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Introduction

Modelling of processes of microstructure formation at

phase transitions is important for the development of new

technologies [1]. The phase field method is among the

most efficient and reliable approaches in microstructure

modelling [2]. The most well-studied are two-phase

models [3–6], which make it possible to describe grain

interaction or growth of dendrite structures in materials.

These models have covered the way from phenomenological

ideas of a diffuse interface [7–11] to thermodynamically

consistent [12–14] models. The situation in multiphase

systems [15–21] is more complex, because the origination

of new phases on the interface of two phases cannot be

reduced to equations [3–6] or [12–14]. The main problem

is the presence of a holonomic constraint [22] for the phase

order parameters (called phase fields).
Indeed, the dynamics of a system with N phases in

isotropic materials is described by a vector with N compo-

nents ϕα (α = 1 . . . N), which correspond to each phase.

Phase field ϕα unambiguously characterizes (except the

diffuse interface between phases) the presence of the α

phase a given point of space and time. We adopt

the value ϕα = 1 for the equilibrium phase, while inside

the other phases ϕα = 0. The phase field across the

diffuse interface changes quickly but continuously, which

presupposes fulfillment of the correlation

N
∑

α=1

ϕα = 1, (1)

which prevents from considering ϕα as independent vari-

ables. Anisotropy, inherent in crystalline phases, leads to

additional degrees of freedom [21] (phase fields that control

the growth direction) with their correlation of kind (1).

An explicit resolution of correlation (1) by isolation of

the dependent phase is not satisfactory either from the

thermodynamic viewpoint or from the pragmatic viewpoint

of numerical modeling. Implicit use of correlations in

variational problems has been known for a long time. The

universal approaches in such problems are the methods of

Lagrange multipliers [23] and penalty functions [24]. But

the application of dissipative systems in relaxation dynamics

nowadays is absolutely unreasonable. Nevertheless, La-

grange multipliers [23] were actively used in [15–21].

Another approach, related to selection of independent

non-redundant variables and dynamic equations which

satisfy correlation (1), has been suggested in [16]. Despite

the achievements [15–21], the currently used multiphase

models [10,11], while being a development of model [16],
have no with the description of two-phase systems [2–5],
in particular, the conditions of thermodynamic stability of

phases (4) according to Kessler [25] are not met in them,

due to which the equilibrium state, as distinct from two-

phase models, is a quasi-periodic function. Therefore,

despite the large number of performed calculations, the

task of a consistent description of phase transformations in

multiphase systems is still far from completion.

The aim of this paper is to obtain a phase field

model for phase transformations in multicomponent systems

in non-redundant variables. The described model has

been consistent with previously known two-phase models,

e.g. [26]. The principle of pairwise interaction of phases was

used for coordination. The principle of pairwise interaction

assumes that a multiphase model on the phase interface

must degenerate till interaction of each of the possible

phase pairs, while preventing the origination of new ones.

Since the dynamics of phase transformations in single-

component systems is determined solely by the difference
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of Gibbs potentials, which is a simpler case as compared

to solutions, a single-component system is used to better

understand the ways for implementing this approach. We

have obtained a model possessing the required behavior,

based on the Steinbach variables [16] in an isotropic model

of a phase field and the demand for monotonic decrease

of Gibbs potential in the course of relaxation. The latter

is checked both analytically and numerically, based on the

simulation of solidification of hafnium melt (Hf), which

leads to competitive growth of two solid phases from the

melt.

1. Multiphase description based on the
paired principle

Let us reformulate the multiphase model [10,11] in

independent variables of antisymmetric combinations of

phase fields [16], while retaining the common structure

of the two-phase model [26]. For derivation, we demand

monotonic decrease of the total Gibbs potential of the entire

system [27], which attains a minimum in the equilibrium

state. To do so, we will express it in terms of antisymmetric

variables. Let us consider different physical contributions to

the Gibbs energy of a multiphase single-component system.

1.1. Contribution of the surface

In the case of multiphase systems, we choose antisym-

metric combinations as independent quantities due to the

redundancy of variables ϕα [16]

ψαβ = ϕα − ϕβ .

Density of the diffuse interface is written as the sum for

independent pairs of indices (α, β):

εk =
1

8

N
∑

α,β=1

σαβ(∇ψαβ)
2, (2)

where σαβ is related to the surface energy of the phase

interface (α, β). Multiplier 1/8 appears in expression (2)
due to the degree and symmetry σαβ = σβα .

1.2. Potential barrier between phases

According to Steinbach [16], let us substitute the well-

known double-well-potential, see [26]:

εp =
1

2
W g(ϕ) ≡

1

2
Wϕ2(1− ϕ)2 (3)

by a convex polynomial of a lower order, also expressing

it in terms of an antisymmetic combination. A formal

generalization for the multiphase case gives

εp =
1

2

N
∑

α,β=1

Wαβψ
2
αβ , (4)

where Wαβ , as before, defines the magnitude of the energy

barrier between phases (α, β).

1.3. Equilibrium thermodynamic contribution

Let us present the equilibrium thermodynamic con-

tribution of a multiphase system of a single-component

system [26]:

εe =
N

∑

α=1

ϕαGα(T ) (5)

in terms of combinations

εe =

N
∑

α,β=1

ψαβ 1Gαβ , (6)

where 1Gαβ = Gα(T )−Gβ(T ).

1.4. Locally nonequilibrium processes

To describe the rapid phase transformations, nonequilib-

rium kinetic contribution is added to the bulk density of

Gibbs energy

εk =
1

2
Ŵ

N
∑

α=1

ϕ̇2
α, (7)

which considers the decreased volume of the system phase

space in nonequilibrium processes [27]. Parameter Ŵ will be

determined later.

1.5. Time derivative of Gibbs energy

Aggregating the energy densities (2), (4), (6), (7), we
obtain the total energy of the multiphase system

G(t) =

∫ N
∑

α,β=1

[

1

2
Ŵϕ̇αϕ̇βδαβ +

1

8
σαβ(∇ψαβ)

2

−
1

2
Wαβψ

2
αβ + 3ψαβ1Gαβ

]

d�. (8)

The corresponding time derivative is equal to

dG(t)
dt

=

∫ N
∑

α=1

ϕ̇α

N
∑

β=1

[

Ŵϕ̈βδαβ −
1

2
σαβ∇

2ψαβ

− 2Wαβψαβ + 61Gαβ

]

d� ≤ 0 (9)

and formally considers the contribution to a change of the

α-phase from all possible system phases. However, the real

number of coexistent phases near the equilibrium must be

limited due to minimization of surface energy. Based on

this, we will use the principle of paired phase interaction.

1.6. Paired principle

This principle will mean the condition that dG(t)/dt ≤ 0

must be satisfied only with account of the phases which

are in direct contact with each other inside the diffuse
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interface. In other words, we insert the squared projection

operator P̂αP̂β ≥ 0 in expression (9); it takes into account

the presence of both α and β phases inside the diffuse

interface

dG(t)
dt

=

∫ N
∑

α=1

ϕ̇α

N
∑

β=1

P̂αP̂β

[

Ŵϕ̈βδαβ −
1

2
σαβ∇

2ψαβ

− 2Wαβψαβ + 61Gαβ

]

d� ≤ 0. (10)

Particular selection of projection operators in each term

is not unambiguous, but must retain the fixed sign of

expression (10). Comparison with the two-phase problem

makes it possible to adopt

P̂αP̂β = ϕαϕβ (11)

for contributions of potential barriers and thermodynamic

potentials. At the same time, to retain the simplest shape

of the interface, for the kinetic construction we restrict

ourselves to a product of Heaviside functions:

P̂αP̂β = θ
(

|∇ϕα(x)|
)

θ
(

|∇ϕβ(x)|
)

, (12)

where θ(a) = 1 at a ≥ 0 and θ(a) = 0 at a < 0. Assuming

that

θα ≡ θ
(

|∇ϕα(x)|
)

,

we rewrite (10) as follows:

dG(t)
dt

=

∫

∑

α

ϕ̇α
∑

β

[

Ŵϕ̈βδαβ −
1

2
σαβθαθβ∇

2ψαβ

− 2Wαβϕαϕβψαβ + 6ϕαϕβ1Gαβ

]

d� ≤ 0, (13)

from here, equations of the multiphase model phase field

follow:

τ ϕ̈α + ϕ̇α = M0

∑

β 6=α

[

1

2
σαβθαθβ∇

2(ϕα − ϕβ)

− 2Wαβϕαϕβ(ϕβ − ϕα) − 6ϕαϕβ1Gαβ

]

, (14)

where τ = ŴM0 is the characteristic relaxation time. Quan-

tity M0 is phase field mobility, which is usually a function of

temperature. M0 is determined from solidification kinetics

experiments [29], while the equilibrium conditions are

sufficient for determination of the other parameters [26].
It can be easily seen that the sum of equations (14) is

identically equal to zero, therefore if the sum of phases

at the initial moment is equal to unity in compliance

with (1), it will also remain such at subsequent time

moments. It should be noted that this is possible only

on condition of equal mobilities M0 and equal relaxation

times τ for all phases.

In the limit case, when only two phases are in contact,

conventionally ϕ1 and ϕ2, we have

W12 = W21 = W0, σ12 = σ21 = σ0, ϕ1 = ϕ, ϕ2 = 1− ϕ.

Two equations are obtained in this case

τ ϕ̈1 + ϕ̇1 = τ ϕ̈ + ϕ̇ = M0

[

σ0∇
2ϕ − 2W0ϕ(1−ϕ)(1−2ϕ)

− 6ϕ(1 − ϕ)1G(12)
]

,

τ ϕ̈2 + ϕ̇2 = −(τ ϕ̈ + ϕ̇) = M0

[

−σ0∇
2ϕ + 2W0ϕ(1 − ϕ)

× (1− 2ϕ) − 6ϕ(1 − ϕ)1G(21)
]

, (15)

which coincide up to a sign.

2. Gibbs potentials

Let us consider the dynamics of phase formation in pure

hafnium. Hafnium has three stable (at different tempera-

tures) phases and its behavior allows for demonstrating the

capabilities of a multiphase model. Analytical expressions

for Gibbs potentials as temperature functions were taken

from [28]. The curves of the lowest-energy Gibbs potentials

are shown in Fig. 1. They show that a (metastable) HCP A3

phase and a stable BCC A2 phase can originate, in addition

to the liquid phase, in the melt upon temperature decrease

to T = 2000K.

3. Numerical algorithm

Since the main aim of this paper is to derive equations

that describe the phase transformation processes in pure

(single-component) multiphase systems (14), a comparison

with the experiment is outside the scope of this paper. The

results of the numerical calculations are also given below

mainly for illustration: to show that ratio (1) in case of a
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Figure 1. Molar Gibbs potentials of the Liquid, BCC A2,

HCP A3 phases for pure hafnium [28].
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numerical solution of equations (14) will always be carried

out during modeling of the process of structure formation.

By writing equations (14) for the three phases, we have

a system of equations

τ ϕ̈1+ϕ̇1=M0

[

σ12ϑ1ϑ2∇
2(ϕ1−ϕ2) + σ13ϑ1ϑ3∇

2(ϕ1−ϕ3)

− 2ϕ1

(

W12ϕ2(ϕ1 − ϕ2) + W13ϕ3(ϕ1 − ϕ3)
)

− 6ϕ1

(

ϕ21G(12) + ϕ31G(13)
)

]

,

τ ϕ̈2+ϕ̇2=M0

[

σ21ϑ2ϑ1∇
2(ϕ2−ϕ1) + σ23ϑ2ϑ3∇

2(ϕ2−ϕ3)

− 2ϕ2

(

W21ϕ1(ϕ2 − ϕ1) + W23ϕ3(ϕ2 − ϕ3)
)

− 6ϕ2

(

ϕ11G(21) + ϕ31G(23)
)

]

,

τ ϕ̈3+ϕ̇3=M0

[

σ31ϑ3ϑ1∇
2(ϕ3−ϕ1) + σ32ϑ3ϑ2∇

2(ϕ3−ϕ2)

− 2ϕ3

(

W31ϕ1(ϕ3 − ϕ1) + W32ϕ2(ϕ3 − ϕ2)
)

− 6ϕ3

(

ϕ11G(31) + ϕ21G(32)
)

]

. (16)

To simplify the numerical calculation, we will further

assume that a local nonequilibrium is absent: τ = 0, while

barrier magnitudes and surface energy on all boundaries are

equal:

W12 = W13 = W23 = W0,

σ12 = σ13 = σ23 = σ0.

By choosing time and space scales, we have the following

after a transition to dimensionless variables

ϕ̇1 = ϑ1ϑ2∇
2(ϕ1 − ϕ2) + ϑ1ϑ3∇

2(ϕ1 − ϕ3)

− 2ϕ1

(

ϕ2(ϕ1 − ϕ2) + ϕ3(ϕ1 − ϕ3)
)

− 6ϕ1

(

ϕ21Ḡ(12) + ϕ31Ḡ(13)
)

,

ϕ̇2 = ϑ2ϑ1∇
2(ϕ2 − ϕ1) + ϑ2ϑ3∇

2(ϕ2 − ϕ3)

− 2ϕ2

(

ϕ1(ϕ2 − ϕ1) + ϕ3(ϕ2 − ϕ3)
)

− 6ϕ2

(

ϕ11Ḡ(21) + ϕ31Ḡ(23)
)

,

ϕ̇3 = ϑ3ϑ1∇
2(ϕ3 − ϕ1) + ϑ3ϑ2∇

2(ϕ3 − ϕ2)

− 2ϕ3

(

W31ϕ1(ϕ3 − ϕ1) + W32ϕ2(ϕ3 − ϕ2)
)

− 6ϕ3

(

ϕ11Ḡ(31) + ϕ21Ḡ(32)
)

, (17)

where 1Ḡ(αβ) are dimensionless differences of Gibbs poten-

tials. The last equations are written in the vector form as

ϕ̇ = L̂(ϕ), (18)

which will be modelled using the finite difference method.

For the explicit scheme, we have L̂:

ϕ
(n+1) = ϕ

(n) + 1t L̂(ϕ(n)). (19)

Given the non-linearity of the right member of prob-

lem (19), calculation must be performed with a small

time grid step, therefore we did not consider the implicit

methods and the corresponding stability conditions. Stability

of explicit scheme (19) was checked empirically by selecting

an increment. The explicit scheme for the one-dimensional

setting is stable on a lattice sized N ≈ 1000−2000 at

1t ≤ 0.3251x2. For the two-dimensional setting (on
the lattice N ≈ 500× 500) — the solution is stable at

1t ≤ 0.1451x2 where 1x is the spatial grid step.

4. Directional solidification problem

Let us consider the dynamics of phase formation in

hafnium for the directional solidification problem. A com-

bination of the Liquid and HCP A3 phases is used as

the initial condition in the directional solidification problem

(Fig. 2, a).

The given phases are initially not in equilibrium, therefore

the phase interface starts moving. During motion of the

Liquid−HCP A3 phase interface (Fig. 2, b), an instability

originates which causes a distortion of the liquid phase

profile and formation of a
”
nucleus“ of the BCC A2 phase.

In Fig. 2, b is the formation of a new phase. Then (Fig. 3, a)
the formation of a complete stable BCC A2 phase is shown

(the phase field for the BCC A2 phase reaches the unity),
inside which the Liquid, HCP A3 phases gradually stop

contacting each other. Fig. 3, b shows displacement of the

metastable phases by the stable BCC A2 phase. Since

the difference of the Gibbs potentials between the liquid

and the stable solid phase is higher than between the

solid phases, the interface motion speed is significantly

higher than the phase interface motion speed for the

solid phases.

Since the right member of expression (29) was calculated
using the known values of ϕ(n), for which condition (1) is

met, the said condition was identically met on the next time

increment. Construction of implicit methods for solving the

multiphase system equations still remains a topical unsolved

problem.

5. Two-dimensional modeling

Modeling was done on a square lattice sized

N ≈ 500× 500. An isotropic model is under consideration.

The initial condition corresponds to the (pseudo) random

location of the spherical nuclei of the HCP A3 phase

(its phase field is shown by red color (in the online

version)) inside the hafnium liquid phase (phase field is

shown by blue color (in the online version)) at T = 2000K

(Fig. 4). Both above-mentioned phases are metastable at

the given temperature, therefore fluctuations of the value of

a phase field of approximately 10−8, which corresponds to

the BCC A2 phase, have been assigned in the vicinity of

each spherical nucleus.
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Figure 2. Process of BCC A2 phase origination on the interface between the Liquid and HCP A3 phases for pure hafnium at T = 2000K.
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Figure 3. Formation of a stable BCC A2 phase on the interface of metastable phases for pure hafnium at T = 2000K (evolution from

left to right).

Technical Physics, 2022, Vol. 92, No. 2



160 V.G. Lebedev

Slow motion of the interface of the BCC A2 phase inside

the liquid phase provokes instability and growth of the

BCC A2 phase field (green color (in the online version))

on the interface between the Liquid and HCP A3 phases

(Fig. 5, 6). Then the BCC A2 phase substitutes the Liquid

phase and gradually displaces the HCP A3 phase (Fig. 7).

Figure 4. Initial state: nuclei of the HCP A3 phase (red circles

(in the online version)) inside the Liquid phase (blue background

(in the online version)) for hafnium at T = 2000K.

Figure 5. Origination of BCC A2 phase (green (in the online

version)) on the interface between the Liquid and HCP A3 phases

for hafnium at T = 2000K.

Figure 6. Growth of the BCC A2 phase on the interface between

the Liquid and HCP A3 phases for hafnium at T = 2000K.

Figure 7. The BCC A2 phase replaced the Liquid phase and

gradually displaces the HCP A3 phase for hafnium at T = 2000K.

Conclusion

The paper presents derivation of a multiphase locally

nonequilibrium model of phase transformations in single-

component systems. The advantage of the presented model

is the fulfilled principle of matching with the previously

known two-phase field of a phase field [26] and the absence

of necessity for evident tracking of correlation (1) in

numerical calculations.
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Fulfillment of the matching principle guarantees correct

physical behavior on phase interfaces and existence of ther-

modynamic steady states in the system, which differentiates

the model from the previously suggested approaches.

Absence of the need for evident tracking of correla-

tion (1) in numerical modeling of phase transitions within

the framework of this approach makes it possible to

consider the equations of all phase fields as independent

ones. The latter considerably simplifies the technology of

modeling of structure formation processes in multiphase

systems, since it enables a separate solution of phase field

equations. Modeling include a check of the condition

of phase sum normalization, which was met at any time

moment of the calculation. The modeling results match the

expected behavior of a nonequilibrium system and confirm

applicability of the presented model.

The suggested approach can be generalized for the case

of solutions and is a basis for subsequent development of

the phase field method in the material science.
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