
CALCULATING SEMANTIC SIMILARITY BETWEEN
FACTS

Sergey Afonin, Denis Golomazov
Institute of Mechanics, Moscow State University, Michurinskij av. 1, Moscow, Russia

serg@msu.ru, denis.golomazov@gmail.com

Keywords: semantic similarity, events.

Abstract: The present paper is devoted to the calculation of semantic similarity between facts. A fact is
considered as a single sentence including three parts, “what happened”, “where” and “when”.
We propose a function calculating the semantic similarity and provide some experimental results
justifying it.

1 Introduction

People use search engines to find information
on any subject. Sometimes they search for facts.
A fact is something that has happened in a cer-
tain place at a certain time. Why do people need
information on facts? If they just want to check
news they use news portals, not search engines.
That’s true, but every once in awhile people want
to find additional information about a fact. For
example, they have heard from a friend about
some fact and want to read more about it. Or
it can be a journalist creating a dossier for a per-
son and they want to check if some rumours are
true facts. Moreover, fact search provides a basis
for task of revealing relations between facts and
other data mining problems.

The problem is that fact search is a type of
search that search engines currently cannot al-
ways handle properly. Let us consider some local
news, for example, bank robbery in Livermore,
California in July 2008. A user wants to find some
additional information on the fact. Suppose they
forgot the name of the city and ask Google with
the query California bank robbery in July 2008.
No relevant results are on the first page. The
same situation occurs if we ask Google with the
query Livermore bank burglary in July 2008. This
probably happens due to the not great impor-
tance of the fact, and low page rank of the portal

on which the news had been posted. The search
engine ranks the page describing the event rela-
tively low since there was not exact matching, and
there were a lot of robberies in California during
that period. Another problem of modern search
engines is the inability to perform almost any an-
alytics. For example, we can not get neither a list
of all events in some city for some period, nor a
list of cities in which bank robberies occured in
July 2008, nor a list of dates on which robberies
in California took place.

Fact search appears to be a more complicated
task than ordinary keyword search. The main
reason is that a fact can be represented in many
ways, using synonyms, abbreviations, with some
keywords included or omitted. The second rea-
son is that a fact can be inferred basing on infor-
mation distributed over sentences or even docu-
ments.

Let us discuss a virtual system that can per-
form fact search. It operates as follows. First, it
crawls the web and extracts facts from web pages.
Second, it lets a user enter a sentence describing
a fact and returns semantically similar facts from
the database. During this process it somehow cal-
culates the “trust rate” of the fact, i.e. how likely
is the fact to be true. To construct such a system,
we divide the fact search task into four steps.

• Extraction of facts from large number of texts



in natural language.

• Calculating semantic similarity between facts

• Calculating the trust rate of a fact.

• Efficiently perform similar facts search on a
large database. For example, this can include
development of index structures for facts.

In this paper we focus on the task of calculat-
ing semantic similarity between facts. We believe
this task to be the cornerstone of the fact search
problem. For example, the similar facts search
task can be easily, though not efficiently solved
with the help of a semantic similarity function
and linear search. Having a semantic similarity
function for facts, one can apply it for such com-
mon tasks as fact classification and clustering.
Fact classification and clustering can be used for
automatic classification and clustering of small
portions of text, such as news headlines, twitter
updates, sms etc. It can be also used for forecast-
ing. Suppose some facts have recently occured
that are semantically close to war (e.g. terrorism,
provocations, threats etc.). This can be automat-
ically considered as a warning of an upcoming
war and signalize that appropriate means should
be taken. We consider finding consistent pat-
terns and forecasting of events using large-scale
datasets as the further development of the sys-
tem.

2 Related Work

The problem of semantic similarity calculation
is a wide one. The objects to calculate similarity
between can be single words, groups of words,
sentences, or texts. In this paper we consider
sentences of a special kind, namely that describe
facts. In this section we provide a brief review of
papers devoted to semantic similarity calculation
task.

Semantic similarity of terms using an ontol-
ogy is studied in (Maguitman et al., 2005) and
(Varelas et al., 2005). The authors of the first
paper state that graph-based similarity function
is more efficient than traditional tree-based ones.
WordNet ontology is used in the second paper.

In (Bollegala et al., 2009) semantic similarity
between words is computed using automatically
extracted lexical patterns. The method proposed
in the paper is stated to outperform all existing
web-based semantic similarity measures. Essen-
tially, to calculate similarity, an ontology is being
constructed under the hood and then a metric is

applied using the ontology. This approach seems
very promising and we use a similar approach in
the present paper.

In (Turney and Littman, 2005) and (Turney,
2006) an algorithm for choosing analogous pairs
of words is provided. For example, for the pair
“mason-stone” it yields “carpenter-wood”.

A vast number of researches, e.g. (Pantel and
Lin, 2002), (Mccarthy et al., 2004), (Purandare
and Pedersen, 2004) are devoted to the prob-
lem of determining senses of a word and cluster-
ing them. A promising paper is (Udani et al.,
2005) in which an unsupervised method for clus-
tering noun senses using Web search results is
presented. The algorithm allows to determine
real-world senses rather than dictionary ones and
yields high accuracy (over 80%). A thorough re-
view of algorithms for determining word senses is
provided in (Navigli, 2009).

It should be noted that all of the papers men-
tioned are devoted to the task of calculating sim-
ilarity between terms and between texts. In pa-
per (Islam and Inkpen, 2008) authors approach
the problem of calculating similarity between sen-
tences and short texts. They combine corpus-
based methods with string similarity function
(namely, a modified version of the Longest Com-
mon Subsequence algorithm). A particularly rel-
evant paper is (Li et al., 2006) in which the task of
calculating semantic similarity between sentence
is considered. The algorithm proposed by the au-
thors uses information from a structured lexical
database and from corpus statistics.

To conclude the brief review of related work
it should be mentioned that there are a lot of
papers considering semantic similarity between
terms, texts, and sentences. In this paper we
consider sentences of a special kind, namely rep-
resenting an event, or fact, that occured in some
place at some time. We have not found any pa-
pers devoted to this particular problem, though
some algorithms described in relevant papers can
be applied and there exist works on event descrip-
tion detection and classification, e.g. (Naughton
et al., 2010).

3 Semantic Similarity Between
Facts

We consider facts consisting of three parts:
“what happened, where and when”, so a fact F
is a triple F = (what, where, when). Our goal
is a function S(F1, F2) that calculates semantic



similarity between facts F1 and F2. The function
S takes values between 0 and 1, and higher value
means higher similarity. In this section we discuss
properties that such function should satisfy.

First of all, let us note that two facts should
be trated similar if all their components are pair-
wise similar. It seems unlikely that there exists
a “universal” semantic similarity function suit-
bale for all three part, so three separate functions
st, sr, and sn mesauring semantic similarity of
what, where and when parts, respectively, should
be defined. The fact similarity fuinction S should
mix up values of these three function. Note that
in general functions st, sr, and sn should use all
components of the compared facts.

As we assume that one of facts, say F1, is
user’s query and that this query describe the same
fact as F2, but with different lexical means, we
will classify possible reasons for facts description
mismatching.

Synonimy, acronyms, abbreviations etc.
Two facts may be described differently due to
synonymy, acronyms, abbreviations or a slang.
For example, A theft in X bank describes the same
fact as A larceny in X bank, and armed robbery
may be replaced by a slang word blagging.

Underspecification. Quite often desriptions
of geographic objects contain specifications like
small-town X that can be omitted in a query.
It seems that in most cases descriptive words
like large or small may be simply dropped with-
out loosing any information about the fact itself.
Nevertheless in some cases, such as small city
Moscow, a discriptive word may be used for dis-
tinguishing of the defined object from some other
(well-known) object.

Vertical taxonomy relations. By vertical
taxonomy relation we mean hyponym-hypernym
relation. A user formulating the query may have
only a fuzzy knowledge about the fact she is look-
ing for. For example, she may not be aware of the
pricese crime hapend, or the date, or place. If a
query requests for a robbery in a small California
town the fact describing a robbery in Livermore,
CA should be considered as relevant. Similarly,
hypernym relation may exist between what-parts
of two facts, e.g. burglary – larceny – crime, and
when-part, e.g. June – summer.

We expect that this type of mismatching will
be one of the most frequent in real applications.

Horizontal taxonomy relations. This type
correspond to the case when a user provided in-
formation on the same level of abstraction, but it
does not match the fact precisely. Two facts ref-

fer to differnt concepts (e.g. robbery – burglary),
but these concepts share a common hypernym
(crime). Similarly, toponyms like Livermore and
Hartford may be considered similar if they have
similar description (in this example both names
correspond to small towns in California). Clearly
that not every pair of words having the same hy-
pernym are similar. For example, both murder
and stealing are crimes, but facts A muder in an
X’s office and A stealing in an X’s office are not
similar. This means that some additional con-
straints should be applied. For example, both
words may be required to be similar in the sense
of the next type.

General similarity. Both types of taxonomy
relations described above are special cases of se-
mantic similarity between terms. We have sepa-
reted them into specific classes because if such re-
lations exist then one can expect strong semantic
relation between corresponding facts. Neverthe-
less, the facts may be similar even if taxonomic
relations are not present. For instance, one can
expect that facts about robbery of a bank and
shooting in a bank are similar.

4 Evaluation

Semantic similarity between two
facts F1 = (what1, where1, when1) and
F2 = (what2, where2, when2) is calculated
using the following formula:

S(F1, F2) = min {st(t1, t2), sr(r1, r2), sn(n1, n2)}
This function simply return the worst mismatch
of what-, where-, and when- parts of the two
facts. The functions st, sr, sn are defined in sec-
tions 4.1, 4.2, 4.3, respectively. All these func-
tions are context-less: the similarity measure of
one part does not depend on other parts of facts.

4.1 The What Part

It should be noted that we consider the what parts
consisting of terms that are single words. First,
we propose the following list of possible types of
semantic relations between terms.
• vertical taxonomy relations, or hypernymy,

e.g. Livermore, CA – small town in California,
July – summer, armed robbery – robbery –
larceny – felony – crime);

• horizontal taxonomy relations, i.e. terms that
have a common direct hypernym, e.g. Liver-
more – Hartford, robbery – burglary).



• other semantic relations.
The formula for calculation of semantic simi-

larity between two terms what1 and what2 is the
following.

st(t1, t2) = max{svert(t1, t2)× C1,
shoriz(t1, t2)× C2,
sstat(t1, t2)× C3},

where the function svert calculates the esti-
mation of the fact that one of the terms what1,
what2 is a hypernym of the other one. The func-
tion shoriz calculates the estimation of the fact
that terms what1, what2 have a common hyper-
nym (i.e. they have a horizontal taxonomy rela-
tion). The function sstat calculates the seman-
tic similarity between terms what1 and what2
using a statistical method. C1, C2, and C3 are
weight coefficients that help implement the idea
that vertical taxonomy relation is more important
than horizontal taxonomy relation and the latter
is more important than “default” semantic simi-
larity calculated statistically. In our experiments
we choose C1 = 1, C2 = 0.8, C3 = 0.8.

The functions svert, shoriz, and sstat are de-
fined in sections 4.1.2, 4.1.3, and 4.1.1, respec-
tively.

4.1.1 Statistical Semantic Similarity
Function

As function sstat we use Normalized Google Dis-
tance (Cilibrasi and Vitanyi, 2007) to statistically
calculate semantic similarity between individual
terms. We did not use Google because of access
limits and chose the YahooBOSS API1.

4.1.2 Hypernyms Estimation

The goal is to estimate likeliness of the fact that
one of two terms what1 and what2 is a hyper-
nym of the other one. We use an idea that if one
term t1 is a hypernym of the other term t2, then
hyponyms of t1 should be semantically close to
t2.

We use the following formula to estimate verti-
cal taxonomy relation between what1 and what2.

svert(t1, t2) = max {hyper(t1, t2), hyper(t2, t1)},
(1)

where
hyper(what1, what2) =

M

k
, (2)

where M is the maximum number of points-
neighbours from a single cluster when we classify

1http://developer.yahoo.com/search/boss

the point what2 using clustered terms that are
candidates for being hyponyms of what1. Let us
describe the algorithm in detail.

• We execute the query “* is a what1” in a
search engine and take the most frequent
nouns from it, i.e. nouns that occur more
times than the average number of occurences
of nouns in the abstracts retrieved. We have
obtained the set B of possible hyponyms of
what1.

• We calculate semantic distances between
words from B. To accomplish this we use the
function sstat.

• We cluster the points from B using the graph
cut clustering algorithm.

• We take k nearest neighbours of what2 (again,
using the sstat distance function) and calcu-
late M as the maximum number of neighbours
from a single cluster.

• We calculate the estimation of fact that what1
is a hypernym of what2 using the formula
hyper(what1, what2) = M

k .

• We calculate hyper(what2, what1) using the
same procedure and take maximum of two val-
ues.

4.1.3 Common Hypernym Estimation

We calculate the estimation of a fact that the
terms what1 and what2 have a common hyper-
nym that is semantically close to them, using the
following formula.

shoriz = max
h1∈H1,h2∈H2

sstat(h1, h2), (3)

where H1 and H2 are sets of possible hypernyms
of what1 and what2, respectively. The sets H1

and H2 are constructed as follows.

• We execute the query “A is a *” in a search
engine and take the nouns that occur in search
results more often than the average value of
occurences of nouns in the results.

• For each term t obtained we calculate the
function hyper(t, what1) and take those terms
t for which the value of the function hyper is
more than the average value of the function
for all terms, thus obtaining the set H1.

• We get the set H2 using the same procedure
for what2.



4.2 The Where Part

The specificity of the Where part of a fact is that
it usually contains geographical labels that can
be mapped to latitude/longitude coordinates. We
calculate the Let w1, w2 be the strings represent-
ing the where parts of two facts F1, F2. The se-
mantic similarity is between w1 and w2 is calcu-
lated using the following formula.

s(w1, w2) = 1−
min

g1∈G(w1),g2∈G(w2)
dist(g1, g2)

MAX DIST
,

where G(w) is a set of all geographical objects
matching the string w, dist(g1, g2) is the great-
circle distance between geographical objects g1

and g2, and MAX DIST is the maximum dis-
tance between two points on the Earth surface,
which is about 20018 km and the two points are
cities Esmeraldas in Ecuador and Padang in In-
donesia. The great-circle distance is the shortest
distance between any two points on the surface
of a sphere measured along a path on the sur-
face of the sphere. We calculate it using lati-
tude/longitude coordinate of objects.

Roughly the algorithm can be described as fol-
lows.
• Get all possible latitude/longitude coordi-

nates of w1 and w2;
• Calculate the great-circle distance between

each pair of coordinates g1 and g2 where g1,
g2 takes all possible coordinates of w1 and w2,
respectively.

• Take the minimum distance calculated. It is
assumed to be the distance between w1 and
w2.

• Calculate the similarity using the calculated
distance.
To implement the algorithm we use Google

Maps API2 and python package geopy3.

4.3 The When Part

To calculate semantic similarity between two
strings w1, w2 representing the where parts of two
facts F1, F2, we use the following idea. We map
the strings into dates and then calculate relative
time interval between the dates applying some
normalization. We use the following formula.

s(w1, w2) = 1− d(w1, w2)
d(w1, w2) + min {d(w1, D), d(w2, D)}

,

2http://code.google.com/apis/maps
3http://code.google.com/p/geopy

where d(w1, w2) is the time interval (in seconds)
between two dates matching the strings w1 and
w2. D is the date representing the current mo-
ment. Normalization by D is used to implement
the idea that one-year interval 1000 years ago
should be considered less that the same interval
nowadays, e.g. between January 1, 2009 and Jan-
uary 1, 2010.

We use the date parser from the dateutil
python package4. It is rather smart and correctly
parses such strings as “summer 2008”, “approxi-
mately 11.15” etc.

4.4 Experimental Results

To evaluate the function proposed, we ran the fol-
lowing experiment. We took a sentence from the
news. Then we manually extracted a fact from it
and manually extracted some more or less simi-
lar facts from the news. Then we calculated the
similarity matrix of these facts. These facts are
presented in Table 1. Corresponding similarity
matrices for when, where and what parts are pre-
sented in Tables 2, 3, and 4, respectively.

One can see that for very short descriptions
the results are meaningful. For example, the most
relevant neighbors for term shootout are robbery
and armed robbery, and the closest term for the
term anniversary is festival.

5 Conclusion and Future Work

In this paper we described the task of fact
search and proposed a function for calculating
semantic distance between facts that are repre-
sented by a single sentence and consist of three
parts (what, where, and when). Some experimen-
tal results are provided, justifying the proposed
function.

Future work includes applying some methods
from ontology theory, further develop the com-
parison function, and extending what-parts from
one word to more complex types. We believe that
the function calculating semantic similarity can
be significantly improved using ontologies. The
problem is that ontology construction is a re-
source consuming procedure and one can not ex-
pect that a “universal” ontology covering all pos-
sible domains will be constructed in the nearest
future.

4http://labix.org/python-dateutil



ID What Where When
1 robbery Livermore 28 July 2008
2 burglary California July 2008
3 deposit Fremont November 2, 2007
4 anniversary small town in California summer 2007
5 shootout California January 3, 1997
6 crime Hartford August 27, 2007
7 kill West Yorkshire, England February 21, 2010
8 wine country festival Livermore 2008
9 traffic on main street in Pleasanton Tuesday August 13, 2008
10 armed robbery 901 S. Main St. in Hartford, KY On Friday July 13, 2007

at approximately 11:15 A.M.

Table 1: Test facts.

ID 1 2 3 4 5 6 7 8 9 10
28 July 20 1.00 0.99 0.72 0.63 0.14 0.67 0.17 0.95 0.97 0.64
July 2008 0.99 1.00 0.72 0.63 0.14 0.67 0.17 0.95 0.96 0.65
November 2 0.72 0.72 1.00 0.87 0.19 0.93 0.12 0.75 0.70 0.89
summer 200 0.63 0.63 0.87 1.00 0.22 0.93 0.11 0.66 0.61 0.98
January 3, 0.14 0.14 0.19 0.22 1.00 0.20 0.02 0.14 0.13 0.21
August 27, 0.67 0.67 0.93 0.93 0.20 1.00 0.11 0.70 0.65 0.95
February 2 0.17 0.17 0.12 0.11 0.02 0.11 1.00 0.16 0.17 0.11
2008 0.95 0.95 0.75 0.66 0.14 0.70 0.16 1.00 0.92 0.67
Tuesday Au 0.97 0.96 0.70 0.61 0.13 0.65 0.17 0.92 1.00 0.63
Friday Jul 0.64 0.65 0.89 0.98 0.21 0.95 0.11 0.67 0.63 1.00

Table 2: Similaity between when-parts.

ID 1 2 3 4 5 6 7 8 9 10
Livermore 1.00 0.99 1.00 1.00 0.99 0.79 0.58 1.00 1.00 0.85
California 0.99 1.00 0.99 0.99 1.00 0.80 0.58 0.99 0.99 0.86
Fremont 1.00 0.99 1.00 1.00 0.99 0.79 0.58 1.00 1.00 0.85
small town 1.00 0.99 1.00 1.00 0.99 0.80 0.58 1.00 1.00 0.86
California 0.99 1.00 0.99 0.99 1.00 0.80 0.58 0.99 0.99 0.86
Hartford 0.79 0.80 0.79 0.80 0.80 1.00 0.74 0.79 0.79 0.93
West Yorks 0.58 0.58 0.58 0.58 0.58 0.74 1.00 0.58 0.58 0.68
Livermore 1.00 0.99 1.00 1.00 0.99 0.79 0.58 1.00 1.00 0.85
on main st 1.00 0.99 1.00 1.00 0.99 0.79 0.58 1.00 1.00 0.85
901 S. Mai 0.85 0.86 0.85 0.86 0.86 0.93 0.68 0.85 0.85 1.00

Table 3: Similaity between where-parts.



ID term 1 2 3 4 5 6 7 8 9 10
1 robbery 1 0.51 0.05 0.03 0. 0.25 0.88 0. 0.02 0.69
2 burglary 0.51 1 0.01 0.05 0. 0.04 0.92 0. 0.09 0.42
3 kill 0.05 0.01 1 0. 0. 0.09 0.93 0. 0. 0.11
4 deposit 0.09 0.05 0. 1 0. 0. 0. 0. 0. 0.
5 anniversary 0. 0. 0. 0. 1 0. 0. 0.25 0. 0.
6 shootout 0.25 0.04 0.09 0. 0. 1 0.01 0.12 0.09 0.32
7 crime 0.88 0.92 0.93 0. 0. 0.01 1 0.04 0.76 0.95
8 festival 0. 0. 0. 0. 0.25 0.12 0.04 1 0.07 0.
9 traffic 0.025 0.09 0. 0. 0. 0.09 0.76 0.07 1 0.02
10 armed robbery 0.69 0.46 0.10 0.01 0. 0.33 0.95 0. 0.08 1

Table 4: Similaity between what-parts.

Another direction of future work is to further
detail the “what” part of the fact. For exam-
ple, one can apply the subject-predicate-object
(“who-did-what”) model of knowledge represen-
tation, that is, again, extensively used in ontolo-
gies.

Comparing parts of facts we did not take into
account the context, i.e. other parts. For exam-
ple, if two facts occured in the 19th century, their
“what” parts may be compared in a different way
than if they occured in the 21th century. Or if the
“what” part of the facts is about politics, we may
compare the “where” parts in some special way.
This is also a possibility for improvement of the
algorithm. Another way is to create smarter func-
tions that compare parts of facts. For instance,
a function comparing “where” parts could distin-
guish geographical names from some abstract de-
scriptions, e.g. in an American school or in a
small town near the west coast and compare them
somehow. The problem of geographical names
meaning several places (e.g. there are at least
five cities named Moscow) is also a complex one.

REFERENCES

Bollegala, D., Matsuo, Y., and Ishizuka, M. (2009). A
relational model of semantic similarity between
words using automatically extracted lexical pat-
tern clusters from the web. In EMNLP ’09: Pro-
ceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages
803–812, Morristown, NJ, USA. Association for
Computational Linguistics.

Cilibrasi, R. L. and Vitanyi, P. M. B. (2007). The
google similarity distance. IEEE Transactions
on Knowledge and Data Engineering, 19(3):370–
383.

Islam, A. and Inkpen, D. (2008). Semantic text sim-
ilarity using corpus-based word similarity and

string similarity. ACM Trans. Knowl. Discov.
Data, 2(2):1–25.

Li, Y., McLean, D., Bandar, Z. A., O’Shea, J. D., and
Crockett, K. (2006). Sentence similarity based
on semantic nets and corpus statistics. IEEE
Trans. on Knowl. and Data Eng., 18(8):1138–
1150.

Maguitman, A. G., Menczer, F., Roinestad, H., and
Vespignani, A. (2005). Algorithmic detection of
semantic similarity. In WWW ’05: Proceedings
of the 14th international conference on World
Wide Web, pages 107–116, New York, NY, USA.
ACM.

Mccarthy, D., Koeling, R., Weeds, J., and Carroll,
J. (2004). Finding predominant word senses in
untagged text. In In Proceedings of the 42nd
Annual Meeting of the Association for Compu-
tational Linguistics, pages 280–287.

Naughton, M., Stokes, N., and Carthy, J. (2010).
Sentence-level event classification in unstruc-
tured texts. Information Retrieval, 13(2):132–
156.

Navigli, R. (2009). Word sense disambiguation: A
survey. ACM Comput. Surv., 41(2):1–69.

Pantel, P. and Lin, D. (2002). Discovering word senses
from text. In In Proceedings of ACM SIGKDD
Conference on Knowledge Discovery and Data
Mining, pages 613–619.

Purandare, A. and Pedersen, T. (2004). Senseclus-
ters - finding clusters that represent word senses.
In Susan Dumais, D. M. and Roukos, S., ed-
itors, HLT-NAACL 2004: Demonstration Pa-
pers, pages 26–29, Boston, Massachusetts, USA.
Association for Computational Linguistics.

Turney, P. D. (2006). Similarity of semantic relations.
Computational Linguistics, 32:379–416.

Turney, P. D. and Littman, M. L. (2005). Corpus-
based learning of analogies and semantic rela-
tions. In Machine Learning.

Udani, G., Dave, S., Davis, A., and Sibley, T. (2005).
Noun sense induction using web search results.
In SIGIR ’05: Proceedings of the 28th annual in-
ternational ACM SIGIR conference on Research



and development in information retrieval, pages
657–658, New York, NY, USA. ACM.

Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis,
E. G., and Milios, E. E. (2005). Semantic simi-
larity methods in wordnet and their application
to information retrieval on the web. In WIDM
’05: Proceedings of the 7th annual ACM inter-
national workshop on Web information and data
management, pages 10–16, New York, NY, USA.
ACM.


