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Abstract

We suggest a method for calculating scattering phase shifts and energies and

widths of resonances which utilizes only eigenenergies obtained in variational

calculations with oscillator basis and their dependence on oscillator basis spac-

ing ~Ω. The validity of the suggested approach is verified in calculations with

model Woods–Saxon potentials and applied to calculations of resonances in nα

scattering using the no-core shell model.
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1 Introduction

To calculate energies of nuclear ground states and other bound states within various
shell model approaches, one conventionally starts by calculating the ~Ω-dependence of
the energy Eν(~Ω) of the bound state ν in some model space. The minimum of Eν(~Ω)
is correlated with the energy of the state ν. The convergence of calculations and
accuracy of the energy prediction is estimated by comparing with the results obtained
in neighboring model spaces. To improve the accuracy of theoretical predictions,
various extrapolation techniques have been suggested recently [1, 2, 3, 4] which make
it possible to estimate the binding energies in the complete infinite shell-model basis
space.

Is it possible to study nuclear states in the continuum, resonant states in partic-
ular, in the shell model using bound state techniques? A conventional belief is that
the energies of shell-model states in the continuum should be associated with the
resonance energies. It was shown however in Ref. [5] that the energies of shell-model
states may appear well above the energies of resonant states, especially for broad res-
onances. Moreover, the analysis of Ref. [5] clearly demonstrated that the shell model
should also generate some states in a non-resonant nuclear continuum. The nuclear
resonance properties can be studied in the Gamow shell model, including the ab initio

no-core Gamow shell model (NCGSM) [6]. Another option is to combine the shell
model with resonating group method (RGM). An impressive progress in description
of various nuclear reactions was achieved by means of the combined no-core shell
model/RGM (NCSM/RGM) approach [7]. Both NCGSM and NCSM/RGM compli-
cate essentially the shell model calculations. Is it possible to get some information
about the unbound nuclear states directly from the results of calculations in NCSM
or other versions of the nuclear shell model without introducing additional Berggren
basis states as in NCGSM or additional RGM calculations as in the NCSM/RGM
approach?

A complete study of the nuclear continuum can be performed by extending the nu-
clear shell model by J-matrix formalism in scattering theory. The J-matrix formalism
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has been suggested in atomic physics [8, 9]. Later it was independently rediscovered
in nuclear physics [10, 11] and was successfully used in shell-model applications [12].
However a direct implementation of the J-matrix formalism in modern large-scale
shell-model calculations is very complicated: the J-matrix requires calculation of a
huge number of eigenstates while modern shell-model codes usually utilize Lanczos
algorithm which provides only few lowest Hamiltonian eigenstates. Furthermore, the
J-matrix needs also the highest component of wave function of each eigenstate which
is usually obtained with a low precision.

On the other hand, the J-matrix formalism can be used for a simple calculation of
the scattering phase shift at a single energy Eν(~Ω) which is an eigenstate of the shell-
model Hamiltonian. In this case, the phase shift calculation requires only the value of
the energy Eν(~Ω) and the basis parameters (the ~Ω value and the basis size). Varying
the shell-model parameter ~Ω, we generate a variation of Eν(~Ω) and hence we can
calculate the phase shifts in some energy range. Calculations of scattering phase
shifts at the eigenenergies of the Hamiltonian in the oscillator basis and obtaining
the phase shift energy dependence by variation of basis parameters, was recently
performed in Ref. [4] using another (not the J-matrix) technique. A detailed study
of scattering phase shifts at eigenenergies of the Hamiltonian in arbitrary finite L2

basis was performed in Ref. [13]. This study was based on the theory of spectral shift
functions introduced by I. M. Lifshitz more than 60 years ago [14] and later forgotten
by physicists though used up to now by mathematicians (see Ref. [13] and references
therein).

In this contribution, we study the behavior of scattering phase shifts at the eigenen-
ergies Eν(~Ω) of the Hamiltonian in the oscillator basis. Our aim is to formulate cri-
teria for selecting eigenstates associated with resonances and to develop an approach
to evaluating energies and widths of these resonances. We are using the J-matrix
formalism which provides exact phase shifts in the systems with potential energy de-
scribed by a finite matrix in oscillator basis, i. e., just in the case of the nuclear shell
model.

A brief sketch of the J-matrix theory and examples of phase shift calculations with
model interactions are presented in the next Section. Application of the approach to
calculations of phase shifts at the eigenenergies Eν(~Ω) of the Hamiltonian in the os-
cillator basis, comparison with the spectral shift function theory of I. M. Lifshitz and
criteria for selecting eigenstates associated with resonances are discussed in Section 3.
In Section 4, we discuss the relation between the parameters of the Breit–Wigner
resonance formula and the ~Ω dependence of the eigenenergy Eν(~Ω) and give exam-
ples of calculating Breit–Wigner parameters with model interactions. An analysis of
resonance energies and widths in neutron-α scattering based on NCSM calculations
of 5He nucleus is presented in Section 5.

2 J-matrix formalism

We discuss here the simplest version of the J-matrix formalism — a single-channel
elastic scattering of an uncharged particle. We use notations of Refs. [15, 16] where
one can find more details of the J-matrix theory, the multi-channel version of this
approach, a technique of accounting for the long-range Coulomb interaction, etc.

The radial wave function ul(k, r) describing the relative motion in the partial wave
with orbital momentum l is expanded in the J-matrix formalism in infinite series of
radial oscillator functions Rnl(r),

ul(k, r) =

∞∑

n=0

anl(k)Rnl(r), (1)
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where

Rnl(r) = (−1)n

√
2n!

r0 Γ(n + l + 3/2)

(
r

r0

)l+1

exp

(
−

r2

2r20

)
L
l+ 1

2
n

(
r2

r20

)
. (2)

Here k is the relative motion momentum, Lα
n(z) are Laguerre polynomials and n is

the harmonic oscillator radial quantum number. Using expansion (1) we transform
the radial Schrödinger equation

H l ul(k, r) = E ul(k, r) (3)

into an infinite set of linear algebraic equations

∞∑

n′=0

(H l
nn′ − δnn′E)an′l(k) = 0, (4)

where H l
nn′ = T l

nn′ +V l
nn′ are matrix elements of the Hamiltonian H l in the oscillator

basis, and T l
nn′ and V l

nn′ are kinetic and potential energy matrix elements respectively.
The kinetic energy matrix elements T l

nn′ are known to form a tridiagonal matrix,
i. e., the only non-zero matrix elements are

T l
nn =

1

2
~Ω(2n + l + 3/2),

T l
n,n+1 = T l

n+1,n = −
1

2
~Ω

√
(n + 1)(n + l + 3/2).

(5)

These matrix elements are seen to increase linearly with n for large n. On the other
hand, the potential energy matrix elements V l

nn′ decrease as n, n′ → ∞. Hence the
kinetic energy dominates in the Hamiltonian matrix at large enough n and/or n′.
Therefore a reasonable approximation is to truncate the potential energy matrix at
large n and/or n′, i. e., to approximate the interaction V by a nonlocal separable

potential Ṽ with matrix elements

Ṽ l
nn′ =

{
V l
nn′ if n ≤ N and n′ ≤ N ;

0 if n > N or n′ > N.
(6)

The approximation (6) is the only approximation in the J-matrix approach; for sep-
arable interactions of the type (6), the J-matrix formalism suggests exact solutions.
Note, the kinetic energy matrix is not truncated in the J-matrix theory contrary to
conventional variational approaches like the shell model.

The complete infinite harmonic oscillator basis space can be divided into two
subspaces according to truncation (6): an internal subspace spanned by oscillator
functions with n ≤ N where the interaction V is accounted for and an asymptotic
subspace spanned by oscillator functions with n > N associated with the free motion.

Algebraic equations (4) in the asymptotic subspace take the form of a second order
finite-difference equation:

T l
nn−1 a

ass
n−1l(E) + (T l

nn − E) aassnl (E) + T l
nn+1 a

ass
n+1l(E) = 0. (7)

Any solution aassnl (E) of Eq. (7) can be expressed as a superposition of regular Snl(E)
and irregular Cnl(E) solutions,

aassnl (E) = cos δl Snl(E) + sin δl Cnl(E), n ≥ N, (8)

where δl is the scattering phase shift. The solutions Snl(E) and Cnl(E) have simple
analytical expressions [9, 11, 15]:

Snl(E) =

√
πn!

Γ(n + l + 3/2)
ql+1 exp

(
−
q2

2

)
Ll+1/2
n (q2), (9)
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Cnl(E) = (−1)l

√
πn!

Γ(n + l + 3/2)

q−l

Γ(−l + 1/2)

× exp

(
−
q2

2

)
Φ(−n− l − 1/2,−l + 1/2; q2), (10)

where Φ(a, b; z) is a confluent hypergeometric function and q is a dimensionless mo-
mentum,

q =

√
2E

~Ω
. (11)

The solutions anl(E) of the algebraic set (4) in the internal subspace n ≤ N are
related to the solutions aassnl (E) in the asymptotic subspace n ≥ N :

anl(E) = GnN T l
N,N+1 a

ass
N+1, l(E). (12)

Here matrix elements

Gnn′ = −
N∑

ν=0

〈n|ν〉〈ν|n′〉

Eν − E
(13)

are related to the Green’s function of the Hamiltonian HN which is the Hamil-
tonian H l truncated to the internal subspace, and are expressed through eigen-
energies Eν and eigenvectors 〈n|ν〉 of the Hamiltonian HN :

N∑

n′=0

H l
nn′〈n′|ν〉 = Eν〈n|ν〉, n ≤ N. (14)

A relation for calculation of the scattering phase shifts δl can be obtained through
the matching condition

aNl(E) = aassNl (E). (15)

Using Eqs. (8), (12) and (15) it is easy to obtain [9, 11, 15]

tan δl(E) = −
SNl(E) − GNN T l

N,N+1 SN+1,l(E)

CNl(E) − GNN T l
N,N+1CN+1,l(E)

. (16)

The scattering phase shifts δl(E) can be calculated using Eq. (16). An accept-
able range of J-matrix parameters (ARJP) ~Ω and N where the scattering phase
shifts δl(E) can be calculated with a reasonable precision, depends on the poten-
tial V . The convergence of phase shift calculations can be improved, and hence the
ARJP can be enlarged, by ‘smoothing’ the potential truncation in the oscillator basis
space, i. e., by replacing the matrix elements (6) by [17]

Vnn′ = σn
N Ṽnn′ σn′

N , (17)

where

σn
N =

1 − exp{−[α(n−N − 1)/(N + 1)]2}

1 − exp(−α2)
. (18)

We employ the smoothing (17)–(18) with the parameter α = 5 in our calculations
with model interactions presented below.

We illustrate the J-matrix calculations of the phase shifts in the vicinity of res-
onances in Fig. 1. We use a model Woods–Saxon potential with surface repulsion
generating a resonance,

V (r) = V0
1

1 + z
+ Vs

b

r

z

(1 + z)2
, (19)
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Figure 1: d wave (left) and s wave (right) phase shifts in the vicinity of resonances
calculated with model interactions (19) in the J-matrix approach with N = 5 and
various ~Ω values. The exact phase shifts generated by these interactions are depicted
by solid lines.

Table 1: Parameters of the model Woods–Saxon potentials (19) in d and s waves and
energies Er and widths Γ of resonances generated by these potentials.

Partial V0 Vs R a b Er Γ
wave L (MeV) (MeV) (fm) (fm) (fm) (MeV) (MeV)
d 2 −48.0 −20.0 3.08 0.53 3.774 0.8319 0.0612
s 0 −50.0 207.0 3.08 0.53 3.774 3.403 0.2250

where

z = exp

(
r −R

a

)
. (20)

The reduced mass m = 4
5mn (mn is a nucleon mass) was used in calculations that

corresponds to the scattering of neutron by α-particle. The parameters of the inter-
action (19) and energies and widths of model resonances generated by it in s and d
waves, are presented in Table 1.

The phase shift calculations are well-converged for N = 5 in the interval of ~Ω
values ranging between 25 and 40 MeV where the J-matrix phase shifts are indis-
tinguishable from the exact results depicted by solid curves in Fig. 1. If ~Ω is taken
outside this interval, the J-matrix phase shifts differ from exact as is seen in Fig. 1.
The interval of ~Ω values providing excellent description of the phase shifts expands
when the truncation boundary N increases. For example, the interval of acceptable
~Ω values starts from approximately 15 MeV in case of N = 10.

3 Phase shift and its derivative at E = Eν

When the energy of relative motion E is equal to one of eigenenergies Eν of the trun-
cated Hamiltonian HN , expression (16) for calculation of the phase shifts transforms
into

tan δl(Eν) = −
SN+1,l(Eν)

CN+1,l(Eν)
. (21)

The eigenenergy Eν depends on the size of the internal basis space N and on the
value of the oscillator spacing ~Ω, Eν = Eν(N, ~Ω). Therefore one can use Eq. (21)
to calculate the phase shifts δ(E) in some interval of energies E ranging from Eν(~Ω1)
through Eν(~Ω2) by varying ~Ω within ARJP from ~Ω1 through ~Ω2. The values
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Figure 2: d wave (left) and s wave (right) phase shifts in the vicinity of resonances
calculated with model interactions (19) at the eigenenergies of the truncated Hamil-
tonian HN by means of Eq. (21) with N = 5 and 30 and various ~Ω. The lowest ~Ω
value within ARJP in case of N = 5 truncation is ~Ω1 ≈ 25 MeV, the respective
points on the phase shift curves are indicated.

of the lower ~Ω1 and upper ~Ω2 ARJP bounds depend, of course, on N and gen-
erally speaking are different for different states ν = 0, 1, 2, ... If the ARJP is wide
enough and the energy interval [Eν(~Ω1), Eν(~Ω2)] covers completely the vicinity
of the resonance, the resonance parameters are easily restored from the phase shift
behavior in this energy interval. In this case the resonance parameters can be calcu-
lated through the ~Ω-dependence of eigenenergy Eν = Eν(~Ω) obtained in a standard
variational calculation with oscillator basis. However, in some cases the energy in-
terval [Eν(~Ω1), Eν(~Ω2)] covers only a fraction, sometimes, a small fraction of the
energy range of the resonant behavior of the phase shifts. In those cases, the extrac-
tion of the resonance energy and width is more complicated and less accurate. More,
sometimes the energy interval [Eν(~Ω1), Eν(~Ω2)] corresponds to a non-resonant scat-
tering as was clearly demonstrated in Ref. [5].

We demonstrate in Fig. 2 calculations of phase shifts by means of Eq. (21) in
the vicinity of resonances generated in s and d waves by model interactions (19). In
the case of d wave, calculations with N = 5 and 30 are performed with the lowest
eigenstate (ν = 0) obtained with ~Ω ranging from 2.5 to 50 MeV. In the case of s
wave, varying ~Ω in the same interval from 2.5 to 50 MeV in calculations with N = 5,
we obtain the variation of the lowest eigenstate energy E0 between 0.64 and 3.57 MeV
covering the vicinity of the resonance. However in calculations with N = 30, the lowest
eigenstate energy E0 varies from 0.11 to 3.15 MeV due to variation of ~Ω in the same
interval, i. e., E0 lies below the resonance region. The vicinity of the resonance in this
case is completely covered by variation of the energy E1 of the next state with ν = 1,
and we use E1 for calculations of the phase shifts in the resonance region. We obtain
an excellent description of the phase shifts if the J-matrix parameters are lying within
ARJP. However when ~Ω goes outside ARJP, the obtained phase shifts start deviating
from the exact ones. This deviation can be very large when ~Ω is far enough from
ARJP and the phase shifts may become ambiguous in some energy interval due to
unphysical ‘backbending’ energy dependence (see the left panel of Fig. 2) obtained
by variation of ~Ω far outside ARJP.

It is interesting to compare the J-matrix approach to calculations of phase shifts
at eigenenergies Eν with the approach utilizing the spectral shift functions of I. M. Lif-
shitz [14]. We note that the phase shifts at eigenenergies Eν due to Eq. (21) are equal
to

δl(Eν) = fN+1,l(Eν) + mπ, (22)
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Figure 3: Universal function fN+1,l(E) in case of N = 4 and l = 2 and its approxima-
tion in the Lifshitz spectral shift function method. The vertical solid lines correspond
to eigenenergies E0

ν) of the truncated kinetic energy TN .

where m can be zero or takes some positive or negative integer value, and the function

fnl(E) = − arctan

(
Snl(E)

Cnl(E)

)
. (23)

Due to Eqs. (9), (10) and (23), it is clear that fnl(E) depends on the energy E
and ~Ω only in combination E/~Ω. fnl(E) is a monotonically decreasing function of
a dimensionless energy ε = E/~Ω which goes down by (n + 1)π as ε increases from 0
to infinity. An example of this function corresponding to the case n = 5 and l = 2
is presented in Fig. 3. The values of the function fN+1,l(Eν) provide the J-matrix
phase shift δl at the eigenenergy Eν for a given ~Ω value as is shown in Fig. 4 where
we present in a larger scale a piece of the function fN+1,l(E) shifted to the interval
of its values [0, π] [the shift of this function by mπ is of no importance since we can
always redefine m in Eq. (22)].

Within the Lifshitz spectral shift function approach [14, 13], the phase shift is
calculated as

δl(Eν) = −π
Eν − E0

ν

E0
ν+1 − E0

ν

. (24)

Here Eν are the eigenvalues of the truncated Hamiltonian HN while E0
ν are the

eigenvalues of the kinetic energy TN truncated to the matrix of the same size as HN .
We recall that the kinetic energy has a tridiagonal matrix (5) in the oscillator basis, the
functions Snl(E) are regular solutions of the respective finite-difference equation (7),
and the eigenenergies E0

ν of the truncated kinetic energy TN can be obtained by
solving this finite-difference equation with the boundary condition

SN+1,l(E
0
ν) = 0. (25)

Therefore, due to Eq. (23), the kinetic energy eigenstates correspond to the energies
at which tan fN+1,l(E

0
ν) = 0 or when the function fN+1,l(E

0
ν) = mπ, i. e., when the

plot of the function fN+1,l(E) crosses the horizontal lines at π, 2π, ... as is shown in
Fig. 3. We connect these crossing points by straight lines in Fig. 3. A set of these
straight lines is seen to provide a good approximation for the function fN+1,l(E).
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Figure 4: Calculation of phase shifts at eigenenergies Eν in the J-matrix approach
and using Lifshitz spectral shift function method. Dashed lines depict the func-
tion fN+1,l(E) for various ~Ω values, solid straight lines depict approximation of
this function in the Lifshitz approach. E10
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ν are eigenenergies obtained

with ~Ω = 10 and 15 MeV respectively. Crosses (circles) show the J-matrix (Lifshitz)
phase shifts obtained with ~Ω = 10 and 15 MeV, solid curve shows the J-matrix
phase shifts in a continuous energy interval.

According to Eq. (24), the phase shifts at eigenenergies Eν in the Lifshitz approach
are obtained as the values of this straight-line approximation of the function fN+1,l(E)
at energies Eν as shown in Fig. 4.

It is seen that the J-matrix and Lifshitz approach provide close results for the
phase shifts if N is large enough when the strait-line Lifshitz approximation of the
function fN+1,l(E) is accurate. In Fig. 4, the difference of δl(Eν) values obtained
by these approaches is the difference between positions of crosses and circles. It is
interesting that the model interaction used to prepare this figure provides exactly
the same phase shifts δl(Eν) for both methods in calculations with ~Ω = 10 MeV. A
comparison of results of calculations by means of these two approaches of phase shifts
generated by our model interaction (19) in the d wave, is shown in Fig. 5.

It is also interesting to compare our J-matrix approach with the method of Ref. [4]
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Figure 5: Comparison of d wave phase shifts obtained by J-matrix and Lifshitz meth-
ods for the model interaction (19) with N = 10 and 20.



154 A. I. Mazur, A. M. Shirokov, J. P. Vary, P. Maris and I. A. Mazur

where the phase shifts at the eigenenergies of the Hamiltonian HN truncated in the
oscillator basis was suggested to obtain through the following equation:

tan δl(Eν) =
jl(kνLi)

nl(kνLi)
. (26)

Here jl(x) and nl(x) are spherical Bessel and Neumann functions, momentum kν =√
2mEν/~2, and for low momenta

Li =
√

2(2N + l + 3/2 + i) r0, (27)

r0 =

√
~

mΩ
. (28)

The parameter Li was involved in Ref. [4] in the study of convergence properties of
bound states of the Hamiltonian HN , and the best fit of convergence behavior resulted
in i = 2.

Equation (26) can be easily obtained from our J-matrix formula (21) in the limit
of large N . Asymptotics of functions Snl(E) and Cnl(E) were studied in detail in
Ref. [18]. In the limit of large n, more precisely, for n ≫ q, the functions (9) and (10)
are well approximated by spherical Bessel and Neumann functions [18, 15]:

Snl(E) ≈ 2kr0(n + l/2 + 3/4)
1
4 jl

(
2kr0

√
n + l/2 + 3/4

)
, (29)

Cnl(E) ≈ −2kr0(n + l/2 + 3/4)
1
4 nl

(
2kr0

√
n + l/2 + 3/4

)
. (30)

Substituting Snl(E) and Cnl(E) in Eq. (21) by their asymptotics (29) and (30), we
immediately obtain Eq. (26). The value of i = 2 for the parameter Li unambiguously
follows from the fact that Snl(E) and Cnl(E) appear in Eq. (21) with n = N + 1.

It is easy to conclude from Fig. 3 that eigenvalues Eν lying in the vicinity of the
resonance where the phase shift is rapidly increasing, should change only slightly when
the value of ~Ω is changed and hence the derivative dEν

~dΩ should be small and positive.
A wider resonance is associated with a less rapid increase of δl and a larger value of
the derivative dEν

~dΩ . One should be however accurate with making conclusions about

the relative widths of resonances based on comparison of values of derivatives dEν

~dΩ of
respective eigenvalues Eν . First, the slope of the function fN+1,l(E) decreases with
energy E and hence the derivatives dEν

~dΩ are different for the resonances of the same
width but of different energy. Next, the slope of fN+1,l(E) depends also on the orbital
momentum l and hence the derivatives dEν

~dΩ are different for the resonances of the same
width and energy but of different l. It is also important to get the eigenvalue Eν in
the vicinity of the resonance: the derivative dEν

~dΩ decreases when the eigenvalue Eν is

shifted to the edge of the resonance region where the slope of δl(E) decreases; dEν

~dΩ
gets even larger values in the non-resonant region.

Which eigenvalues Eν are associated with a resonance and which are not? It
is important to find a condition able to distinguish these eigenvalues. The phase
shift δl(E) is increasing and hence the derivative dδl/dE is positive in the resonance
region. We need to find an expression for δl(E) at the energies E = Eν . Using Eqs. (9)
and (10) and expressions for the derivatives of Laguerre polynomials and confluent
hypergeometric function [19], we obtain:

dSnl(E)

dE
=

(
n + l/2 + 1/2

E
−

1

~Ω

)
Snl(E) −

√
n(n + l + 1/2)

E
Sn−1,l(E), (31)

dCnl(E)

dE
=

(
n + l/2 + 1/2

E
−

1

~Ω

)
Cnl(E) −

√
n(n + l + 1/2)

E
Cn−1,l(E). (32)
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We note that Snl(E) and Cnl(E) are two independent solutions of the second order
finite-difference equation (7), and the Casorati determinant of these solutions,

Kn(C, S) ≡ Cn+1,l(E)Sn,l(E) − Cn,l(E)Sn+1,l(E), (33)

which plays the same role in the theory of linear difference equations as Wronskian
in the theory of linear differential equations, differs from zero:

T l
n,n+1 Kn(C, S) =

q

2
~Ω. (34)

Using Eqs. (16), (31)–(34) we obtain

d δl(E)

dE

∣∣∣∣
E=Eν

=
qν
~Ω

·
1

S2
N+1,l(Eν) + C2

N+1,l(Eν)

×

[
2

〈N |ν〉2(N + 1)(N + l + 3/2)
−

2

q2ν

]
, (35)

where qν ≡
√

2Eν/~Ω. Expression (35) involves not only the eigenvalue Eν but also
the last component of the eigenvector 〈N |ν〉. We would like to eliminate 〈N |ν〉 in the

expression for the derivative d δl(E)
dE at E = Eν .

The phase shift δl at E = Eν in our approach is expressed through the func-
tion fN+1,l defined by Eq. (23). The function fN+1,l depends on the eigenenergy Eν

and the oscillator basis parameter ~Ω, fN+1,l = fN+1,l(Eν , ~Ω). We recall that the
value of Eν depends on ~Ω. Suppose that eigenvalue E′

ν is close enough to Eν and
the respective ~Ω′ is close enough to ~Ω. In this case, we have:

fN+1,l(E
′

ν , ~Ω′) ≃ fN+1,l(Eν , ~Ω) +
∂fN+1,l

∂E
(E′

ν − Eν) +
∂fN+1,l

∂~Ω
(~Ω′ − ~Ω). (36)

The phase shift δl(E) depends only on the energy E and should not depend on ~Ω.
Therefore

δl(E
′

ν) ≃ δl(Eν) +
dδl
dE

(E′

ν − Eν). (37)

The partial derivatives
∂fN+1,l

∂E and
∂fN+1,l

∂~Ω entering Eq. (36) can be calculated using
Eqs. (23), (9) and (10), and then from Eqs. (35)–(37) we obtain

dEν

d~Ω
≃

(E′

ν − Eν)

(~Ω′ − ~Ω)
≃

1

2
〈N |ν〉2(N + 1)(N + l + 3/2). (38)

Using Eq. (38), we rewrite the expression (35) as

d δl(E)

dE

∣∣∣∣
E=Eν

≃
qν
~Ω

·
1

S2
N+1,l(Eν) + C2

N+1,l(Eν)

(
1

dEν/d~Ω
−

~Ω

Eν

)
. (39)

Since the phase shift derivative dδl(E)
dE > 0 in the vicinity of resonance, it follows

from Eq. (39) that
Eν

~Ω
>

dEν

d~Ω
> 0 (40)

in the resonance region. If this inequality is not fulfilled, the eigenvalue Eν corresponds
to a non-resonant phase shift behavior.

One should be careful with using condition (40) for determining which of the
Hamiltonian eigenstates obtained in a variational calculation with oscillator basis can
be associated with a resonance. In such variational calculations, in the nuclear shell
model in particular, each of the obtained eigenenergies usually decreases with ~Ω at
small enough ~Ω values, gets a variational minimum at some ~Ω = ~Ω0 and starts
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increasing after this minimum. One should use only the increasing part of the func-
tion Eν(~Ω) corresponding to ~Ω > ~Ω0 for the analysis by means of inequality (40).
The eigenvalues obtained at small ~Ω < ~Ω0 before the minimum of Eν(~Ω) may need
strong so-called ultraviolet corrections [2, 3, 4] and thus lie outside ARJP. The ~Ω
regions corresponding to large negative dEν

d~Ω cause the unphysical ‘backbending’ en-
ergy dependence of phase shift shown in the left panel of Fig. 2. Note also that
in many-body calculations the energies Eν(~Ω) should be calculated relative to the
respective threshold. For example, in case of resonance associated with neutron scat-
tered by nucleus AZ, one should calculate the ground state energy EA

0 (~Ω) and the
energy EA+1

ν (~Ω) of the state of interest in the nucleus A+1Z with respective oscillator
quanta of excitations to obtain Eν(~Ω) as

Eν(~Ω) = EA+1
ν (~Ω) − EA

0 (~Ω). (41)

4 Breit–Wigner resonance

In a variational calculation with the oscillator basis with some truncation boundary N
we obtain the energy Eν of state ν as a function of oscillator parameter ~Ω, Eν =
Eν(~Ω). As was shown above, using the function Eν(~Ω), we can calculate the phase
shifts δl(E) in some energy interval [Eν(~Ω1), Eν(~Ω2)] where both ~Ω1 and ~Ω2 are
within ARJP. Generally the interval [Eν(~Ω1), Eν(~Ω2)] shifts down in energy and
increases with N . If this energy interval includes a large enough slice of energy in the
vicinity of some resonance, we can extract the resonance energy and width.

The phase shifts in the vicinity of resonance are conventionally described by the
Breit–Wigner resonance formula [20],

δl(E) = arctan

(
Γ/2

Er − E

)
− φl, (42)

where Er and Γ are resonance energy and width respectively. The background
phase φl is supposed to change only slightly in the resonance region, i. e., we can
suppose φl = const in the vicinity of the resonance to obtain

dδl
dE

=
Γ/2

(Er − E)2 + (Γ/2)2
. (43)

The phase shift derivative dδl
dE gets its maximum at E = Er. This maximal value

of dδl
dE is related to the resonance width Γ:

Γ = 2

(
dδl
dE

)
−1

∣∣∣∣∣
E=Er

. (44)

Combining Eqs. (39) and (43), we obtain

Γ/2

(Er − Eν)2 + (Γ/2)2
=

qν
~Ω

·
1

S2
N+1,l(Eν) + C2

N+1,l(Eν)

(
1

dEν/d~Ω
−

~Ω

Eν

)
. (45)

This equation can be used directly for getting resonance parameters Er and Γ from the
fit to RHS of Eq. (45) where the function Eν(~Ω) is obtained in variational calculations
with oscillator basis with ~Ω values from ARJP. Having Er and Γ one can easily obtain
the background phase φl from Eq. (42) if some of the eigenenergies Eν(~Ω) lie outside
the resonance region.

We show in Fig. 6 the phase shifts supported by our model interaction (19) in the
vicinities of resonances in s and d waves and their approximation in the vicinities of
resonances by the Breit–Wigner formula (42) with parameters fitted using Eq. (45).
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Figure 6: Phase shifts in the vicinity of resonances in d (left) and s (right) waves,
resonance description by the Breit–Wigner formula with parameters Er and Γ ob-
tained by the fit using Eq. (45) and phase shifts used in this fit obtained by our
approach [Eq. (21)] at eigenenergies Eν(~Ω) calculated with various ~Ω values and
truncations N = 10, 20 and 30. Filled symbols are the phase shifts obtained with the
lowest eigenstates E0(~Ω), open symbols are the phase shifts obtained with the first
excited eigenstates E1(~Ω).

The phase shifts at eigenenergies Eν(~Ω) used in this fit are obtained with Hamilto-
nian truncations N = 10, 20 and 30 and are also depicted in Fig. 6. In the case of
s wave, the lowest eigenstates E0(~Ω) lie below the resonant region, and we use the
first excited states E1(~Ω) for the resonance parameter fit (the respective phase shifts
are shown in Fig. 6 by open symbols). The Breit–Wigner formula is seen to nicely
reproduce the phase shifts in the resonance region. The Breit–Wigner parameters
obtained by the fit are: Er = 0.8315 MeV, Γ = 0.0602 MeV and φl = 5◦ in the d
wave and Er = 3.405 MeV, Γ = 0.230 MeV and φl = 76◦ in the s wave. The fitted
values of the resonance energies Er and widths Γ reproduce with high precision the
exact values given in Table 1.

The highly accurate description of the resonance parameters become possible be-
cause we use large enough truncation boundaries in calculations. It is also important
to use a ‘global’ fit to a large enough set of eigenvalues Eν(~Ω) covering the whole
resonance region as the sets shown in Fig. 6. If we have restrictions in the size of the
Hamiltonian, i. e., the values of N are not large enough, or the eigenvalues Eν(~Ω)
are available only at the edge of the resonance region, the quality of the fit is reduced.

We illustrate this statement by Fig. 7 where we demonstrate the results obtained
with model interaction (19) with various truncations of the Hamiltonian. All results
shown in this figure are obtained with eigenvalues Eν(~Ω) fitting inequality (40)
which are shown in the upper panels. The middle and lower panels demonstrate
‘local’ fits of resonance energies Er and widths Γ, i. e., the fits utilizing only three
neighboring eigenvalues Eν(~Ωi−1), Eν(~Ωi) and Eν(~Ωi+1) obtained with the same
truncation N . We see that in the interval of ~Ω values where the eigenstates Eν(~Ω)
lie in the resonance region, the locally fitted resonance energies Er and widths Γ form
plateaus well reproducing the exact values. These plateaus are wider for larger N and
for the lowest eigenstates E0(~Ω) than for excited eigenstates E1(~Ω). The plateaus
for resonance energies Er seem to be wider than for widths Γ; note however very
different scales in the middle and lower panels. In the case of the s wave, the plateau
for Er is obtained even with a very small Hamiltonian truncated at N = 5. Note that
a zigzag in Er at ~Ω < 25 MeV is due to the fact that these ~Ω values are outside
ARJP for N = 5.
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Figure 7: Eigenenergies Eν (a, d) as functions of ~Ω, resonance energies Er (b, e)
and widths Γ (c, f) obtained in ‘local’ fits (see text) with various truncations N for
the d (left) and s (right) wave resonances. Solid lines depicts exact values of Er and Γ,
shaded areas in panels a and d show the resonance region. Filled symbols are the
results for the lowest eigenstates E0(~Ω) while open symbols are the results for the
first excited eigenstates E1(~Ω).

5 Analysis of resonant states in 5He nucleus based

on NCSM calculations

The suggested approach to extracting the resonance energy and width can be
applied to any variational calculation with oscillator basis generating a set of eigen-
values Eν(~Ω) forming a function of the oscillator basis spacing ~Ω. As an
example, we perform calculations of 5He within NCSM [21] and analyze unbound
states 3/2− and 1/2− in this nucleus. These states are observed as wide reso-
nances in neutron scattering by α-particles; the 3/2− resonance has an energy Er =
0.80 MeV and width Γ = 0.65 MeV while the resonance parameters of the 1/2− state
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Figure 8: Energies E0(~Ω) of nα relative motion associated with 3/2− (left) and 1/2−

(right) resonance states in 5He obtained in NCSM calculations of 5He and 4He nuclei
with various Nmax truncations using JISP16 NN interaction. Filed (open) symbols
depict eigenstates which fit (do not fit) inequality (40).

are Er = 2.07 MeV and Γ = 5.57 MeV [22]. We use the JISP16 NN interaction [23]
in our NCSM calculations. It is interesting to note that JISP16 and earlier versions
of this type of NN interaction, ISTP [24] and JISP6 [25], arise from an application
of J-matrix formalism to an inverse scattering treatment of the NN phase shift data.

A very important parameter of NCSM calculations is Nmax, maximal quanta of
oscillator excitations included in the NCSM many-body basis space. It is easy to
conclude that relation between the NCSM basis truncation Nmax and the J-matrix
truncation N associated with the principal quantum number of nα relative motion
oscillator functions is Nmax = 2N in case of 3/2− and 1/2− states in 5He.

The 3/2− and 1/2− resonances in 5He are associated with the lowest eigenstates of

respective spin-parity E
(5He,Jπ)
Nmax

(~Ω) obtained in the NCSM calculations. Note how-

ever that we need for the analysis of resonance energy and width the energy E0(~Ω)
of nα relative motion, i. e., the energy relative to the nα threshold given by Eq. (41)
which in our case reads

E0(~Ω) = E
(5He,Jπ)
Nmax

(~Ω) − E
(4He,gs)
Nmax

(~Ω), (46)

where E
(4He,gs)
Nmax

(~Ω) is the 4He ground state energy obtained in NCSM with the

same Nmax and ~Ω. The plots of energies E0(~Ω) obtained with various NCSM
truncations Nmax are shown in Fig. 8. Note, some of nα eigenstates E0(~Ω) do not
fit inequalities (40) and cannot be used for calculations of resonance energy Er and
width Γ (they are shown by open symbols in Fig. 8).

We use only eigenstates E0(~Ω) to calculate phase shifts shown in Fig. 9. The
borders of ARJP are unknown. We see that some phase shifts values obtained with
different Nmax truncations are in good correspondence and lie on the same curve.
However we see that phase shifts calculated using few lowest eigenstates E0(~Ω)
available for a given small enough basis spaces, i. e., basis spaces characterized by
small enough Nmax values, deviate essentially from the common curve. These small-
est eigenstates correspond to lowest ~Ω values which evidently are outside the ARJP.
The deviation from the common curve decreases as Nmax increases. We should use
for the calculation of Breit–Wigner parameters Er and Γ only eigenstates E0(~Ω)
providing the phase shifts forming the common phase shift curve and fitting inequal-
ities (40), i. e., lying in the resonance region. As a result, we obtain Er = 1.41 MeV
and Γ = 0.24 MeV for the 3/2− resonance and Er = 2.55 MeV and Γ = 0.91 MeV
for the 1/2− resonance. The respective Breit–Wigner phase shifts are also shown in
Fig. 9.
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Figure 9: nα phase shifts in 3/2− (left) and 1/2− (right) states obtained by means
of Eq. (21) using eigenstates E0(~Ω) depicted in Fig. 8 and Breit–Wigner phase
shifts (42) calculated with Er and Γ obtained by the fit. Filed (open) symbols corre-
spond to eigenstates fitting (not fitting) inequality (40). Experimental data are taken
from Ref. [26].

Our calculation overestimates resonance energies Er and underestimates resonance
widths Γ for both 3/2− and 1/2− resonances. This is clear from comparison with
their experimental values (Er = 0.80 MeV and Γ = 0.65 MeV for the 3/2− resonance
and Er = 2.07 MeV and Γ = 5.57 MeV for the 1/2− resonance) and from comparison
of our phase shifts with experimental data of Ref. [26] shown in Fig. 9. The JISP16
interaction sifts the 5He resonance states up in energy by about 0.5 MeV as compared
to experiment. We note that the JISP16 interaction causes also underbinding of both
6Li and 6He nuclei by approximately 0.5 MeV [1]. This seems to be a drawback of
the JISP16 interaction in description of nuclei at the beginning of p-shell which can
be hopefully eliminated in future versions of this interaction by a more careful fit to
experimental data which can include information about resonant states.

6 Conclusions

We formulated a simple method of accurate calculation of phase shifts which uses only
eigenenergies Eν obtained by diagonalization of the Hamiltonian in the oscillator
basis and their dependence on the oscillator basis parameter ~Ω. We analyze the
relation of the suggested approach to other methods available in the literature. The
method is illustrated by calculations of two-body scattering with model Woods–Saxon
potentials.

Next we use this method to formulate an approach for calculating resonance en-
ergies and widths which can be applied to the analysis of results for energies above
open thresholds obtained in any variational calculation with the oscillator basis, in
the nuclear shell model in particular. We illustrate the accuracy of analysis of reso-
nant parameters in calculations with model Woods–Saxon potentials and apply the
suggested approach to calculation of resonances in nα scattering in NCSM with the
JISP16 NN interaction.
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