"ХИМИЧЕСКИЕ ПРОБЛЕМЫ СОВРЕМЕННОСТИ"

г. Донецк, 19-21 мая 2020 г.

СБОРНИК МАТЕРИАЛОВ КОНФЕРЕНЦИИ

Электронное издание

Донецк

2020

ББК Г.я 43 УДК 54

Химические проблемы современности 2020: Сборник материалов IV Международной научной конференции студентов, аспирантов и молодых ученых "Химические проблемы современности" / Редколлегия: А.В. Белый (отв. ред.) и др. – Донецк: ДонНУ, 2020. – 413с.

С 19 по 21 мая 2020 г. на химическом факультете Донецкого национального университета состоялась IV Международная научная конференция студентов, аспирантов и молодых ученых "Химические проблемы современности". В сборнике опубликованы исследований, которые затрагивают важнейшие результаты научных аналитической, неорганической, физической, органической химии, биохимии, химической технологии и экологии, компьютерных технологий и методики преподавания химии.

Ответственность за содержание статей, аутентичность цитат, правильность фактов и ссылок несут авторы статей.

Организационный комитет конференции:

Сторожев В. И.	проректор по научной и инновационной деятельности ГОУ ВПО
	«ДонНУ», доктор технических наук, профессор, председатель;
Белый А.В.	декан химического факультета ГОУ ВПО «ДонНУ», кандидат
	химических наук, доцент, сопредседатель

Щепина Н.Д. доцент кафедры аналитической химии ГОУ ВПО «ДонНУ», заместитель декана химического факультета по научной работе,

кандидат химических наук, доцент, заместитель председателя; н.с. кафедры неорганической химии ГОУ ВПО «ДонНУ»,

ответственный секретарь

Члены оргкомитета:

Чебышев К.А.

Трушков И. В. заведующий лабораторией направленной функционализации

органических молекулярных систем Института органической химии им. Н.Д. Зелинского РАН (г. Москва), доктор химических

профессор;

заведующий кафедрой физической и коллоидной химии Щербаков И.Н.

> им. проф. В.А. Когана химического факультета Южного федерального университета (г. Ростов-на-Дону), доктор

химических наук, профессор;

Алемасова А.С. заведующий кафедрой аналитической химии ГОУ ВПО

«ДонНУ», доктор химических наук, профессор;

ВЛИЯНИЕ СВОЙСТВ РАСТВОРИТЕЛЯ НА КОМПЛЕКСООБРАЗОВАНИЕ В ПОДКИСЛЕННЫХ ВОДНО-ДИМЕТИЛФОРМАМИДНЫХ РАСТВОРАХ ВОЛЬФРАМАТА НАТРИЯ

Кретова Е.А., студент, Пойманова Е.Ю., к.х.н., старший преподаватель; Белоусова Е.Е.., к.х.н., доцент ГОУ ВПО «Донецкий национальный университет» poimanovahe@gmail.com

Смешанные водно-органические растворители интересны с той точки зрения, что из двух растворителей образуется новый растворитель с отличающимися как физическими (диэлектрическая проницаемость, вязкость, плотность) так и химическими (кислотно-основные) свойствами. Так как исследуемые в данной работе системы – это подкисленные до различных Z растворы WO_4^{2-} , то использование смешанного растворителя в первую очередь влияет на силу кислоты в сравнении с водной средой. Введение дополнительного растворителя оказывает влияние на такие важные факторы, как: протонное сродство (протон-донорные и протонакцепторные свойства растворителя, наряду с его диэлектрическую проницаемость (в результате смешивания растворителей с разной полярностью диэлектрическая проницаемость среды может варьироваться, так же, как и сила используемой кислоты); сольватирующий эффект (способствует получению определенных частиц в растворах). Кроме того, при этом следует также учитывать, что свойства смешанного растворителя во многом зависят от природы органической компоненты, от возможных взаимодействий между молекулами растворителей, а также от образования между ними водородных связей.

суммарного учета неспецифических Для специфических взаимодействий удобными являются многопараметровые уравнения. Одним из таких является уравнение Камлета-Тафта. Учет влияния кислотности, основности и полярности растворителя, согласно этого корреляционную зависимость уравнения, дает превосходным cкоэффициентом корреляции. Это подчеркивает важность влияния кислотновзаимодействий между молекулами растворителя растворенного вещества на свойства изучаемых веществ.

Таким образом, в основу описания изменения логарифмов констант образования с ростом содержания органического растворителя легло уравнение Камлета-Тафта: $lgK_{U\Pi BA} = lgK_0 + p \cdot \pi + a \cdot \alpha + b \cdot \beta$, где $lgK_{U\Pi BA} -$ логарифм константы образования изополивольфрамат-аниона (ИПВА); lgK_0 представляет собой величину $lgK_{U\Pi BA}$ в некоторой гипотетической среде с

нулевыми α , β , π (или, в первом приближении, в вакууме); π – индекс полярности/поляризуемости растворителя, который является способности растворителя стабилизировать заряд или диполь своим собственным диэлектрическим эффектом (шкала π: ОТ циклогексанона до 1,0 для ДМСО); а – индекс Н-донорной кислотности (кислотность растворителя), т.е. способность растворителя отдавать протон растворенному веществу с образованием водородных связей (шкала α: от 0.0 для апротонных растворителей до ~ 1.0 для пропанола); β — индекс Hакцепторной основности (основность растворителя), т.е. способность протоны растворителя принимать от растворенного вещества образованием водородных связей (шкала β: от 0,0 для протонных растворителей до $\sim 1,0$ для триамида гексаметилфосфорной кислоты); p, a,b – величины отклика логарифма константы образования ИПВА на изменение состава растворителя.

Установлено, что разная природа растворителей проявляется не неспецифических взаимодействиях между молекулами только растворителя и ИПВА, но и в специфических взаимодействиях. Наиболее адекватно зависимость константы от содержания растворителя описывает трехпараметровое Камлета-Тафта, подчеркивает уравнение что необходимость учета различных кислотно-основных взаимодействий между молекулами растворителя и растворенного вещества. Установлено, образование декавольфрамат-аниона наиболее чувствительно основности растворителя, которая увеличивается ростом c диметилформамида, что приводит к стабилизации этого иона. На основе протекание гидролитического объяснено превращения метавольфрамат-аниона в $W_{10}O_{32}^{4-}$ в водно-органических растворах, что необходимо учитывать при разработке методик синтеза новых солей.

УДК 546.665:544.228

ЗАМЕЩЕНИЕ СВИНЦА ГОЛЬМИЕМ И ЩЕЛОЧНЫМ МЕТАЛЛОМ В СТРУКТУРЕ ЛАКУНАРНОГО АПАТИТА

Игнатов А.В. к.х.н., доцент кафедры неорганической химии, Жегайло А.О. стариий преподаватель кафедры неорганической химии, <u>Сурилова Я.С. студентка 4 курса</u>

ГОУ ВПО «Донецкий национальный университет» zhegailoalisa@mail.ru

Прогресс современной науки и техники неразрывно связан с успехами как в развитии и совершенствовании технологии получения традиционных