshoot.
The faster the stretch the faster tension achieves its steady-state level.
All these features are reproduced by the model (Fig. 5).

3.4. Tension response to small-amplitude oscillations in fibre length

The results of model simulation of such experiments are shown in
Fig. 6.

Our model reproduces the presence of a range of oscillation
frequencies for which the imaginary part of stiffness is negative, or,
in other words, muscle viscosity is apparently negative. This means that
in this frequency range muscle produces positive work during a stretch-
release cycle, in contrast to passive materials not producing active
tension. This phenomenon was found for skeletal (Kawai et al., 1981)
and cardiac (Saeki et al., 1991) muscles. For f+

0=25 s−1 maximal work
is produced at frequency of 16 Hz.

Fig. 3. Model simulations of tension responses to length step changes. a: bottom panel shows tension transients induced by step changes of different amplitudes shown in the upper
panel, dimensionless time is expressed in f(1/ )+

0 units; b: tension immediately after the length step, TA1, and at the end of the fast partial tension recovery (Huxley-Simmons phase 2),

TA2, normalized by isometric tension TA° plotted against the length step size per a half-sarcomere, Δls, normalized by the working stroke of the crossbridge, h; c: the apparent rate of the
phase 2; c: kapp, vs. Δls/h in reciprocal time units f+

0.

Fig. 4. The result of model simulation of length changes induced by load steps in muscle
fibres. Upper tracers: changes in normalized tension; lower traces: changes in sarcomere
length normalized by step size, h, vs. dimensionless (normalized) time in f(1/ )+

0 units.

Fig. 5. Tension responses to ramp muscle stretch obtained from the model. Upper
traces: changes in fibre length in %; lower traces: tension responses normalized by
isometric tension. Time is expressed in f(1/ )+

0 units.
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3.5. Ca-tension diagrams at different sarcomere length

Steady state force-calcium curves at different constant sarcomere
length characterize so called length dependent activation that is basis of
the Starling law of the heart (de Tombe et al., 2010). Normalized
tension calculated for our model at different constant sarcomere length
is shown in Fig. 7.

Model calculations reproduce well experimental data (Dobesh et al.,
2002). The A1 dependence on calcium concentration in the absence of
myosin heads is shifted to the right showing that actin-bound myosin
heads increase Ca2+ sensitivity by 0.15 pCa units as it was found
experimentally (Sun, Irving, 2010). The model describes a decrease in
steepness of the diagram at higher force compared to the Hill equation
found experimentally (Dobesh et al. (2002)). The model also repro-
duces a decrease in the Ca2+ concentration required for half-maximal
activation by ~0.3 pCa units (Sun, Irving, 2010) caused by an inhibitor
of strong actin-myosin binding, blebbistatin. However the decrease in
steepness of the force-calcium diagram in the absence of myosin heads
obtained with our model calculations (Fig. 7b) is somewhat more
significant than observed experimentally.

3.6. Tension responses to Ca2+ jumps and force redevelopment

We also simulated the results of the experiments of Pirrodi et al.
(2007) who studied properties of single myofibrils from human atrial
and ventricural myocardium. To characterize the kinetics of Ca2+

activation and crossbridge attachment they have studied tension
development upon fast increase in Ca2+ concentration and force
redevelopment upon mechanical perturbation at different constant
levels of Ca2+. The results of simulation of their experimental protocol
are shown in Fig. 8. At time zero, normalized Ca2+ concentration was
increased quickly from a diastolic level to different constant values.
When steady-state tension was achieved, the model myofibril was
released by 10% of its length and then re-stretched to its initial length
20 ms later. The apparent rate constant of tension re-development ktr
was close to that of tension development upon Ca2+ activation, kACT, at
all Ca2+ concentrations tested, and both rates increased with the
increase in calcium concentrations and steady-state tension (Fig. 8)
as it was found experimentally (Piroddi et al., 2007). At high Ca2+

concentration the rate constants were ~16 s−1, i.e. about 15 times those
measured by Piroddi et al. (2007) in myofibrils from human left
ventricle at 15 °C. Taking into account that temperature coefficient
Q10 for ktr in cardiac muscle is ~3.5 (de Tombe and Stienen, 2007) our
simulation provides reasonable values for both rate constants for
human cardiac muscle at physiological temperature 37 °C.

3.7. Twitch contractions at different sarcomere length

The results of simulation of isometric twitch contractions at
different constant sarcomere length by our model are shown in Fig. 9.

As was observed experimentally by ter Keurs (2012), an increase in
sarcomere length led to a significant increase in the amplitude and

Fig. 6. Results of simulation of tension responses to small-amplitude oscillations of fibre length. a: Nyquist plot of imaginary and real parts of apparent fibre stiffness; b: the dependence
of the amplitude and imaginary parts of stiffness on dimensionless oscillation angular frequency ω expressed in f+

0 units.

Fig. 7. Simulated calcium-force diagram: isometric tension vs. logarithm of normalized Ca2+ concentration (pCa) at different sarcomere length (shown next to the curves). a: active
tension normalized by its maximal value at ls =2.25 µm; b: the same curves normalized by maximal tension at C =10×C0. Normalized activation A1 (fraction of activated Tn-Tpm
complexes in the overlap zone) at sarcomere length 1.85 and 2.25 µm in the absence of myosin heads (n =0) are shown by dashed lines. Dotted line is the fit of the normalized Ca-force
diagram at ls =2.25 µm with the Hill equation (cooperativity coefficient n =4.9, c50 =0.357).
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duration of isometric twitches in the model and also induced a
deceleration of the early stages and a slowing down of the late stages
of Ca2+ relaxation (Kentish and Wrzosek, 1998; ter Keurs, 2012). The
difference between calculated degrees of Ca2+ saturation of Tn sites
within overlap zone and outside it, A1 and A2, was quite significant
(Fig. 9). This justifies the use of two different variables for these values
in our model. Peak of calcium concentration was achieved earlier than
that of tension while the decay of Ca2+ concentration was somewhat
slower than tension relaxation, as it was observed by Kentish and
Wrzosek (1998), ter Keurs (2012) and other authors and as it was
obtained in model of Land and Niederer (2015) using a much more
complicated and sophisticated model. The normalized peak Ca2+

concentration was higher than its diastolic level by a factor of 10 as
was observed in cardiac muscle from different species (Land and
Niederer, 2015).

3.8. Load-dependent relaxation in twitch contractions

The results of simulation of isotonic contractions in different types
of contraction are shown in Fig. 10. In the first type of experiment,
muscle contract isometrically until tension achieves certain pre-set load
level. Then it shortens and relaxes under constant load until sarcomere
length returns to its isometric level. Final relaxation is again isometric
(Fig. 9a). For the second type, the switch from isotonic to isometric
contraction occurs when muscle shortening stops. Then muscle relaxes

under isometric conditions (Fig. 9b).
The model reproduces load dependent relaxation of cardiac muscle:

the lower the load the shorter is isotonic contraction and the faster is
subsequent isometric relaxation. Similar behaviour was observed
experimentally in rat myocardium from the left (Capasso et al., 1989;
Izakov et al., 1991), but neither from the right ventricle (Capasso et al.,
1989) nor isolated frog myocytes (Parikh et al., 1993).

4. Discussion

4.1. Comparison with previous models

The idea of using ensemble averaged crossbridge strain, δ, instead
of individual strain of each particular crossbridge, as it was initially
suggested by Huxley (1957), goes back to work of Thorson and White
(1983) who used this approach to simulate tension responses to small-
amplitude length perturbations in skeletal and insect flight muscle.
Later Razumova et al. (1999) suggested a model that used the Huxley-
Simmons (1971) approximation of the kinetic scheme of myosin heads
with three structurally different states. The scheme was then used by
many researchers. Assuming that Huxley-Simmons force-generating
transition is fast and reversible, we reduced the model and left over
with only one variable, δ, that describes ensemble-averaged cross-
bridge strain as was done by Thorson and White (1983). Moreover, for
relatively slow processes the fraction of force-generating cross-bridges

Fig. 8. Results of model simulation of tension transients induced by fast increase in Ca2+ concentrations and during force redevelopment caused by muscle release followed by re-
stretch. The traces labelled 1, 2, and 3 correspond to the increase in normalized Ca2+ concentration from 0.05 to 0.46, 0.54 and 1.04, respectively. At time t=1 s muscle was released by
10% and re-stretched to its initial length at time 1.02 s. Upper panel shows the time course of thin filament activation in the overlap zone, A1. Lower panel shows calculated transients of
normalized active tension.

Fig. 9. Results of simulation of isometric twitch contractions at different sarcomere length (shown next to the curves). a: normalized tension; b: A1 (continuous lines) and A2 (dotted
lines); c: normalized calcium concentration; d: calculated transients of normalized Ca2+ concentration (dotted line), A1 (dashed line) and normalized tension (continuous line) at
sarcomere length 2.05 µm.
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among all actin-attached ones, θ, becomes known function of δ and
active force is determined by two variables only: δ and the fraction of
actin-bound myosin heads, n. Both these simplifications make the ODE
system less stiff and simpler computationally. Our model uses strain-
dependent rate constants of crossbridge binding and detachment in
order to account for large deformations.

In contrast to approach of Izakov et al. (1991) and Hunter et al.
(1998) we do not postulate Hill force-velocity and stiffness-velocity
relationships for steady-state contractions. These relationships were
obtained as a result of a more general approach that accounts for
strain-dependent rates of the transitions between the crossbridge states
(Fig. 2). We also did not set up the time course of tension relaxation
induced by a step length change as was done by Hunter et al. (1998)
and Niederer et al. (2006). Instead mechanical responses to step
perturbations in muscle length (Fig. 3) or force (Fig. 4) as well as
tension responses to small-amplitude oscillation of muscle length
(Fig. 6) resulted from the same strain-dependent crossbridge kinetics.
We have previously shown that even an early version of this model
(Syomin and Tsaturyan, 2012) is capable to describe tension responses
to fast length changes applied during steady shortening (Ford et al.,
1985) and lengthening (Piazzesi et al., 1992) as well as repriming of
force generation observed in experiments with two subsequent length
steps (Lombardi et al., 1992). The new version of the model presented
here also explains tension transients caused by ramp stretch of fully
activated muscle at full filament overlap (Fig. 5).

In contrast to models (Hunter et al., 1998; Razumova et al., 2000;
Niederer et al., 2006; Rice et al., 2008) and similarly to models (Izakov
et al., 1991; Markhasin et al., 2003) we assumed that Ca2+ binding to
Tn is very fast and reversible while Tpm transitions from the B- to C-
and O-state and vice versa are cooperative and occur at a slower time
scale as found experimentally (Fusi et al., 2014). Assumption of two-
step or more complicated kinetics of Ca2+ binding to Tn and Tpm
transition from the B- to O-state leads to unnecessary complication of
the model. In contrast to many previous models our approach also
provides similar calcium dependencies for normalized tension and

normalized concentration of Tn-Ca2+ complexes as was found experi-
mentally (Sun et al., 2009). To account for the influence of actin-bound
myosin heads on Ca2+ binding to Tn, we separately describe kinetics of
Ca2+ binding to Tn in the filament overlap zone and outside it. In both
zones the affinity of Tn for Ca2+ depends on sarcomere length while in
the overlap zone it also depends on the fraction of force-generating
myosin heads. Although Rice et al. (2008) also assumed the presence of
two types of Ca2+ binding to Tn, our model is, to our knowledge, the
first one where transition of Tn complexes from and to the overlap zone
is accounted for explicitly. Non-linear kinetics of Ca2+ binding to Tn
allowed us to account for Tn-Tn cooperative interaction and obtain
reasonably steep calcium curves, while length-dependence of activation
and its dependence on the fraction of force-generating myosin heads
provided good approximation of the Starling law at the cellular level
and the effect of blebbistatin on the force-calcium relationship (Fig. 7).
The model describes the kinetics of myofibril activation induced by
Ca2+ jump and tension redevelopment upon mechanical perturbation
(Fig. 8). It also reproduces the time course of tension and of the
fractions of the Tn-Tpm complexes in the C- and O-states and the free
Ca2+ concentration in a cell during a twitch (Fig. 9). Moreover, the
model reproduces the dependence of the of Ca2+ transients on
sarcomere length that was observed experimentally (ter Keurs, 2012),
although such dependence was not directly introduced into the model.
Model also reproduced load dependent relaxation, i.e., acceleration of
isometric relaxation after isotonic shortening at low load (Fig. 10). To
our knowledge this is the first model that reproduces qualitatively all
these experiments with a single set of parameters.

4.2. Choice of model parameters

The number of parameters that determine the actin-myosin inter-
action and its strain dependence is also fewer than in previous models
of this type and our early model (Syomin and Tsaturyan, 2012). The
model parameters which determine model behaviour at full activation
were estimated as follows. Parameter b =1.5 provides the fraction of

Fig. 10. Results of simulation of isotonic contractions in different modes. a: isotonic contraction at four levels of load with return to initial sarcomere length followed by isometric
relaxation; b: isotonic contractions at different load, which were switched to isometric mode at the end of shortening. Upper traces are normalized tension, bottom ones show sarcomere
length.
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actin-bound myosin heads during isometric contraction at full activa-
tion to be 0.4 as found experimentally (Tsaturyan et al., 2011). To
obtain low muscle stiffness at maximal shortening velocity (Julian
Morgan, 1981; Ford et al., 1985) we set c =8.5. The dependencies of
muscle tension and stiffness on stretch velocity (Lombardi and
Piazzesi, 1990) can be well described (Fig. 2) with δ*= 0.4. Fast tension
transient induced by step changes in ether length or load were well
described with a Huxley-Simmons (1971) type model with parameters
h =10 nm, H−= 20 k+

0 and γ=0.4. Filament compliance e was assumed
to be 2 nm/T0 where T0 is isometric tension as estimated experimen-
tally by Linari et al. (1998) and the time scaling rate constant k =75+

0 s−1

was chosen to obtain maximal shortening velocity of 7 µm/s. All
simulations of experiments with skeletal muscle fibres at full activation
shown in Figs. 2–6 were performed with the same set of parameters.

The values of parameters which determine Ca2+-activation in our
model were estimated as follows. To obtain reasonably high Hill
coefficient, we set m =3. Coefficients which characterise length-
dependent activation, ks, was chosen to fit experimental data of
Dobesh et al. (2002). Parameter kn which characterises an increase
in the Tn affinity for Ca2+ upon binding of myosin heads to actin was
estimated as follows. Full saturation of reconstructed thin filaments
with rigor myosin heads increases Tn affinity for Ca2+ by a factor of 8
(Sun et al., 2009). We, therefore, set kn =8. With this value our model
was able to describe changes in the Ca2+ curves in permeabilized
cardiac muscle caused by blocking strong binding of myosin heads to
actin with blebbistatin (Sun and Irving, 2010). Values of the total Tn
concentration in cardiac muscle cell and the characteristic half-satura-
tion Ca2+ concentration were taken from available data. The only time
constant that characterises the kinetic of muscle activation is α+. The

rate of Tmp transition from the B- to C or O-state was measurement
only in fast skeletal muscle of the rabbit by Fusi et al. (2014) who
estimated the sum of the forward and backward rate constants to be
~120 s−1 at 12°С. In the absence of direct measurements of this value
for cardiac muscle we estimated α+ from the positions of the peaks of
Ca2+ transient and tension. A ~0.1 s delay between the peaks can be
reproduced with α+= 35 s−1. Apart from parameters listed above,
tuning of our model for simulation of contractions of cardiac muscle
from particular species at certain temperature would include adjust-
ment of model parameters which determine Ca2+ release from terminal
cisterns of SR, and currents via L-channels and NaCa exchange as well
as Ca2+ uptake into SR.

5. Conclusion

Despite its simplicity, our model qualitatively reproduces all
experimentally observed phenomena listed in the Introduction section
and is quite effective computationally as the only “fast” variable θ can
be omitted if one considers only relatively slow contraction and
relaxation processes with the characteristic time of 2–3 ms or longer.
The model describes a number of different experiments with cardiac
muscle by a few ODEs with a limited set of parameters. We believe that
the model can be useful for multi-scale simulation of heart mechanics.
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Appendix

Full set of model equations

Constitutive equation which determines Cauchy stress tension T̂ :
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where Φ is the isotropic strain energy function; F, I1 and I2 are the left Cauchy–Green deformation tensor and its first and second invariant, Ttit is
anisotropic titin tension that contributes to passive myocardial force and is aligned with muscle fibres. Active tension TA that also is also aligned
with fibres is determined by expression:

T EN N W l hn δ θ= ( ) ( + ),A M xb s (A2)

where E, NM, Nxb are constants, W is the length of the overlap zone between the thin and thick filaments that depend on sarcomere length ls.
Variable n, δ and θ are the fraction of actin-bound crossbridges in the overlap zone, ensemble average strain of crossbridges normalized by the step
size h, and the fraction of force-generating crossbridges among the actin-bound ones, respectively. The crossbridge binding and detachment are
described by kinetic equation:
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where F and G are the binding and detachment rates and A1 is the fraction of the regulatory units in the C- or O-states in the overlap zone.
The changes in δ and θ in the full model are described by equations:
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where e is compliance of the thin and thick filaments and θ δ( )0 is known function
For relatively slow processes which last more than 2–3 ms, a reduced model with simplified equations for δ and θ can be used to simplify

calculations:

δ
t h

l
t

δF
A n

n
∂
∂

= 1
2

∂
∂

−
( − )

,s 1
(A4′)
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θ θ δ= ( ).0 (A5′)

Normalized occupancies of the C- and O-states in the overlap zone, A1, and of the C-state outside this zone, A2, are described by equations:
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Normalized calcium concentration, c, obeys the equation

⎛
⎝⎜⎜

⎞
⎠⎟⎟
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B i
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a

s a s
2

0

1 2
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where Q(t) is calcium release assumed to be a given function of time, B, KB, c*, λ, Ki, C0, CTn.
The meaning of all variables and values of the model parameter are given in Table 1.
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