Guidebook for Field Excursions

XIIth International Symposium and Field Seminar on Paleopedology

“Paleosols, pedosediments and landscape morphology as archives of environmental evolution”

10 - 15 August, 2013, Kursk, Russia
CONTENTS

Introduction (S.A. Sycheva) 5

1. General characterization of the environment and soils of the Central Russian Upland (S.A. Sycheva, I.V. Kovda, A.V. Kashkin) 9
 1.1. Geology and relief 9
 1.2. Climate 10
 1.3. Hydrology 11
 1.4. Vegetation 11
 1.5. Soils 12
 1.6. Human history and agricultural development of landscapes 12

KURSK SITE 14

2. Aleksandrov Quarry (S.A. Sycheva, E. D. Sheremetskaya, T.M. Grigorieva, M.A. Bronnikova, S.N. Sedov, V.S. Gunova, A.N. Simakova, P.R. Pushkina) 14
 2.1. General characteristics, geochronology and stratigraphy 14
 2.2. Description of the composite generalized stratigraphic section 15
 2.2.1. Morphology 15
 2.2.2. Analytical data 20
 2.3. Ryshkov (Mikulino) paleosols and paleocatena (MIS 5e) 23
 2.3.1. Ryshkov paleosol on the paleoslope (section 15): interpretation of properties 23
 2.3.2. Ryshkov pedolithocomplex in the bottom 27
 2.4. Early Valdai Kukuev and Streletsk paleosols (MIS 5 & MIS 5a) 28
 2.4.1. Morphology of the Early Valdai paleosols 28
 2.4.2. Analytical data 29
 2.4.3. Interpretation 29
 2.5. Middle Valdai Aleksandrov and Bryansk paleosols (MIS 3) 29
 2.5.1. Morphology 29
 2.5.2. Analytical data 31
 2.5.3. Interpretation 31
 2.6. Holocene Soils and their relations with paleorelief 32
 2.7. Cryogenic features 33
 2.8. Paleogeomorphic interpretation 34
 2.9. Vegetation changes in the Late Pleistocene and Holocene 34

 3.1. General information and environment 37
 3.2. Chernozem demonstration pit in virgin steppe 40
 3.3. Nature Museum 41

4. Chernozem of Kursk Biosphere Station of IG RAS (N.B. Khitrov, M.I. Gerasimova, M.A. Bronnikova, E.P. Zazovskaya) 42
 4.1. General information and morphological description 42
 4.2. Micromorphological features 46
 4.3. Analytical data 48
 4.4. Conclusion 50

5. Monastery ‘‘Korennaya Pustyn’’ 52

6. Memorial museum The Command Post of the central front 53

7. Balka Senovaya: paleosols, vegetation, and landscapes of northern forest-steppe zone in the Middle Holocene (MIS 1) (S.A. Sycheva and A.N. Simakova) 54
7.1. General characteristics 54
7.2. Morphological description 54
7.3. Analytical data 55
7.4. Palynology 55
7.5. Interpretation 56

VORONEZH SITE 59

8. Archaeological Site Kostenky 14 (Markina Gora) (MIS 3 & 2) (A.A. Sinitsyn, S.N. Sedov, A.A. Velichko, S.N. Timireva, V.V. Pisareva, E.A. Konstantinov) 59
8.1. Kostenki – Archaeological situation 59
8.1.1. Brief history of research 60
8.2. Kostenki 14 (Markina Gora) – general description 61
8.3. Relief and sediments 63
8.3.1. Sedimentary series: stratigraphy and properties 63
8.3.2. Specific features of distortions in the sediments 65
8.3.3. Quartz sand grain morphology 66
8.3.4. Paleoenvironmental reconstructions based on paleobotanical data 66
8.4. Paleopedology of Kostenky 14 68
8.4.1. Morphology and micromorphology 68
8.4.2. Classification 70
8.4.3. Physical and chemical characteristics of paleosols 71
8.5. Paleopedological record: pedogenetic and paleoecological interpretations 71
8.6. The Pokrovskiy Log balka history at the Kostenki 14 site (A.V. Panin and D.Yu. Nekrasov) 74
8.7. State archaeological museum “Kostenki” 79

9. Late Holocene (MIS 1) Soil-Alluvial Sequence (M.A. Bronnikova, A.V. Panin, O.N. Uspenskaya, E.Yu. Matlakhova) 80
9.1. Morphological description 80
9.2. Stratigraphy of the section 81
9.3. Radiocarbon dating 84
9.4. Micromorphology and interpretation 84
9.5. Physico-chemical and chemical data 85

10.1. General information and history of research 89
10.2. Stratigraphy and radiocarbon dating 91
10.3. Divnogorie paleo-lake: sediments and paleoenvironment 91
10.3.1. Structure and texture of sediments 93
10.3.2. Analytical data 93
10.3.3. Interpretation 93
10.4. Paleosols MIS 2 95
10.4.1. Morphological description of pedocomplex 95
10.4.2. Analytical data 95
10.4.3. Palynology 96
10.4.4. Interpretation 97

11. Natural Architecture and Archaeological Museum-Resort Divnogorie 98

References 100
Color Inset 105
10. GEOARCHAEOLOGICAL SITES DIVNOGORIE 9 AND 1 (PALEOSOLS AND SEDIMENTS MIS 2)

10.1. General Information and History of Research

Divnogorie group of Palaeolithic sites is situated in the territory of Divnogorie museum-Resort located on the right bank of the Tikhaya Sosna River in ~ 3 km from the confluence with the Don River. There are two Palaeolithic sites and several localities of chipped stone concentrations here.

Divnogorie 9 was discovered in 2004 in the deposits of the right-bank ravine tributary in lower reaches of Golaya balka (35-40 m above the modern river level) discharging into the Tikhaya Sosna River. By now, its studied area is about 180 m².

The site represents a place of multiple evidences of the kill-butcher of wild horses. The site contains seven levels of bones in low-humus light-brown layers of loess-like loam, which are separated by chalk blocks and chipping lenses (Fig. 10.1., inset). The lowest (seventh) layer occurs in colluvium in a re-deposited form. Osteological collection from the whole set of layers includes 7887 bones, and the vast majority of them belong to wild horses. There are also few bones of polar fox and wolverine.

At the first and second levels, the bones are, as a rule, located chaotically; at lower levels they lie essentially in situ in anatomical order, sometimes there are complete skeletons only slightly shifted along the slope (Fig. 10.2.). Bones are more weathered and often broken at the upper levels. Lower levels are characterized by quite good preservation and low weathering of bones. Levels 5-6 contain essentially complete skeletons of horses in ideal preservation, including undamaged skulls. It testifies that horses were buried immediately or very soon after their death.

Fig. 10.2. Divnogorie 9 – Accumulation of horse bones at Level 3

Several long bones from Layer 4 were split in prehistoric times, which may be connected with extraction of bone marrow. Processes of butchering on site were reliably testified by the discovery of horse costal carts with cuts.

Analysis of osteological collection showed that it included all parts of skeletons, the ratio between left and right bones is almost equal (except for Layer 2), which testifies to the absence of
deliberate sorting. Bone remains belong to different age groups - from 1-2 week animal units to horses older than 15 years. Only in Layers 1 and 4 there are tushes and massive bones belonging to mature stallions. The degree of epiphysis accretion and teeth wearing of young animal units shows that the horses died in spring or in summer. Thus, sex and age composition of the horses from Divnogorie 9 allows us to acknowledge that there were several harem groups killed there.

The stone assemblage is not numerous (~70 units) - the most interesting is a series of truncated blades and backed implements.

The Divnogorie 1 site was discovered in 2008, and was studied during 2008-2011. It is situated 2.5 km South-West from Divnogorie 9 on a low hill on the right bank of the Tikhaya Sosna River, with the height of 3-5 m above the modern channel. There is an opinion that the site is connected with the deposits of the low terrace (Bessudnov and Bessudnov, 2010, 2012; Bessudnov et al., 2012). According to Lavrushin and Berezchnoy this cusp-shaped hill represents a fragment of proluvial shelf, since there were no alluvial deposits found during excavations.

The cultural layer in the excavated area contains individual finds of bones, chipped stones, flat stone plates and pieces of red ocher. A faunistic complex is represented by wild horse (789/8) and reindeer (24/2).

Stone assemblage comes to more than 1,500 finds. The most typical tools are simple end-scrapers, burins on truncation, backed tools, points and truncated blades. Such a tool-kit is present.
at most of sites belonging to the Late Valdai age of the Russian Plain and is characteristic for sites of so-called 'Eastern Epigravettian'.

The obtained data about chronology and occurrence conditions, as well as composition of the stone tools of the Divnogorie sites afford grounds for a conclusion that they were simultaneous and, perhaps, belonged to one culture. At the same time, analysis of the occupation layers of Divnogorie 1 and 9 allows speaking about different functionality of the sites.

Predominance of bones from limbs (essentially – foot bones), i.e. 'low-meat' parts, the toolkit and thinness of the cultural layer at Divnogorie 1 testifies that it represents remains of short-term (probably, seasonal) site specialized in butchering.

The multilevel accumulation of complete horse skeletons with inconsiderable number of flintstone artifacts in Divnogorie 9 allows interpretation of the site as a place of multiple slaughter or killing of the whole herds. Man-made character of this bone bed is also testified by cuts on costal carts of horses, left after butchering.

10.2. Stratigraphy and Radiocarbon Dating

Geomorphology and stratigraphy of Divnogorie 9 are described in detail (Lavrushin et al., 2010, 2011). There are two strata distinguished in the structure of excavated section (more than 14 m). The upper stratum under the recent Chernozem reflects the processes of slope denudation, and is represented by two types of colluvium separated by two horizons of soil-formation. The upper buried soil is dated back to Allerød period. The lower stratum (8-10 m) constitutes deposits of estuary extension of the ravine. It is represented by thin-layered carbonate siltstone separated by horizons of debris and small blocks of chalk. In Y.A. Lavrushin's opinion, the thin stratification of deposits in the lower part of the section is determined by the activity of dammed lakes, which existed in the ravine estuary (see Section 10.3).

The cultural layer in Divnogorie 1 occurs at the depth of 1.4-1.8 m from the surface in the upper part of light-brown sandy loam underlying a thick (1.2-1.5 m) recent Chernozem.

There is a series of radiocarbon dates obtained in three laboratories for both sites. The radiocarbon dates for Divnogorie 9 become older from the upper level to the lower one (Table 10.1). Insignificant inversion in dating is traced only to the third level, which may be explained by the errors of radiocarbon method. The dates obtained by pyrolysis could be rejuvenated, since the method was under elaboration in the Laboratory of Archaeological Technology, Institute for the History of Material Culture, RAS at the time when the dates were obtained. Thus, the time of the bone bed formation stays within the period from ~ 15 to 17.5 cal B.P.

There are two \(^{14}\text{C}\)-dates obtained for Divnogorie 1. One of them (12 050 ± 170 (~ 13.7-14.1 cal B.P., Le-8649)) appears as rejuvenated. According to the absolute dating, the bone bed at Divnogorie 9 site was formed simultaneously with the functioning of the Divnogorie 1 site.

10.3. Divnogorie Paleo-Lake: Sediments and Paleoenvironment

Lake sediments were identified and investigated in the archaeological site Divnogorie 9 at the depth between 9 and 14 m. The total excavated thickness more than 5 m includes ~ 3 m of fine grained limnic fine-laminated packets intercalated with some coarse pebble and boulder layers of
<table>
<thead>
<tr>
<th>Lab index</th>
<th>Material, Level (L)</th>
<th>(^{14}C\text{-date, yrs. BP})</th>
<th>Calibrated range (1\sigma) (BP)</th>
<th>Source*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le-8649</td>
<td>Horse bones</td>
<td>12 050 ± 170</td>
<td>13 707 – 14 136</td>
<td>1</td>
</tr>
<tr>
<td>Le-8648</td>
<td></td>
<td>13 380 ± 220</td>
<td>15 931 – 16 803</td>
<td>1</td>
</tr>
<tr>
<td>IGAN-4247</td>
<td>Charcoal, upper part of soil (B)ellings(?)</td>
<td>12 060 ± 80</td>
<td>13 816 – 14 000</td>
<td>1.000</td>
</tr>
<tr>
<td>GIN-14547</td>
<td></td>
<td>11 880 ± 140</td>
<td>13 510 – 13 536</td>
<td>0.058</td>
</tr>
<tr>
<td>GIN-14548</td>
<td>Charcoal, bottom part of soil (B)ellings(?)</td>
<td>12 090 ± 100</td>
<td>13 817 – 14 043</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-8137</td>
<td>L I, horse bones</td>
<td>11 400 ± 120</td>
<td>13 156 – 13 372</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-8135</td>
<td></td>
<td>12 980 ± 180</td>
<td>15 165 – 16 078</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-8136</td>
<td></td>
<td>13 150 ± 200</td>
<td>15 524 – 16 494</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-8134</td>
<td>L II, horse bones</td>
<td>13 100 ± 200</td>
<td>15 267 – 15 328</td>
<td>0.056</td>
</tr>
<tr>
<td>AA-90650</td>
<td></td>
<td>13 430 ± 130</td>
<td>16 329 – 16 827</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-8130</td>
<td></td>
<td>13 370 ± 240</td>
<td>15 881 – 16 810</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-8131</td>
<td></td>
<td>13 560 ± 240</td>
<td>16 212 – 16 975</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-8955</td>
<td>L III, horse bones</td>
<td>12 250 ± 350</td>
<td>13 813 – 14 894</td>
<td>1.000</td>
</tr>
<tr>
<td>GIN-13192</td>
<td></td>
<td>12 350 ± 200</td>
<td>14 032 – 14 685</td>
<td>0.885</td>
</tr>
<tr>
<td>Le-9250</td>
<td></td>
<td>13 820 ± 130</td>
<td>16 788 – 17 041</td>
<td>1.000</td>
</tr>
<tr>
<td>AA-90652</td>
<td></td>
<td>13 370 ± 140</td>
<td>16 814 – 17 094</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-8956</td>
<td>L IV, horse bones</td>
<td>13 200 ± 300</td>
<td>15 507 – 16 641</td>
<td>1.000</td>
</tr>
<tr>
<td>GIN-14540</td>
<td></td>
<td>13 560 ± 320</td>
<td>15 943 – 17 003</td>
<td>1.000</td>
</tr>
<tr>
<td>AA-90653</td>
<td></td>
<td>13 830 ± 150</td>
<td>16 784 – 17 072</td>
<td>1.000</td>
</tr>
<tr>
<td>GIN-14541</td>
<td>L V, horse bones</td>
<td>12 600 ± 250</td>
<td>14 191 – 15 177</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-8957</td>
<td></td>
<td>13 100 ± 500</td>
<td>15 092 – 16 715</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-8932</td>
<td></td>
<td>13 270 ± 630</td>
<td>15 045 – 16 931</td>
<td>1.000</td>
</tr>
<tr>
<td>AA-90654</td>
<td></td>
<td>13 900 ± 140</td>
<td>16 832 – 17 120</td>
<td>1.000</td>
</tr>
<tr>
<td>GIN-14543</td>
<td></td>
<td>12 140 ± 300</td>
<td>13 667 – 14 631</td>
<td>1.000</td>
</tr>
<tr>
<td>GIN-14544</td>
<td></td>
<td>12 540 ± 470</td>
<td>13 899 – 15 556</td>
<td>1.000</td>
</tr>
<tr>
<td>LE-9620</td>
<td>L VI, horse bones</td>
<td>13 100 ± 600</td>
<td>14 932 – 16 805</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-9619</td>
<td></td>
<td>13 800 ± 150</td>
<td>16 763 – 17 048</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-8958</td>
<td></td>
<td>13 920 ± 175</td>
<td>16 853 – 17 114</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-9102</td>
<td></td>
<td>13 940 ± 180</td>
<td>16 820 – 17 198</td>
<td>1.000</td>
</tr>
<tr>
<td>Le-9618</td>
<td></td>
<td>14 080 ± 190</td>
<td>16 928 – 17 408</td>
<td>0.152</td>
</tr>
<tr>
<td>AA-90655</td>
<td></td>
<td>14 430 ± 160</td>
<td>17 245 – 17 336</td>
<td>0.152</td>
</tr>
</tbody>
</table>

*1 — Bessudnov et al., 2012; 2 — Lavrushin et al., 2011; 3 — Bessudnov, etc., 2013; 4 — not published
mudflow (Lavrushin et al., 2010). Lacustrine sediments occupy the area ~ 1 ha in the mouth of the ravine; they are overlain by carbonate mantle loam merging into the talus and stone-blocky sediments closer to the paleoslope. Divnogorie soil complex (10.4) above the limnic material including 2–3 embryonic soils separated by loams is capped by a Holocene soil.

10.3.1. Structure and texture of sediments. The material is light grayish–white, compact, slightly hard, chalk-like, heterogeneous with clear fine stratification.

The sediments consist of fine and pellitic material with few sand grains and micro-lenses of fine sandy material, coarser intercalations were not found. Texture is not uniform: fine (< 1 mm) horizontal light-colored carbonate lamina alternate with dark clayey ones. This microlamination is complicated by lenses and pockets, along with whirl-like layers even at a limited distance. Pockets are filled with a coarser aleuritic (silt) material.

The probable model of the formation is the following: silt material fell down on the unconsolidated liquid clay-carbonate suspension and produced deformation of fine laminated deposits. Additionally, micro slides were possible on the inclined slope surface.

10.3.2. Analytical data. Macro- and microfossils were not found, except for the few shell fragments of terrestrial mollusks. OC content is < 0.1 %.

According to the particle-size analysis, this terrigenous material consists predominantly of fine aleurite (i.e. clay and fine silt fractions, > 90 %) with some admixture of coarser silt and fine sand (9.7 % in total) (Table 10.2).

<table>
<thead>
<tr>
<th>Particle size fractions, mm</th>
<th>Content, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 – 0.25</td>
<td>0.1</td>
</tr>
<tr>
<td>0.25 – 0.1</td>
<td>2.7</td>
</tr>
<tr>
<td>0.1 – 0.01</td>
<td>7.0</td>
</tr>
<tr>
<td><0.01</td>
<td>90.2</td>
</tr>
</tbody>
</table>

Quite a few flat and rounded limestone fragments (> 0.5 and 0.5-0.25 mm in size) were found.

The chemical analysis has shown the following pattern for the main oxides: CaO – 35.52 %; MgO – 0.65 %; MnO – 0.03 %; FeO – 0 %; CO₂ – 28.03 %. Calcite predominated in the investigated carbonate material (CaCO₃ – 63.4 %), while dolomite is very low (MgCO₃ – 0.29 %); other carbonate minerals were not found.

The clay fraction was studied by XRD method. High content of calcite, some quartz and possible smectite and mica were identified in the powder-triturated specimens (Fig. 10.4).

10.3.3. Interpretation. The occurrence of fine pelitomorphic carbonate material in combination with silt and clay testify to the erosion and re-deposition of surrounding chalky Cretaceous rocks i.e. about the short-distance translocation. Fine detritus size and its well sorting permit to suppose a low fluvial dynamics and absence of water stream. Very fine horizontal lamination (< 1.0 mm) and alternation of carbonate and clay lamina are the indicators of seasonal sedimentation. During cold time with higher carbonate dissolution clay material was accumulated; under higher temperature more calcite was precipitated.
The content and composition of clay minerals were specified in oriented samples: smectite > kaolinite > mica > chlorite (Fig. 10.5).

Convolute stratification and lenses of coarse aleurites evidence the short periods of the accumulation of coarser material, probably due to temporal high slope erosion by snow-melting waters. Almost complete absence of organic plant matter allow to suppose very poor vegetation cover and weak pedogenesis at that time.

The formation of lacustrine sediments was taking place at the time of permafrost melting and solifluction slope flows. As a result, the specific limnic cryosuspensites have been formed in Divnogorie paleo-lake, similar to Khvalynean “chocolate clays” or cryosuspensites (Lavrushin et al., 2010). Various thickness of lamination allow supposing several sedimentation e
cycles: meter thickness can correspond to millennium cycles, decimeter thickness — to centennial, centimeter layers — to decades, and millimeter-thick fine lamina — to the annual ones.

10.4. Paleosols of MIS 2

The shoulder thickness of Divnogorie 9 is represented by alternation of weakly developed soils with alluvial-colluvial loams (Fig. 10.6., inset). The outcrop is capped by well-developed Holocene Rendzina overlain by agrogenic colluvium with the newly formed Rendzina (= Rendzic Chernozem) on the very top.

10.4.1. Morphological description of pedocomplex. The structure of the upper units was studied in several outcrops. The section 2/10(2) is the most representative. It is located upstream the ravine, at a distance of 10-15 m from the excavation Divnogorie 9, at the place of the footslope and the bottom of a shallow flattened hollow, formed after filling of the paleo-lake.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Depth, cm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AB 0-10</td>
<td>Zooturbated horizon of the modern soil</td>
</tr>
<tr>
<td>2</td>
<td>Pr 10-85</td>
<td>Heavy loam, light pale-yellow, heterogeneous, slightly compact; few pores; chalky angular inclusions of fine gravel up to stone size, with light yellow ferruginous coatings; sharp wavy upper boundary with zooturbations; clear smooth lower boundary.</td>
</tr>
<tr>
<td>3</td>
<td>Bs,b 85-105</td>
<td>Silty loam, rusty-yellow with yellowish hue; non-uniform; granular; up to 60-70 % of chalk fragments, they are more rounded with thick ferruginous coatings; abrupt smooth boundary.</td>
</tr>
<tr>
<td>4</td>
<td>2ABb 105-130</td>
<td>Silty loam, grayish-brown, heterogeneous, weak crumb and granular structure, more porous; abundant chalk gravel, relatively uniform in size, including weathered thin angular flat stones with thick brown coatings; smooth, clear to abrupt boundary.</td>
</tr>
<tr>
<td>5</td>
<td>2Bc,b 130-150</td>
<td>Clay loam, light pale; with fine soft calcareous concretions; many angular chalk fine gravel to stone with thick dark-yellow coatings; smooth clear boundary.</td>
</tr>
<tr>
<td>6</td>
<td>3Ab 150-190</td>
<td>Silty clay loam, pale-light gray, common chalk stones; gray finely porous fine crumbs; abrupt smooth boundary.</td>
</tr>
<tr>
<td>7</td>
<td>3Cb 190-240</td>
<td>Lenses of clay loam, light pale, partly laminated, more uniform; different-size porosity, many fine pores; very few calcareous pedofeatures, very few fine chalk inclusions; irregular boundary.</td>
</tr>
<tr>
<td>8</td>
<td>Pr 240-250</td>
<td>Loam, pale, granular; many large angular chalky inclusions 5-15 cm in size, with Fe coatings; fossil remains of horses (the first level of bones occurrence).</td>
</tr>
</tbody>
</table>

10.4.2. Analytical data. Particle-size composition (Table 10.4) confirms the existence of two strata: the lower limnic (unit 7) and the upper pedogenic (units 3, 5, 6), and proluvial-alluvial (units 2 and 4). The lake sediments are depleted in coarse fraction (~ 1 % sand, ~ 7 % coarse silt), and enriched in clay (> 33-35 %) and fine silt (47-48 %) fractions.

The upper pedogenic-proluvial-colluvial strata is marked by a significant increase of sand and coarse silt fractions (3-4 times), and the medium silt together with the decreased fine fractions, such
as clay and especially fine silt fractions. In turn, this layer is divided into 3-5 layers according to sand and coarse silt fractions. Intermediate paleosol (unit 4) is the most sandy, the lower paleosol (unit 6) is the least sandy (Table 10.4.).

Table 10.4. Particle-size analysis* of Divnogorie pedocomplex, section 2/10(2)

<table>
<thead>
<tr>
<th>Soil, Sediment</th>
<th>Unit</th>
<th>Horizon</th>
<th>Depth, cm</th>
<th>Particle Size Fractions (mm), %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Loss from 10 % HCl</td>
</tr>
<tr>
<td>Pr</td>
<td>2</td>
<td></td>
<td>60</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>Pd 1</td>
<td>3</td>
<td>Bs,b</td>
<td>95</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2ABBb</td>
<td>115</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2Be,b</td>
<td>135</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>3Ab</td>
<td></td>
<td>150</td>
<td>0.95</td>
</tr>
<tr>
<td>Pd 2</td>
<td>6</td>
<td>3Ab</td>
<td>165</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>3Ab</td>
<td></td>
<td>185</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3Cb, 215</td>
<td></td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>3Cb</td>
<td></td>
<td>220</td>
<td>0.93</td>
</tr>
</tbody>
</table>

* after Kachinsky with the preliminary 10 % HCl decalcination

Buried soils (units 3, 4, 6), and particularly the two lower paleosols display a small increase in organic carbon up to 0.61-0.73 % in the bottom soil (unit 6), and 0.61 % in the intermediate paleosol (unit 4). Carbon content in the lacustrine sediments (unit 7) and proluvial-colluvial deposits (unit 2) is minimal – 0.2-0.3 % (Table 10.5.).

The content of carbonates is high in all layers – more than ~ 70 %, which corresponds to their formation on weathered and re-deposited products of the Cretaceous chalk rocks. Minor fluctuations in CaCO3 content occur depending on the genesis of the units: limnic, pedogenic or proluvial-colluvial. The content of CaCO3 reaches 84 % in the unit 5, and is identified as a carbonate horizon of the intermediate paleosol (Table 10.5.).

All three paleosols (especially the very top soil) are characterized by increasing content of iron oxides, extracted by different methods (extracts of Tamm, Mehra and Jackson, and Bascombe). Significant increase of Al2O3, MnO, up to 0.125 % and 0.021 %, respectively, was found in the upper paleosol. Increased content of Fe2O3 (up to 0.081 %) was found in the upper specimen of the limnic thickness, which likely was subjected to the soil processes. The lowest content of all forms of Fe2O3 was identified in the proluvial-colluvial deposits: units 2 and 5 (Table 10.5.).

10.4.3. Palynology. According to the palynological analysis made by E.A. Spiridonova (Lavrushin et al, 2010, 2011), it was found that the upper strata in all samples is dominated by herbaceous and shrub pollen, with a lot of Artemisia and Chenopodiaceae; pine dominates among woody species. The pollen of the upper buried soil is also dominated by grasses and shrubs, pollen
grains of trees and especially of spruce were abundant in the uppermost sample. Palynological analysis is in good agreement with the results of the paleopedological study.

10.4.4. Interpretation. The most complete section of the upper colluvial-proluvial thickness include three strata of the Late Valdai weakly developed soils of Divnogorie pedocomplex. The upper initial soil is represented by the Bs horizon. The intermediate weakly developed soddy-calcareous soil has the profile AB (25 cm) Be (20 cm). The lower paleosol has a weakly developed profile A (40 cm)–C and is developed on a thin silty clay loam of lacustrine origin. Pale yellow loam lays below with abundant coarse fragments of chalk 5-15 cm in size, and remnants of horse bones.

The two lower soils upslope (above the excavation) are replaced by two pyrogenic layers. The obtained date 12 080 ± 80 yrs BP (13 816 – 14 000 cal. BP) for charcoal (IGAN-4247) from the lower interlayer corresponded to the lower paleosol indicating the end of Boelling interstadial. The two upper paleosols were formed in the Allerød interstadial reflecting its drier first and wetter second phases. All three soils can be named as Divnogorie Late Glacial pedocomplex – the last pedogenic formation before the current interglacial period – the Holocene.

The paleosols have different genesis. The upper paleosol (the first Allerød) is a weakly developed brown soil (Cambisol, WRB) formed in a forest periglacial environment. The intermediate paleosol (the second Allerød) is the weakly developed soddy-calcareous soil or Rendzina (~ Rendzic Leptosol, WRB). The lower soil, formed in Bolling warming was identified as a weakly developed meadow carbonate soil (Rendzic Chernozem, WRB). The lower and intermediate paleosols seem to be formed in the forest-steppe zone of the periglacial environment.
Divnogorie is the reserve and the plateau near the town of Liski in Voronezh region. It is situated at the confluence of Tikhaya Sosna (Silent Pine) and Don Rivers, on the boundary of the Central Russian Upland and the Oka-Don Lowland. The museum has existed since 1988. In 1991, it became a natural resort. The total area of the museum-resort is more than 11 km² (Fig. 11.1., inset).

Archaeological findings show that these areas have been reclaimed by people in the Stone Age. The geology of this territory is dominated by Cretaceous sediments. The area has received the name Divnogorie for whimsical residual chalk pillars up to 30 meters high, named by local people “diva” (a miracle). Cave churches have been built in the Cretaceous sediments in XVII century. The most famous is the Church of Our Lady of the Sicilian - carved out of a twenty-meter monolithic rock. It inherits the architectural traditions of the ancient temples of Mount Athos. There are several other sites of interest: Mayatsky ancient settlement of IX-century (remains of a Medieval fortress and necropolis), Chalk Canyon (balka of 500-600 m length and 30-40 m depth), Divnogorsky Holy Assumption Monastery (XVII century). From 1924 till the 1990ies, Divnogorsky monastery was
closed. There are also the reconstructed archaeological park “From nomads to the cities”, the outdoor geological and paleontological exposition, and the reconstructed village of potters for the visitors.

Local flora and fauna are other objects of interest in addition to the Cretaceous geology and specific forms of weathering. Several types of the steppe flora occur on the slopes of the plateau, including herb-feather grass steppes, representatives of alpine meadows and plant “settlers” from the Mediterranean, as well as relic plants. Although large mammals do not inhabit the territory of the museum-resort, the largest variety of insects can be found in Divnogorie. More than 25 species are listed in the “Red Book” as endangered.

Information from http://ru.wikipedia.org/wiki/Дивногорье
REFERENCES

Classification and Diagnostics of Soils of the USSR. 1977. Moscow, Kolos, 221 pp. (in Russian)

IUSS working group WRB. 2006. World reference base for soil resources. World soil resources reports No 103. Rome: FAO.

Pyle D.M., Ricketts G.D., Margari V. et al. 2006. Wide dispersal and deposition of distal tephra during the Pleistocene 'Campanian Ignimbrite/Y5' eruption, Italy. Quaternary Science Review, 25: 2713-2728

Sedov S.N., Khokhlova O.S., Sinitsyn A.A. et al. 2010. Late Pleistocene paleosol sequence as an instrument for the local paleogeographic reconstruction of the Kostenki 14 key section (Voronezh oblast) as an example. Eurasian Soil Sci., 8: 938-955

Simakova A.N. 2008. The development of vegetation in Russian plain and western Europe during the Late Pleistocene - Holocene average (33-4.8 kyr BP) (according to palynological data) Synopsis dis. ... candidate. Geology and Mineralogy. Sci., Moscow, Geological Institute RAS (in Russian)

Fig. 10.1. Stratigraphy and chronology of Divnogorie 9

Fig. 10.6. Morphology of Divnogorie pedocomplex, section 2/10 (2)
Fig. 11.1. Overview of natural architectural and archaeological Museum Divnogorie. The circles show the points of interest; colored dashed lines correspond to the different guided tours. The length of the blue and red routes is about 3 hours.