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The paper addresses a two-temperature model for simulating compressible two-phase flow 
taking into account diffusion processes related to the heat conduction and viscosity of the 
phases. This model is reduced from the two-phase Baer-Nunziato model in the limit of 
complete velocity relaxation and consists of the phase mass and energy balance equations, 
the mixture momentum equation, and a transport equation for the volume fraction. Terms 
describing effects of mechanical relaxation, temperature relaxation, and thermal conduction 
on volume fraction evolution are derived and demonstrated to be significant for heat 
conduction problems. The thermal conduction leads to instantaneous thermal relaxation so 
that the temperature equilibrium is always maintained in the interface region with meeting 
the entropy relations. A numerical method is developed to solve the model governing 
equations that ensures the pressure-velocity-temperature (PVT) equilibrium condition in 
its high-order extension. We solve the hyperbolic part of the governing equations with 
the Godunov method with the HLLC approximate Riemann solver. The non-linear parabolic 
part is solved with an efficient Chebyshev explicit iterative method without dealing 
with large sparse matrices. To verify the model and numerical methods proposed, we 
demonstrate numerical results of several numerical tests such as the multiphase shock 
tube problem, the multiphase impact problem, and the planar ablative Rayleigh–Taylor 
instability problem.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Numerical modeling of compressible multiphase flow have found many applications in various natural, industrial and 
technological areas. Typical applications include bubble dynamics [64,63], underwater explosion [53,37,33,86], cavitation 
flows [46,75,74], multiphase flows in the porous rock [8], inertial confinement fusion [90,65], Rayleigh–Taylor [79,44,91]
and Richtmyer–Meshkov instabilities [41,10,99] and so on. In some problems where steep distributions of flow parameters 
occur, diffusion processes such as the heat conduction and viscous stress may have significant impact. How to properly take 
into account these processes in multiphase hydrodynamics with resolved interfaces is the main issue of the present paper.
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Numerical methods for simulating compressible multiphase flows can be generally classified into two categories depend-
ing on the approach to resolve material interfaces: Diffuse interface methods (DIM) [26,77,38,25,21,20,72,70,75,71,1,52,51,
17,84,85,12,27] and the sharp interface methods (SIM) [39,40,22,23,43,32,30,29,54,58,24]. The present work is done in the 
framework of the former – DIM. Instead of explicitly tracking sharply resolved material interfaces as in SIMs, material inter-
faces in DIMs are captured by allowing a numerical diffusion zone of mixture flow that is modeled as physical one. Thanks 
to these numerical diffusion, different components can be described with a unique set of partial differential equations and 
equation of state (EOS). Therefore, one can perform throughout computations on the Eulerian grid without specifying con-
crete interface locations. Moreover, DIMs avoid dealing with complicated grid movements and non-conservativeness issues.

The models for multiphase flows with resolved interfaces generally fall into two groups: One is based on the general-
ization of the conventional one-fluid Euler equations to multicomponent cases [1,84,85,35,3,4], the other is based on the 
reduction of non-equilibrium multi-phase flow models [6,36,75,59,56].

The first group is more concerned with numerical aspects, in particular, the property to preserve the pressure-velocity 
equilibrium (the PV property), and also additionally temperature equilibrium (the PVT property) when the thermal conduc-
tion is also considered. These properties are used as important numerical condition or criterion to derive such models. The 
definitions of these properties are given in section 3.6. For these models, material interfaces are represented by variable 
EOS parameters or by a characteristic function such as the Heaviside function that is interpreted as volume fraction in the 
context of multiphase flows. A representative of these models is the following model [85,84,11] based on the PV property, 
which is formulated as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1a)

∂ρu

∂t
+ ∇ · (ρu ⊗ u) + ∇p = 0, (1b)

∂ρE

∂t
+ ∇ · [(ρE + p) u] = 0, (1c)

∂

∂t

(
1

γ − 1

)
+ u ·∇

(
1

γ − 1

)
= 0, (1d)

∂

∂t

(
γ p∞
γ − 1

)
+ u ·∇

(
γ p∞
γ − 1

)
= 0, (1e)

∂ρq

∂t
+ ∇ · (ρqu) = 0, (1f)

where ρ , u, p, E are the mixture density, velocity, pressure and specific total energy, respectively. The parameters γ , p∞ , q
come from the EOS. Here, we consider the stiffened gas (SG) EOS for the k-th component that takes the following form:

ρkek = pk + γk p∞,k

γk − 1
+ ρkqk, (2a)

ρkek = ρkC v,k Tk + p∞,k + ρkqk, (2b)

where Cv,k is the specific heat at constant volume. The parameters γk , p∞,k and qk are constants characterizing the ther-
modynamic behaviors of the k-th phase.

When thermal conduction is considered, the temperature becomes continuous at interfaces. However, Johnsen et al. 
[3,34] pointed out that the system of equations (1) does not preserve temperature equilibrium. Based on similar ideas as in 
designing the model (1) with the PV property, they proposed a method for defining the mixture EOS that ensures the PVT 
property. They add the following evolution equations for C v , p∞ to the model eq. (1)

∂ρC v

∂t
+ ∇ · (ρC v u) = 0, (3a)

∂ p∞
∂t

+ u ·∇p∞ = 0. (3b)

The evolved parameters obtained from eqs. (1d) to (1f) are used to compute the pressure, while those obtained from eqs.
(3a) and (3b) to compute the temperature. This model can also be formulated in volume fraction framework by replacing 
all the evolution eqs. (1d) to (1f), (3a), and (3b) for EOS parameters with

∂ρY2

∂t
+ ∇ · (ρY2u) = 0, (4a)

∂α2

∂t
+ u ·∇α2 = 0, (4b)

where α2 and Y2 are the volume fraction and mass fraction of the second component, respectively.
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When velocity is spatially uniform, the internal energy is purely advected,

Dρe

Dt
= 0, (5)

where ρe = ∑
αkρkek , the operator D·/Dt denotes the material derivative.

By using eq. (5), the following mixture rules are proposed in [3,34] to maintain the PVT property:

• To maintain pressure equilibrium, the mixture EOS parameters are defined as

1

γ − 1
=

∑ αk

γk − 1
,

γ p∞
γ − 1

=
∑ αkγk p∞,k

γk − 1
, ρq =

∑
αkρkqk. (6)

• While to maintain temperature equilibrium, the following mixture EOS parameters should be defined as

ρC v =
∑

αkρkC v,k, p∞ =
∑

αk p∞,k, ρq =
∑

αkρkqk. (7)

As can be noted, two different mixture rules are used for computing pressure and temperature, resulting in two different 
definitions for p∞ (and interface location when the fluid distribution is represented by their own p∞). This ambiguity in 
mixture EOS definition also leads to difficulties in defining some thermodynamic variables, such as the mixture entropy. 
Therefore, the issue of consistency with the second law of thermodynamics is a key point to cause controversy. In fact, the 
volume fraction based model consisting of eqs. (1a) to (1c), (4a), and (4b) formally coincides with the five-equation model 
[4] that lacks a mathematical entropy. In the following we refer to this model with the mixture rules eqs. (6) and (7) as the 
one-temperature five-equation model.

Most of the second group models for simulating compressible multiphase flows come from the seven-equation Baer-
Nunziato one [6]. In the original Baer-Nunziato model, each component is described by their own velocity, temperature, 
and pressure. However, for certain application scenarios such as the multiphase flows where each phase occupies its own 
volume, the physics included in the Baer-Nunziato model is not always necessary. Therefore, a variety of reduced mod-
els are proposed, for example, the six-equation model with equilibrium velocity [36,75,59], the five-equation model with 
equilibrium velocity and equilibrium pressure [36,56] and the four-equation model with equilibrium velocity, pressure and 
temperature [46]. A complete hierarchy of these models is formulated in [48]. Since these models are compatible with 
the complete Baer-Nunziato one, they are more physically sound and reasonable. Besides, in [7] a one-temperature quasi-
hydrodynamic multiphase model with viscosity and heat conduction has been derived with the Coleman-Noll procedure 
[15].

Among these models, the model with equilibrium temperature [46] is most appropriate to consider heat conduction 
process, however, it fails to ensure the PV or the PVT condition. Moreover, it does not provide topological information 
of the material interface, nor does it describe the evolution of the volume-fraction averaged material properties such as 
thermal conductivity and viscosity. Therefore, we are more interested in the temperature non-equilibrium models [36,56]. 
A seminal work has been done in this direction by Petitpas et al. [61] where a Baer-Nunziato type two-phase model with 
heat conduction and its reduced models have been proposed. Thanks to the nozzling term due to interface heat conduction, 
this model can deal with non-equilibrium heat conduction without temperature relaxation. For solving heat conduction 
equations in their model, they propose a discrete method under the assumption of pressure disequilibrium, temperature 
disequilibrium and frozen interface topology. Their approach applies to the case when the temperature relaxation and 
pressure relaxation times are comparable such as the boiling flow, while our work is directed at ICF plasma flows where 
the pressure relaxation time is negligible compared with temperature relaxation time. Bearing this purpose in mind, we 
investigate other possible relaxation procedures with emphasis on the one under mechanical and thermal equilibrium with 
non-linear diffusion. Moreover, the coupling between interface location and state parameters is taken into consideration to 
maintain the established pressure equilibrium. The present work is not trying to build new physical or mathematical models 
(except for the external energy deposition) but rather a numerical model that in a certain way treats the physical relaxation 
processes. Moreover, numerical issues of high-order extension for preserving PVT property and comparative analysis of 
existing models have also been dealt with.

We build a formally two-temperature relaxation model based on the reduction of the Baer-Nunziato one. The obtained 
model consists of two energy equations including thermal relaxation between phases driving temperatures into equilibrium. 
It includes viscosity, heat conduction and external energy source in each phase. Note that the heat conduction process is 
accompanied with instantaneous thermal relaxation so that temperature equilibrium is maintained. We demonstrate that 
the impact of these thermal relaxations (which are usually neglected in the first group models) on volume fraction is sig-
nificant. The obtained model ensures the pressure and the temperature equilibria during the heat conduction. We prove 
that the model agrees with the second law of thermodynamics. Although the relaxation model is built under the assump-
tion of pressure and temperature equilibria, our approach provides a methodology to consider more general disequilibrium 
situations. Numerically, our model is proved to satisfy the PVT property with a uniquely defined EOS.

We use the fractional step method to solve the model. The solution procedure can be divided into four steps, i.e., the 
hyperbolic step, the viscous step, the thermal relaxation step and the heat conduction step. The homogeneous hyperbolic 
3
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part is solved with the Godunov method coupled with the HLLC Riemann solver. The diffusion processes (viscous step and 
heat conduction step) are governed by a set of parabolic partial differential equations. They are solved with an efficient 
method of local iterations, that allows much larger time step than the traditional explicit scheme and quite straightforward 
for parallel implementation. The thermal relaxation procedure is realized by solving a non-linear system with two variables 
(equilibrium temperature and volume fraction). We prove that the thermal relaxation procedure does not undermine the 
PVT property.

The rest of this article is organized as follows. In Section 2, we deduce a five-equation model and a six-equation model, 
with more attention being devoted to the latter as it is more convenient for considering thermal processes in the multiphase 
system with phase energy equations. In Section 3, we design numerical methods for solving the proposed model and prove 
some relevant properties. In Section 4, numerical results of our model are presented and compared with those of other 
models.

2. Model formulation

2.1. The Baer-Nunziato type model

The starting point of our model formulation is the complete Baer-Nunziato model [6] or its variant for compressible 
two-phase flows [70,61]. In this model each phase is assumed to behave as a pure fluid except when it interacts with the 
other fluid through relaxation terms. Including viscosity, heat conduction and external energy source to the Baer-Nunziato 
model, we obtain the following formulation:

∂αkρk

∂t
+ ∇ · (αkρkuk) = 0, (8a)

∂αkρkuk

∂t
+ ∇ ·

(
αkρkuk ⊗ uk + αk pk I − αkτ k

)
= pI∇αk

−τ I ·∇αk +Mk, (8b)

∂αkρk Ek

∂t
+ ∇ ·

[
αk (ρk Ek + pk) uk − αkτ k · uk

]
= pI u I ·∇αk

−u I ·
(
τ I ·∇αk

)
− pIFk + u IMk +Qk + qk +Ik, (8c)

∂α2

∂t
+ u I ·∇α2 = F2, (8d)

where the notations used are standard: αk, ρk, uk, pk, τ k, Ek are the volume fraction, density, velocity, pressure, viscous 
stress, and specific total energy of k-th component.

For viscous stress we use the Newtonian approximation

τ k = 2μk Dk +
(
μb,k − 2

3
μk

)
∇ · uk, (9)

where μk > 0 is the coefficient of shear viscosity and μb,k > 0 is the coefficient of bulk viscosity, Dk is defined as

Dk = 1

2

[
∇uk + (∇uk)

T
]
.

The total energy is Ek = ek +Kk where ek , and Kk = 1
2 uk · uk are the specific internal energy and kinetic energy, respec-

tively.
The inter-phase exchange terms include the velocity relaxation Mk , the pressure relaxation Fk , and the temperature 

relaxation Qk ,

Mk = ϑ (uk∗ − uk) , Fk = η (pk − pk∗) , Qk = ς (Tk∗ − Tk) , (10)

where k∗ denotes the conjugate component of the k-th component, i.e., k = 1, k∗ = 2 or k = 2, k∗ = 1. The relaxation rates 
are all positive ϑ > 0, η > 0, ς > 0.

The variables with the subscript “I” represent the variables at interfaces, for which there are several possible definitions 
[60,72]. Whatever the definitions we choose,

lim
η→∞ pI = lim

η→∞ pk = p, lim
ϑ→∞ u I = lim

ϑ→∞ uk = u, lim
ϑ→∞τ I = lim

ϑ→∞τ k = τ .

The heat conduction term is given as:

qk = ∇ · (αkλk∇Tk) , (11)
4
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and the external heat source term is written as:

Ik = αk Ik, (12)

where Ik denotes the intensity of the external heat source released in the k-th phase, and Ik ≥ 0.
For future use we can deduce the corresponding balance equations for phase internal energies and phase entropies from 

eq. (8). The deduction procedure is similar to that in [93,56,36,96,97] with the exception that we include viscosity, heat 
conduction, and external energy source here. We directly give the equation for the phase internal energy as follows:

∂αkρkek

∂t
+ ∇ · (αkρkekuk) = −αk pk∇ · uk − pIFk + pI (u I − uk) · ∇αk

+ (u I − uk) ·Mk + (uk − u I ) ·
(
τ I ·∇αk

)
+Qk + qk + Ik +Sk,

(13)

where the viscous dissipation

Sk = αkτ k : Dk. (14)

By using the Gibbs relation,

Tkdsk = dek − pk

ρ2
k

dρk (15)

we further obtain

Tk

[
∂αkρk sk

∂t + ∇ · (αkρkuksk)
]

= (pk − pI )Fk + (pI − pk) (u I − uk) · ∇αk

+ (u I − uk) ·Mk + (uk − u I ) ·
(
τ I ·∇αk

)
+Qk + qk + Ik +Sk.

(16)

Even though eq. (8) is the most complete model including relaxations in pressure, velocity and temperature, however, 
practical implementation of this model is rather complicated because of its complex wave structure and stiff relaxation 
procedures. Therefore, we will consider two possible reductions of this model that are given in the following sections.

The Baer-Nunziato model is deduced by using the Coleman-Noll procedure [16,15,6], keeping the second law of thermo-
dynamics. Maintaining the physical consistency with the Baer-Nunziato model, the reduced models should also satisfy the 
second law of thermodynamics, as we demonstrate below.

Remark 1. The thermodynamically compatible two-phase compressible flow model proposed in [68,66,67,69] can also be 
reformulated in the form of Baer-Nunziato model with additional source terms describing the lift forces.

Remark 2. For turbulent bubbly flows, the viscous pressure has been proposed to consider the pulsation damping of the 
bubbles [73,60,28]. Including this viscous pressure, the relaxing pressure is

p̃k = pk + pμ,k, (17)

with pμ,k being the viscous pressure [28]:

pμ,k = zk(αk)
DIαk

Dt
= zk(αk)Fk, (18)

where zk is a function of αk , DI ·
Dt denotes the material derivative related to the interface velocity uI , and Fk = η (̃pk − p̃k∗ ).

With the viscous pressure, the terms including Fk on r.-h.s. of eq. (13) and eq. (16) should be replaced by p̃ IFk and 
(pk − p̃ I )Fk , respectively. In order that the term (pk − p̃ I )Fk makes a non-negative contribution to the phase entropy in 
eq. (16), p̃ I should be a convex combination of p̃k and zk be non-positive.

It can be seen from eq. (18) that the viscous pressure pμ,k vanishes when pressure equilibrium is reached, thus, it has 
no impact on the solution of the reduced models (in Sections 2.2 and 2.3) derived in the limit of instantaneous mechanical 
relaxation. Therefore, we temporarily omit this term in the following discussions.

Remark 3. The heat conduction is included in the original BN model and also the model of Nigmatulin [57]. The inclusion of 
viscosity and capillary effects has been done in [60,76]. Petitpas et al. [61] has derived a model including an interfacial heat 
flux term by performing the averaging procedure [18,19]. In the present work we have included the external heat source 
term, which is derived with the averaging procedure as follows. Let us introduce the characteristic function:
5
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Xk =
{

1 in the domain V�,k occupied by fluid k

0 otherwise
(19)

Performing the averaging procedure within the control volume V� , we have

1

V�

∫
V�

Xk I ′kdV = 1

V�

∫
V�,k

I ′kdV = αk Ik = Ik, (20)

where Ik is the average of I ′k (i.e., the heat source within V�,k).

Remark 4. In comparison with the original BN model, the model of Petitpas et al. [61] includes a non-conservative nozzling 
term q I · ∇αk (qI is the average interfacial heat flux) on the r.h.s. of eq. (8c). This term can be reformulated as a heat 
exchange term and lumped into the temperature relaxation term by modifying the temperature relaxation rate [61].

2.2. The reduced five-equation model

By performing asymptotic analysis of the Baer-Nunziato model in the limit of instantaneous mechanical relaxations with 
the method similar to [36,88,56], one can obtain the following system of equations (for detailed derivations see Appendix):

∂αkρk

∂t
+ ∇ · (αkρku) = 0, (21a)

∂ρu

∂t
+ ∇ ·

(
ρu ⊗ u + pI

)
= ∇τ , (21b)

∂ρE

∂t
+ ∇ · (ρEu + pu) = ∇ ·

(
τ · u

)
+

∑
qk +

∑
Ik, (21c)

∂α2

∂t
+ u ·∇α2 = R p2 + Rq2 + R Q 2 + R I2 + R S2 , (21d)

where I is the unit tensor, ρ = ∑
αkρk and τ = ∑

αkτ k are the mixture density and the mixture viscous stress, respectively.
The right hand side terms of eq. (21d) are

R p2 = α2
A − A2

A2
∇ · u, Rq2 = A

�2q2α1 − �1q1α2

A1 A2
, R Q 2 = A

�2Q2α1 − �1Q1α2

A1 A2
,

R I2 = A
�2I2α1 − �1I1α2

A1 A2
, R S2 = A

�2S2α1 − �1S1α2

A1 A2
,

where �k is the phase Gruneisen coefficient, �k = Vk

(
∂ pk
∂ek

)
Vk

, Vk = 1/ρk , a2
k = γ k pk Vk is the phase speed of sound, γ k =

− Vk
pk

(
∂ pk
∂Vk

)
sk

is the phase adiabatic exponent, Ak = ρka2
k , and 1/A = ∑

(αk/Ak).

In the case of the SG EOS (2a), these parameters are

�k = γk − 1, (23)

γk = γk
pk + p∞,k

pk
> γk > �k, (24)

Ak = γk(pk + p∞,k) = γk (γk − 1) C v,k Tk

Vk
. (25)

The first term on the right hand side (r.-h.s.) of eq. (21d) R pk comes from pressure relaxation. In fact, W pk = −pR pk repre-
sents the rate of work performed on material interfaces to maintain pressure equilibrium under compression or expansion 
[42]. The significance of this term for spherical bubble dynamics and multiphase flows has been demonstrated in [78] and 
[56], respectively.

In the limit of the sharp material interface, i.e. αk = 1, αl = 0 (l �= k), the first r.-h.s. term of eq. (21d) R pk vanishes. 
The terms Rqk , R Ik , and R Sk also vanish in accordance of the definitions eq. (11), eq. (12) and eq. (14). However, the term 
R Q k due to temperature relaxation still remains. This means that for compressible multicomponent problem with heat 
conduction, the thermal relaxation can not be neglected even for interface-tracking methods where the diffused zone is 
absent. Therefore, vanishing the r.-h.s. of eq. (21d) and using just the pure advection equation for volume fraction may lead 
to errors that come from physical defects instead of numerical ones.

If we define the mixture entropy as

s = Y1s1 + Y2s2, (26)
6
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from eq. (16) one can deduce

∂ρs

∂t
+ ∇ · (ρus) = α1τ 1 : D1

T1
+ α2τ 2 : D2

T2
+ Q1 + q1 + I1

T1
+ Q2 + q2 +I2

T2
. (27)

Proposition 1. In the absence of heat flows through the external boundaries of the control volume, eq. (27) is non-negative.

Proof 1. The first two terms on the r.-h.s. of eq. (27) can be proven to be non-negative, αkτ k : Dk ≥ 0, by using the definition 
eq. (9) and simple tensor manipulations.

Also, due to eq. (10)

Q1

T1
+ Q2

T2
= ς

(T2 − T1)
2

T1T2
≥ 0. (28)

The heat conduction term can be recast as

qk

Tk
= −∇ · qk

Tk
= −∇ · ( qk

Tk
) + qk · ∇(

1

Tk
) (29)

The first term is of the divergence type and represents external heat inflow to the phase material particle. The second 
term is positive due to the Fourier’s law of heat conduction qk = −αkλk∇Tk , αk ≥ 0, λk ≥ 0 and Ik ≥ 0. Therefore, except 
the heat inflow terms, the r.-h.s of the mixture entropy equation (2.11) is non-negative. This means that the mixture entropy 
respects the second law of thermodynamics.

Note that a similar five equation model is presented in [76] where only R p2 retains on r.h.s. of the volume fraction 
equation.

The model eq. (21) assumes two temperatures and only one pressure. It is a counterpart of Kapila’s five-equation model 
[36,56] in the presence of dissipation processes, which has certain numerical constraints such as the non-monotonic be-
havior of sound speed across interface and lack of robustness due to volume fraction positivity issues. To circumvent these 
issues, we turn to the six-equation formulation, whose advantages include: (a) robust numerical solution, (b) more re-
laxation freedoms that allow considering the difference between relaxation time scales, (c) equipment with phase energy 
equations that brings convenience to deal with phase energy exchanges.

Moreover, in the following model formulation we maintain thermal equilibrium in the course of heat conduction, which 
is shown to be more computationally efficient than heat conduction in thermal disequilibrium. This leads to an original 
model valuable from a physical point of view as able to treat two situations: (a) flows in thermal equilibrium/disequilibrium 
without heat conduction, (b) flows in thermal equilibrium with heat conduction.

2.3. The reduced six-equation model

We first separate the physical process into three stages: the mechanical stage, the thermal relaxation stage and the heat 
conduction stage, and then build thermodynamical consistency for each stage.

In the mechanical stage the pressure equilibrium is reached with the instantaneous pressure relaxation. The thermal re-
laxation drives the phase temperatures to equilibrium. The thermal and mechanical relaxation time scales vary for different 
fluids and application problems. We are attempting to take the difference between relaxation time scales into considera-
tion without relaxation parameters. These parameters are yet to be evaluated or improved for complicated processes, for 
example, the ICF plasma flows that we are concerned with.

The heat conduction can proceed under different physical relaxation assumptions of mechanical/thermal equilibrium/dis-
equilibrium. The work of Petitpas et al. [61] provides a model/numerical method where the heat conduction takes place 
during the pressure and temperature disequilibrium. For many applications (for example, detonation [36,14,62], phase tran-
sition in metastable liquids [74,92] and bubble dynamics [9,31,55], etc.), it is estimated that the mechanical relaxation takes 
place much faster than the thermal one, approximately meaning that temperature relaxation goes under pressure equilib-
rium. Moreover, thermal relaxation is caused by the heat convection and conduction, which are the results of collective and 
random molecule motions. Due to the similarity in physical mechanism, we assume that these thermal processes happen at 
similar time scales and accompany each other. On the basis of such considerations, we consider the heat conduction under 
pressure equilibrium.

Mechanical stage For the mechanical stage, we temporarily omit thermal relaxation and conduction. In the limit of instanta-
neous velocity relaxation, one can obtain the following six-equation model with one velocity from the Baer-Nunziato model 
eq. (8)
7
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∂αkρk

∂t
+ ∇ · (αkρku) = 0, (30a)

∂ρu

∂t
+ ∇ · (ρu ⊗ u) + ∇ (α1 p1 + α2 p2) = ∇ ·τ , (30b)

∂αkρkek

∂t
+ ∇ · (αkρkeku) + αk pk∇ · u = −pIFk + αkτ k : D, (30c)

∂α2

∂t
+ u ·∇α2 = F2. (30d)

The corresponding balance equation for mixture entropy is

∂ρs

∂t
+ ∇ · (ρus) = α1τ 1 : D1

T1
+ α2τ 2 : D2

T2
+ (p1 − pI )F1

T1
+ (p2 − pI )F2

T2
(31)

As long as the interface pressure pI is assumed to be a convex combination of p1 and p2, i.e.,

pI = Z1 p1 + Z2 p2 (Z1, Z2 ∈ [0, 1], Z1 + Z2 = 1), (32)

the term (pk − pI )Fk remains non-negative and the second law of thermodynamics is respected.
When solving internal energy equations (30c), the total energy equation (21c) will have to be supplemented to keep the 

energy conservation as in [75].
This stage consists of the hydrodynamic, the viscous and the pressure relaxation processes. The last relaxation process 

drives the phase pressures into an equilibrium pressure p = limη→∞ p1 = limη→∞ p2.

Thermal relaxation stage The procedure is similar to that for deducing the model for phase transition in [92]. Having reached 
the pressure equilibrium after the mechanical stage, we continue to build our model for the thermal relaxation on the basis 
of the following physical assumptions:

• The mechanical relaxation happens much faster than the thermal relaxation, which means that the temperature relax-
ation goes in the state of pressure equilibrium.

The thermal relaxation process is assumed to be governed by the following equations:

∂αkρk

∂t
= 0, (33a)

∂ρu

∂t
= 0, (33b)

∂α1ρ1e1

∂t
=Q′

1, (33c)

∂α2ρ2e2

∂t
=Q′

2, (33d)

∂α2

∂t
= r0
Q′

2

p
, (33e)

where Q′
k is the thermal relaxation term defined in eq. (10), which results in the variation of the phase temperature and the 

volume fraction. The term Q′
2/p represents the volume fraction change rate if no phase temperature variation is considered.

The parameter r0 is a dimensionless coefficient, balancing the phase temperature change and volume fraction change. It 
is determined in such a way that the pressure equilibrium condition is maintained, i.e.,

∂ p1

∂t
= ∂ p2

∂t
. (34)

Thus one can obtain

r0 = �1/α1 + �2/α2

(A1/α1 + A2/α2) /p − (�1/α1 + �2/α2)
, (35)

or

r0 = �1/α1 + �2/α2(
γ 1 − �1

)
/α1 + (

γ 2 − �2
)
/α2

, (36)

According to eqs. (25), (33a), and (35), r0 is a function of T1, T2 and α2, and from eq. (24), it satisfies

r0 = r0 (T1, T2,α2) > 0. (37)
8
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By using eqs. (10), (15), (26), and (37) one can deduce

∂ρs

∂t
+ ∇ · (ρsu) = (1 + r0)

(
1

T2
− 1

T1

)
Q′

2 ≥ 0 (38)

This means that the model for the thermal relaxation is consistent with the second law of thermodynamics.

Heat conduction stage We build our model for thermal conduction under the physical assumption of both pressure and 
temperature equilibrium. This assumption means that the heat conduction time scale is larger enough than the heat trans-
fer scale so that temperature equilibrium always holds. In fact, this is a default assumption for models based on single 
temperature formulation, for example, the four-equation conservative model in [46].

The heat conduction process (including the external heat source) is modeled by the following system of equations:

∂αkρk

∂t
= 0, (39a)

∂ρu

∂t
= 0, (39b)

∂α1ρ1e1

∂t
= δq1 + q1 + I1, (39c)

∂α2ρ2e2

∂t
= δq2 + q2 + I2, (39d)

∂α2

∂t
= r10

p
δq2 + r1

p
(q1 + I1) + r2

p
(q2 +I2) . (39e)

Here, the term δqk represents an interphase energy interaction term, and δq1 + δq2 = 0 for energy conservation. It consists 
of three components including the heat convection, the nozzling term, and the work done due to the interface motion, i.e.,

δqk = Q̃′
k + q I ·∇αk − p

∂αk

∂t
. (40)

The first two terms can be written in the form of temperature relaxation (similar to eq. (10)) with their own non-negative 
relaxation rate [61] as follows:

Q′′
k = Q̃′

k + q I ·∇αk. (41)

The interphase interaction is defined as a linear combination of qk and Ik ,

δq2 = r̂1(q1 + I1) + r̂2(q2 +I2). (42)

We then define the parameters r10, r1, r2, ̂r1, ̂r2 in this model in the following manner.

• Defining the parameters r10, r1, r2

The pressure equilibrium condition eq. (34) should be maintained, thus, one can obtain

r10 = r0, (43a)

r1 = −�1/α1(
γ 1 − �1

)
/α1 + (

γ 2 − �2
)
/α2

, (43b)

r2 = �2/α2(
γ 1 − �1

)
/α1 + (

γ 2 − �2
)
/α2

. (43c)

• Defining the parameters ̂r1, ̂r2

The temperature equilibrium condition should be satisfied, i.e.,

∂T1

∂t
= ∂T2

∂t
, (44)

which yields the coefficients in eq. (42) as

r̂1 = − r1Y− m2C v,2

r0Y− m1C v,1 − m2C v,2
, (45a)

r̂2 = − r2Y+ m1C v,1

r0Y− m1C v,1 − m2C v,2
, (45b)

Y= m1C v,1G2 + m2C v,2G1, (45c)

where mk = αkρk , Gk = 1 + �k/cv,k , with cv,k being the dimensionless specific heat, cv,k = pVk/(Cv,k Tk).
9
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By using eq. (39) and the Gibbs relation eq. (15), one can deduce

∂ρs

∂t
+ ∇ · (ρsu) = q1

T1
+ q2

T2
+ I1

T1
+ I2

T2
+

(
1

T2
− 1

T1

)
Q′′

2. (46)

The last r.h.s. term can be shown to be non-negative by inserting the temperature relaxation expression. As for the first 
two terms, according to proof 1, we have∫

V

qk

Tk
dτ ≥ 0, (47)

if the net heat flux across the surface of the volume V vanishes.
We further deduce∫

V

[
∂ρs

∂t
+ ∇ · (ρsu)

]
dτ ≥ 0, (48)

and as V is an arbitrary closed domain, one can write the entropy inequality

∂ρs

∂t
+ ∇ · (ρsu) ≥ 0. (49)

Remark 5. Thanks to eq. (44), δqk can be expressed as a function of qk and Ik . One can also consider the more general 
situation where heat conduction goes in temperature disequilibrium by abandoning the complete temperature relaxation 
assumption (i.e., eq. (44)) and specify concrete closure law for Q′ or Q′′ .

Moreover, under the assumption of complete relaxations within every time step, different relaxation sequences are also 
possible (see Table 1 and section 3.4.2).

2.4. The final model

We summarize the finial model for compressible two-phase flows with viscosity and heat conduction as follows:

∂αkρk

∂t
+ ∇ · (αkρku) = 0, (50a)

∂ρu

∂t
+ ∇ · (ρu ⊗ u) + ∇ (α1 p1 + α2 p2) = ∇ ·τ , (50b)

∂αkρkek

∂t
+ ∇ · (αkρkeku) + αk pk∇ · u = −pIFk + αkτ k : D

+Q′
k + δqk + qk +Ik, (50c)

∂α2

∂t
+ u ·∇α2 = F2 + r0

p

(
Q′

2 + δq2
)

+ r1

p
(q1 +I1) + r2

p
(q2 + I2) . (50d)

The mechanical stage can violate the temperature equilibrium state of the phases that is reached and maintained through 
following temperature relaxations. One can see that the temperature relaxation in the considered model eq. (8) consists of 
two parts: the thermal relaxation before heat conduction Q′

k and that during heat conduction Q′′
k (see eq. (41)), with the 

former being much faster than the latter. The former ensures the initial temperature equilibrium before the heat conduction 
progresses, the latter maintains this temperature equilibrium while the heat conduction in and between the phases. Thus, 
temperature equilibrium is still maintained after the heat conduction.

For each stage, the entropy inequality remains valid. Thus, after implementing the fractional step method corresponding 
to the three relaxation stages, the solution obtained should not be contrary to the second law of thermodynamics.

Since the final model is non-conservative for the mixture total energy, we supplement it with the mixture total energy 
equation of the five-equation model eq. (21c) in order to correct the non-conservativeness. Similar idea is adopted in [75]
in the absence of the diffusion processes.

3. Numerical methods

In this section we describe the numerical methods for solving the above proposed model. The numerical method is based 
on the operator splitting technique that consists of three stages: the mechanical (solving the hyperbolic, viscous, and the 
pressure relaxation parts of the equations), the temperature relaxation, and the heat conduction stage. We address these 
steps separately. These steps can be arranged in different orders to mimic different physical assumptions (as listed in Table 1
below).
10
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3.1. Hyperbolic part

The homogeneous hyperbolic part of the governing equations eq. (50) to be solved first is as follows:

∂αkρk

∂t
+ ∇ · (αkρku) = 0, (51a)

∂ρu

∂t
+ ∇ · (ρu ⊗ u) + ∇ (α1 p1 + α2 p2) = 0, (51b)

∂αkρkek

∂t
+ ∇ · (αkρkekuk) + αk pk∇ · u = 0, (51c)

∂ ρE

∂t
+ ∇ · [(ρE + α1 p1 + α2 p2) u] = 0, (51d)

∂α2

∂t
+ u ·∇α2 = 0. (51e)

As mentioned above, we adopt the idea similar to that of [75], i.e., using a redundant equation for the mixture total 
energy eq. (51d) to correct the solution of the non-conservative equations for phase internal energies eq. (51c). One can 
rewrite eq. (51) (without the redundant equation) into the following system with respect to the primitive variable Z =
[ρ1 ρ2 u v p1 p2 α2]T

∂ Z

∂t
+ A

∂ Z

∂x
= 0. (52)

It can be shown that the matrix A has 7 real eigenvalues (i.e. u ± c and u of multiplicity 5) and the corresponding set 
of six linearly independent right eigenvectors. Thus, the system is hyperbolic.

The mixture speed of sound for this model is

c2 = Y1c2
1 + Y2c2

2. (53)

This ensures monotonic variation of the characteristic velocity across the interface zone and therefore more robust com-
pared with the five-equation model eq. (21) where the mixture speed of sound is given by non-monotonic Wood’s formulae.

We recast eq. (51) in the vector compact form (in 1D) as:

∂U

∂t
+ ∂ F (U )

∂x
+ R (U )

∂u

∂x
= 0, (54)

where

U = [α1ρ1 α2ρ2 ρu ρv α1ρ1e1 α2ρ2e2 ρE α2]T ,

F (U ) = uU + (α1 p1 + α2 p2)D,

D (U ) = [0 0 1 0 0 0 u 0]T ,

R (U ) = [0 0 0 0 α1 p1 α2 p2 0 − α2]T .

We use the Godunov method coupled with the approximate Riemann solver HLLC to solve eq. (54):

U n+1
i = U n

i − �t

�x

[
F

(
U ∗

i+1/2

)
− F

(
U ∗

i−1/2

)]
− �t

�x
R

(
U n

i

)(
u∗

i+1/2 − u∗
i−1/2

)
, (55)

where U ∗
i+1/2 = U ∗

i+1/2 (U i, U i+1) is the Riemann solution at the cell face i + 1/2. Here we use the three-wave approximate 
Riemann solver HLLC [80–82,89]. The dimensional spitting method is used for extension to multiple dimensions.

3.2. Viscous part

Viscous terms have no impact on the mass balance equations and affect only the momentum and energy equations. The 
corresponding splitted equations are read as

∂αkρk

∂t
= 0,

∂αk

∂t
= 0,

∂ρu

∂t
= ∇ ·τ ,

∂αkρkek

∂t
= αkτk : D,

∂ρE

∂t
= ∇ ·

(
τ · u

)
.

(56)

To solve the parabolic PDE for velocity, we use an efficient method of local iterations based on Chebyshev parameters 
[100,83]. A brief introduction on this method is given below.
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Consider the following 1D parabolic PDE

∂v

∂t
= Lv + f (x, t) , x ∈ G ⊂ R (57)

where L is a linear elliptic self-adjoint positive-definite operator.
Given a grid �h = ∪[x j−1/2, x j+1/2] with a space step h, consider also a discrete operator Lh v j that approximates the 

operator L with O(h2) on smooth solutions. For example, it can be the 1D reduction of the 7-point (in 3D) symmetric 
discretization of L obtained with the finite volume method used in the present paper (see below). The operator Lh is 
self-adjoint and has real positive eigenvalues within an interval [λmin, λmax].

The method of local iterations [100] is realized as 2P − 1 explicit iterations, where P = ⌈
π/4

√
τλmax + 1

⌉
, with τ being 

the time step and x� denoting the maximal integer to be greater than or equal to x. These explicit iterations are written as 
follows (for details see [100]):

v(m) = 1

1 + τbm

(
vn + τbm v(m−1) − τ Lh v(m−1) + τ f (n)

)
, m = 1,2, · · · ,2P − 1, (58)

where v(m) is the solution after m-th iteration, bm is a set of iteration parameters,

(b1,b2, · · · ,b2P−1) = (aP ,aP−1, · · · ,a2,aP ,aP−1, · · · ,a1),

Here,

am = λmax

1 + β1
(β1 − βm), m = 1, · · · , P , (59)

and the sequence (β1, · · · , βP ) represents the roots of the Chebyshev polynomial T P (x): cos (2 j−1)π
2P , j = 1, · · · , P , arranged 

in the increasing order.
Since b2P−1 = 0, the last iteration becomes

v(2P−1) = vn + τ Lh v(2P−2) + τ f n, (60)

which is the pure explicit step and v(2P−2) can be viewed as a predicted solution.
This scheme ensures the monotonicity of the solution [100]. Each explicit iteration of eq. (58) is a conventional explicit 

step, making its parallel realization quite straightforward.
According to eq. (56), the mixture density ρ does not vary with time at this stage. Therefore, the momentum equation 

takes in 1D the following form:

ρ
∂u

∂t
= ∂

∂x

(
4

3
μ

∂u

∂x

)
. (61)

The above method of local iterations is applied to eq. (61). The operator Lh that approximates the r.-h.s. is given by 
central differences as

Lh = 1

�x

(
F vis

i+1/2 − F vis
i−1/2

)
, (62)

where

F vis
i+1/2 = 4

3
μi+1/2

∂u

∂x

∣∣
i+1/2

represents the viscous flux across the cell face i + 1/2.
The last iteration step is given in the conservative form,

(ρu)n+1
i − (ρu)n

i

�t
= Lh (̂ui),

with ̂u being the predicted velocity after the first (2P − 2) iterations.
Once the velocity is calculated, the total energy is then updated as follows:

(ρE)n+1
i − (ρE)n

i

�t
= 1

�x

(̂
ui+1/2 F vis

i+1/2 − ûi−1/2 F vis
i−1/2

)
, (63)

where F vis is determined by the velocity ̂u calculated in the first 2P − 2 local iteration.
i+1/2

12
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Note that αkτ k : D = ∇ ·
(
αkτ k ·u

)
−

[
∇ ·

(
αkτ k

)]
·u, then one can update the internal energies as follows:

(αkρkek)
n+1
i − (αkρkek)

n
i

�t
= 1

�x

(
αk,i+1/2ûi+1/2 F vis

i+1/2 − αk,i−1/2ûi−1/2 F vis
i−1/2

)
− 1

�x
ui

(
αk,i+1/2 F vis

i+1/2 − αk,i−1/2 F vis
i−1/2

)
. (64)

Extensions of the above algorithm to multiple dimensions can be done straightforwardly in the directional splitting 
manner.

3.3. Pressure relaxation part

Next step is to drive phase pressures into an equilibrium state by performing instantaneous pressure relaxation proce-
dures when τ = 1/η → 0. The process can be described with the following equations:

∂αkρk

∂t
= 0,

∂ρu

∂t
= 0,

∂αkρkek

∂t
= −pIFk,

∂αk

∂t
= Fk, (65)

where Fk is defined in eq. (10).
Here we use the relaxation algorithm proposed in [75]. This algorithm consists of the following basic steps:

(1) Combining eq. (65) and eq. (2a), one can obtain the relaxed volume fraction as a function of the equilibrium pressure 
p(1) , i.e., α(1)

k = αk(p(1)). By using the saturation constraint 
∑

αk(p(1)) = 1, we can find p(1) and α(1)

k .

(2) Having α(1)

k , we then re-evaluate the pressure by using the mixture total energy ρE (solved from the mechanical 
part of eq. (21c)) to ensure the conservativeness of energy and obtain the final pressure as p(2) = p(α

(1)

k , ρe), where 
ρe = ρE − ρu · u/2.

(3) The phase internal energies are recalculated according to ek = ek(p(2), α(1)

k ).

It is reported that this solution algorithm turns to be only about 5% more expensive than that of the five-equation model 
[78].

3.4. Temperature relaxation and heat conduction parts

The system of equations for the temperature relaxation read:

∂αkρk

∂t
= 0, (66a)

∂ρu

∂t
= 0, (66b)

∂αkρkek

∂t
=Q′

k, (66c)

∂α2

∂t
+ u ·∇α2 = r0

p
Q′

2. (66d)

And the heat conduction process is described by

∂αkρk

∂t
= 0, (67a)

∂ρu

∂t
= 0, (67b)

∂αkρkek

∂t
= δqk + qk +Ik, (67c)

∂α2

∂t
= r0

p
δq2 + r1

p
(q1 +I1) + r2

p
(q2 + I2) . (67d)

We see that formally eq. (66) is a particular case of eq. (67) when qk + Ik = 0, δqk = Q′
k . Therefore, we first deal with 

numerical solutions of eq. (67) and then extend to eq. (66).
Considering ek = ek(Tk, ρk) and eliminating δq2 from eq. (67), one can deduce the following relation between phase 

temperatures and volume fraction α2:

C2
∂T2 +B2

∂α2 = R1 (q1 +I1) +R2 (q2 + I2) . (68)

∂t ∂t

13
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B2C1
∂T1

∂t
+ (B1 +B2)C2

∂T2

∂t
= (B2 +B1R1) (q1 +I1) + (B2 +B1R2) (q2 + I2) , (69)

where

Ck = mkC v,k,

B1 (Tk,α2) = p (Tk,α2) (G2 − G1),

B2 (Tk,α2) = p (Tk,α2)
1 − r0 (Tk,α2) G2

r0 (Tk,α2)
,

R1 (α2) = −�1/α1

�1/α1 + �2/α2
,

R2 (α2) = 1 + �2/α2

�1/α1 + �2/α2
.

In the case of the SG EOS, we have:

B1 = p∞,1 − p∞,2, (70)

B2 = p

r0
+ p∞,2. (71)

It can be seen that C1, C2, B1 are all constants in this case, while B2 is a function of α2, T1, T2 due to eq. (37)) and 
p = p(Tk, ρk) = p(Tk, mk

αk
). Here, mk is constant as a result of eq. (66a).

Using eqs. (25), (35), and (71), B2(T1, T2, α2) can be explicitly written as

B2(T1, T2,α2) = �1C1T1/α
2
1 + �1 p∞,1/α1 + �2C2T2/α

2
2 + �2 p∞,2/α2

�1/α1 + �2/α2
+ p∞,2. (72)

3.4.1. Temperature relaxation
The temperature relaxation process is assumed to be much faster than phase heat conduction so that we take q1 = q2 = 0

and I1 = I2 = 0. In this case, eqs. (68) and (69) are reduced to the following:

C2
∂T2

∂t
+B2

∂α2

∂t
= 0, (73a)

B2C1
∂T1

∂t
+ (B1 +B2)C2

∂T2

∂t
= 0. (73b)

In the model considered, we neglect a finite temperature relaxation time and assume the temperature equilibrium to oc-
cur within the time step. Using the superscript “0” and “′” to denote parameters before and after the temperature relaxation 
stage, an implicit discretization of eqs. (73a) and (73b) can be written as

C2

(
T ′ − T 0

2

)
+B2(T av

1 , T av
2 ,αav

2 )
(
α2

′ − α2
0
)

= 0, (74a)

B2(T av
1 , T av

2 ,αav
2 )C1

(
T ′ − T 0

1

)
+ (
B1 +B2(T av

1 , T av
2 ,αav

2 )
)
C2

(
T ′ − T 0

2

)
= 0. (74b)

Here the parameters C1, C2, and B1 are all constants, while B2 is a function of the phase temperatures and the volume 
fraction, B2 = B2(T1, T2, α2) that is approximated by the average values T av

k = (T 0
k + T ′)/2 and αav

2 = (α0
2 + α′

2)/2, i.e., 
B2 =B2(T av

1 , T av
2 , αav

2 ). This system is solved with the Newton method or the simple iterative method. In the present work 
we use the latter.

Remark 6. If we look at eq. (7) from the perspective of the temperature relaxation, the relaxed temperature defined by the 
one-temperature five-equation model can be viewed as an averaged temperature:

ρe =
∑(

αkρkC v,k T 0
k + αk p∞,k + αkρkqk

)
= ρC v T ′ + p∞ + ρq, (75)

with

T ′ = C1T 0
1 +C2T 0

2

C1 +C2
. (76)

In fact, in the case when p∞,1 = p∞,2 the solution of eq. (73b) coincides with eq. (76). Otherwise, we obtain a solution 
different from eq. (76). Moreover, no corresponding volume fraction variation is considered in the one-temperature five-
equation model.
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3.4.2. Heat conduction
Heat conduction under temperature equilibrium The heat conduction process goes under the temperature equilibrium condi-
tion T1 = T2 = T , so that eqs. (68) and (69) describe the change in time of temperature and volume fraction:

∂T

∂t
=V1 (q1 +I1) +V2 (q2 +I2) , (77a)

∂α2

∂t
=U1 (q1 + I1) +U2 (q2 +I2) , (77b)

where

V1 = B2 +B1R1

(B1 +B2)C2 + C1B2
, V2 = B2 +B1R2

(B1 +B2)C2 +C1B2
,

and

U1 = R1 − C2V1

B2
, U2 = R2 − C2V2

B2
.

Note that Bk, Vk, Uk, Rk are dependent on α2 and T .
Initial data for this system of ODE are T ′ and α′ obtained as the result of solving the temperature relaxation step (see 

section 3.4.1).
Note that the coefficients V1, V2, U1, U2 are functions of T and α2. The heat conduction coefficients commonly 

depend on temperature, i.e., λk = λk(Tk). For example, for the thermal conductivity in completely ionized gas λk = O(T
5
2

k )

[87]. Therefore, eqs. (77a) and (77b) represent a system of non-linear PDEs, with the spatial differential operator being 
applied only to T .

To solve this system of parabolic equations we implement the method of local iterations described above (eq. (58)). The 
term due to heat conduction qk is approximated with the central difference scheme. For example, assuming the 1D case on 
a uniform grid, qk is discretized as

(qk)i = �k,i+1/2Ti+1 − (
�k,i+1/2 + �k,i−1/2

)
Ti + �k,i−1/2Ti−1

�x2
(78)

where �k = αkλk .
The method of local iterations is applied to solve eq. (77a) for temperature with iterative recalculation of volume fraction 

in eq. (77b). The computational algorithm is formulated in Algorithm 1.

Algorithm 1 The iterative algorithm for solving eqs. (77a) and (77b).
Define the discretized solution
T := {T1, T2, . . . , T N }, A := {α2,1, α2,2, . . . , α2,N }, T (1) :=T ′, A(1) :=A′
Define it := 1, Conv := −1, tol
while Conv < 0 do

Calculate the parameters Vk, Uk, �k by using T (it), A(it)

Solve eq. (77a) with respect to T by using the method of local iterations (or a conventional implicit scheme) to obtain T ′
Solve eq. (77b) with respect to α2 with T ′ and A(it) to obtain A′
Set T (it+1) =T ′ , A(it+1) =A′
Calculate err = ‖T (it+1) −T (it)‖
if err < tol then

Conv = 1
end if
Update it := it + 1

end while
return T (it+1), A(it+1)

Heat conduction under temperature disequilibrium Although in the present work we focus on the case where phase temper-
atures reach equilibrium at the end of each time step, one can also consider disequilibrium heat conduction. The role of 
the temperature relaxation term Q′′ (inside δqk) accompanying the heat conduction is to drive the phase temperatures into 
equilibrium. Temporarily abandoning this term under the temperature disequilibrium, eqs. (39c) to (39e) become:

∂αkρkek

∂t
= qk + Ik − p

∂αk

∂t
, (79a)

(1 + r10)
∂α2

∂t
= r1

p
(q1 + I1) + r2

p
(q2 + I2) . (79b)
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Table 1
Different relaxation procedures.

Procedure (A) Procedure (B) Procedure (C)

HC under disequilibrium of pressure 
and temperature

HC under equilibrium of pressure 
and temperature

HC under temperature disequilibrium 
and pressure equilibrium

HD
p1 �= p2, T1 �= T2

HD
p1 �= p2, T1 �= T2

HD
p1 �= p2, T1 �= T2

HC
p1 �= p2, T1 �= T2

Solve 2 HEs

PR
p0

1 �= p0
2, p′

1 = p′
2, T1 �= T2

PR
p0

1 �= p0
2, p′

1 = p′
2, T1 �= T2

PR
p0

1 �= p0
2, p′

1 = p′
2, T1 �= T2

TR
p1 = p2, T 0

1 �= T 0
2 , T ′

1 = T ′
2

HC
p1 = p2, T1 �= T2

Solve 2 HEs

TR
p1 = p2 T 0

1 �= T 0
2 , T ′

1 = T ′
2

HC+TR
p1 = p2, T 0

1 = T 0
2 , ∂T1

∂t = ∂T2
∂t

Solve 1 HE

TR
p1 = p2, T 0

1 �= T 0
2 , T ′

1 = T ′
2

tex1 = 79.95 s
tex2 = 2757.78 s
tex3 = 3399.52 s

tex1 = 69.04 s
tex2 = 1570.20 s
tex3 = 40.69 s

tex1 = 77.71 s
tex2 = 2733.53 s
tex3 = 3577.38 s

HD = hydrodynamic, HC = heat conduction, PR = pressure relaxation, TR = temperature relaxation, HE = heat equation.
Superscripts “0” and “′” represent values at the beginning and the end of the current stage, respectively.
The last row displays the computation times of sample test problems with the explicit scheme below. The first, second, third row 
correspond to the shock tube test with λ1 = λ2 = 106 W/(m · K) on 200-cell and 1000-cell grid, the two-phase problem with 
λ1 = λ2 = 107 W/(m · K), respectively.
The computations are performed on processor Intel(R) Xeon(R) W-2012 CPU @ 2.90 GHz and MATLAB 2017.

For SG EOS, eq. (79a) becomes

αkρkC v,k
∂Tk

∂t
= qk + Ik − (p + p∞,k)

∂αk

∂t
. (80)

After disequilibrium heat conduction, the complete temperature relaxation (including the nozzling term) is performed at 
the end of each time step.

For the case of finite temperature relaxation rate, one has to add the nozzling terms qI ·∇αk and r10
p qI ·∇αk to the r.-h.s. 

of eq. (79a) and eq. (79b), respectively.
Equations (79b) and (80) are solved with the iterative method similar to Algorithm 1. Note that here we have two 

disequilibrium temperatures and one volume fraction as unknowns. For the numerical approximation of the nozzling terms, 
see [61].

3.5. Relaxation procedures

On the basis of different physical assumptions, several relaxation procedures are possible, as summarized in Table 1. 
Procedure (A) is the solution procedure similar to that of Petitpas et al. for their model [61]. In their procedure, the heat 
conduction proceeds under pressure and temperature disequilibrium and frozen interface topology. Heat conduction con-
tributes to this disequilibrium, which is then erased with the pressure relaxation and temperature relaxation successively.

Our work focuses on the heat conduction under pressure equilibrium. Possible candidates are procedures (B) and (C). 
The heat conduction and temperature relaxation may undermine the obtained pressure equilibrium. To balance the arising 
pressure disequilibrium, the interface is in motion. The last three r.h.s. terms in eq. (50d) account for the mechanism 
of maintaining the pressure equilibrium obtained through the first term Fk . The coupling between volume fraction and 
temperature is taken into consideration, adding some computational complexity.

In the application context of the high-energy-density plasma flows the heat equation is strongly non-linear and time-
consuming to solve. Therefore, computational efficiency is an important aspect in choosing relaxation procedures. The 
procedure (B) has better efficiency than procedures (A) and (C), especially for problems where temperature relaxation time 
approaches zero. One reason is that the procedure (B) solves only one heat equation for the equilibrium temperature, while 
others need to solve the heat equation for each phase in temperature disequilibrium. In addition, the explicit stable time 
step required by the phase heat equation is smaller than that of an equilibrium mixture heat equation in general. In proce-
dure (B), the stable explicit time step required by the heat equation (77a) is

�t <
�x2

(α λ ) (V ) + (α λ ) (V ) + (α λ ) (V ) + (α λ ) (V )
. (81)
1 1 i+1/2 1 i 1 1 i−1/2 1 i 2 2 i+1/2 2 i 2 2 i−1/2 2 i
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Fig. 1. Initial stable explicit time step for the relaxation procedures (A) and (B).

In the case when B1 = 0 
(
or p∞,1 = p∞,2

)
and constant conductivity, this is reduced to the following familiar formula-

tion:

�t <
ρC v�x2

2λ
, (82)

see eq. (3a) for the definition of C v .
Fig. 1 demonstrates the stable time steps required by the explicit scheme for the two-phase problem in Section 4.5. Here 

the time step for the phase heat equation is determined with the method proposed in Petitpas et al. [61]. We see that the 
time step for phase 2 is very small, which leads to a significant increase in the computation time. We have compared the 
computation time consumed by different relaxation procedures for several sample problems in Table 1, where one can see 
that the proposed relaxation procedure (B) has obvious advantage in explicit implementation.

3.6. Evolution of constant pressure and temperature profiles

For the interface-capturing schemes, an important property is the preservation of constant velocity and pressure profiles, 
which is referred to as the PV property in literature and given by the following definition.

Definition 1. Say that an interface-capturing numerical scheme has the PV property if it ensures

un+1
i = u = const, pn+1

i = p = const

providing that

un
i = u = const, pn

i = p = const.

The numerical methods/models with this property have been studied, for example, in [1,2,84,85,50,98,4]. However, as 
pointed out in [35,3], the methods with the PV property may result in erroneous temperature spikes in the vicinity of the 
material interfaces. This phenomenon is not problematic when dissipative processes are not considered. However, when heat 
conduction is involved, the numerical errors in temperature may affect the pressure through the energy equation. Therefore, 
for compressible multi-fluid problems, instead of the above PV property we require the following PVT property

Definition 2. An interface-capturing numerical scheme has the PVT property if it ensures

un+1
i = u = const, pn+1

i = p = const, T n+1
i = T = const,

providing that

un
i = u = const, pn

i = p = const, T n
i = T = const

Johnsen et al. [35,3] have proposed a methodology to get rid of the temperature spikes by introducing rules to define 
different mixture EOS for computing pressure and temperature. Their idea is similar to that of [1] for designing numerical 
methods to ensure the PV property. They developed their method based on the one-fluid formulation with single velocity, 
pressure and temperature. In this model the interfaces are represented by discontinuity in material properties.
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However, this method may result in multiple definitions of material properties, and thus ambiguity in interface loca-
tions. In fact, although they assume that the fluids are in temperature equilibrium, the resultant model formally allows 
two temperatures. Their definitions of the mixture EOS for computing temperature are equivalent to averaging the phasic 
temperatures according to eq. (76).

If we look at the problem from the perspective of the two-temperature model, the temperature averaging procedure (by 
defining the mixture EOS) should be interpreted as a physical process – temperature relaxation. The impact of temperature 
relaxation process on volume fraction evolution is significant, as we demonstrate below. In the model of [35,3] this impact 
is neglected and volume fraction is purely advected. As can be seen in our model formulation (see Section 2), the impact of 
temperature relaxations (Q′

k in eq. (33) and δq2 in eq. (39)) on volume fraction evolution has been included and numerically 
treated properly in section 3.4.

In the case of ideal gas EOS, we have

p∞,k = 0, qk = 0, B1 = 0.

Then the solution of our temperature-relaxations equations (73b) reproduces eq. (76). In fact, as long as p∞,1 = p∞,2, eq.
(76) holds. If the phasic temperatures before thermal relaxation are in equilibrium, then the averaging procedure does not 
change the temperature, nor the volume fraction.

Next we demonstrate that the proposed model preserves the PVT property, and is free of the temperature spike problem. 
Let us consider the following Riemann problem with the initial discontinuity:

uL = uR = u > 0
ρL

k = ρR
k = ρk, k = 1,2

eL
k = eR

k = ek, k = 1,2
αL

2 �= αR
2 ,

T1 = T2 = T ,

γ1 �= γ2.

(83)

This problem is similar to that in [4,98], the difference consists in that we additionally require an initial temperature 
equilibrium and consider the thermal relaxation process.

Proposition 2. The solution to our model equations with initial discontinuity (83) ensures that

u∗ = u
ρ∗

k = ρk, k = 1,2
e∗

k = ek, k = 1,2
T ∗

1 = T ∗
2 = T ,

(84)

where the superscript “*” denotes the solution in the cell downstream the discontinuity after one time step.

Proof 2. We apply a Riemann solver that resolves isolated contact discontinuity exactly (for example HLLC [89,82]). After 
one time step, we have

U ∗
i = ξU i−1 + (1 − ξ)U i, (85)

where U is the solution vector defined in eq. (54) and ξ = u�t/�x. After some algebraic manipulations, one can obtain 
that

u∗ = u, p∗
1 = p∗

2 = p, e∗
k = ek, ρ∗

k = ρk. (86)

By using the EOS of each phase, one can deduce

T ∗
k = Tk(p∗

k ,ρ∗
k ) = T . (87)

Next we prove that the temperature relaxation eqs. (73a) and (73b) with T 0
k = T ∗

k allows only one physically admissible 
solution T ′ = T .

For the case p∞,1 = p∞,2, this consequence immediately comes from eq. (76).
For the case p∞,1 �= p∞,2, the proof is not so straightforward. For this case, let us assume that there exists another 

solution that T ′′ �= T and satisfies eqs. (73a) and (73b). By using eq. (74b) and having in mind T ′′ − T �= 0, one obtains

B2
(
T av ,αav

2

) = −C2B1

C
= B2 = const, (88)

where
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C= C1 + C2,

T av = T av
1 = T av

2 = (T ′′ + T )/2,

αav
2 = (α′′

2 + α2)/2.

By using eqs. (72) and (88), one can obtain

T av = b1�1/α
av
1 + b2�2/α

av
2

�1C1/(α
av
1 )

2 + �2C2/(α
av
2 )

2
, (89)

where b1 = B2 − p∞,2 − p∞,1, b2 = B2 − 2p∞,2, αav
1 = 1 − αav

2 .
By using eqs. (74a) and (88), one obtains

T ′′ = T − 2
B2

C2

(
αav

2 − α2
0
)

, (90)

or

T av = T − B2

C2

(
αav

2 − α2
0
)

, (91)

Combination of eqs. (89) and (91) leads to γ1 = γ2, which contradicts the initial condition (eq. (83)). Thus, the tem-
perature relaxation procedure does not violate the temperature equilibrium. Moreover, since velocity and temperature are 
spatially uniform, the diffusion processes (heat conduction and viscosity) do not have any impact on the solution.

Remark 7. The conservative four-equation model [46] preserves the PV/PVT property in the case of uniform pressure and 
temperature distribution. When discontinuity exists in temperature, the four-equation model fails to preserve the PV prop-
erty, while the six-equation model preserves this property without temperature relaxation.

3.7. Extension to high order and interface sharpening

The scheme can be extended to higher orders with the MUSCL or WENO scheme. Moreover, to minimize numerical diffu-
sion of material interfaces, we apply special interface-sharpening schemes [95,86,12,13,94]. One principle for implementing 
these schemes is that the reconstruction schemes for volume fractions and phase densities should be consistent, otherwise, 
the PVT property is violated. We give some explanations on the principles or issues for implementing high-order reconstruc-
tion schemes maintaining the PVT property for both the conservative four-equation model [46] and the quasi-conservative 
models (the six-equation model and the one-temperature five-equation model [3]).

3.7.1. Reconstruction principle for the quasi-conservative model
Observing the above proof of the PVT property (proof 2), one can see that an important condition for proving the 

temperature equilibrium is ρ∗
k = ρk . The high-order extensions should also ensure this condition. This is deduced from

(αkρk)
∗
i = ξ (αkρk)i−1 + (1 − ξ) (αkρk)i (92a)

(αk)
∗
i = ξ (αk)i−1 + (1 − ξ) (αk)i . (92b)

The corresponding high-order formulation is given as follows:

(αkρk)
∗
i = (αkρk)i − ξ

[
(αkρk)i,R F − (αkρk)i−1,R F

]
, (93a)

(αk)
∗
i = (αk)i − ξ

[
(αk)i,R F − (αk)i−1,R F

]
, (93b)

where we use the subscript “RF” to represent the reconstructed values on the right face of the current cell.
Assume that we use a reconstruction scheme that is a homogeneous function of degree 1 with respect to the reconstruc-

tion stencil, i.e., Rec (βP) = βRec (P), β = const > 0. Note that the TVD schemes are such functions. Then the reconstructed 
values are as follows:

(αk)i,R F = Rec (P) , (94a)

(αkρk)i,R F = Rec (ρkP) = ρkRec (P) , (94b)

where P is the reconstruction stencil, for example, for the MINMOD scheme, P = {(αk)i−1 , (αk)i , (αk)i+1}. Rec and Rec are 
the reconstruction scheme for αk and αkρk , respectively.

Combination of eqs. (93a), (93b), (94a), and (94b) leads to the conclusion that ρ∗
k = ρk holds only when Rec (P) = Rec (P). 

This means that the same scheme should be used for reconstruction of (αk)i,R F and (αkρk)i,R F ; Otherwise, the temperature 
equilibrium is violated. The numerical results presented in Section 4 also confirm this fact.
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3.7.2. Reconstruction principle for the fully conservative model
As remarked above, for this model the standard first order FVM-HLLC ensures the PVT property in the case of uniform 

pressure and temperature. However, when extended to high-orders with the MUSCL scheme, one must cautiously select 
the reconstruction variables, otherwise, spurious oscillations arise. Two possible reconstruction candidates are [ρ ρY u p] or 
[ρ Y u p]. The latter is preferred in [45] for preserving the positivity of the mass fraction Y . This is reasonable because for 
the first candidate the monotonicity-preserving property of (ρ)R F and (ρY )R F does not mean no new extrema appear in 
Y R F = (ρY )R F /(ρ)R F . In implementing TVD reconstruction with the first candidate, we encounter some robustness issues, 
i.e., computation breakdown in the case of complicated EOS and strong discontinuity. However, if both schemes converge, 
they do tend to converge to the same solution.

Although the second candidate is beneficial to positivity and robustness, it may ruin the PVT property. To avoid compli-
cated mathematical manipulations, we show the problem with the IG EOS. Given spatially uniform initial temperature Ti

and pi , with the IG EOS and the relation Y1 V 1 + Y2 V 2 = 1, we deduce that the following quantity should also be spatially 
uniform

pi

Ti
= ρi Y1,i R̃1 + (

ρi − ρi Y1,i
)

R̃2 =
(
ρ R̃

)
i
= const, R̃k = (γk − 1) C v,k. (95)

The PVT property requires that 
(
ρ R̃

)
i

should remain unchanged in space and time. When the velocity is uniform, with 
the first reconstruction candidate, we have

(ρ)∗i = (ρ)i − ξ
[
(ρ)i,R F − (ρ)i−1,R F

]
, (96a)

(ρY1)
∗
i = (ρY1)i − ξ

[
(ρY1)i,R F − (ρY1)i−1,R F

]
. (96b)

With the second set of reconstruction variables where Y1 is reconstructed, we deduce

(ρY1)
∗
i = (ρY1)i − ξ

[
ρi,R F (Y1)i,R F − ρi−1,R F (Y1)i−1,R F

]
. (97)

According to eq. (95), the limited slope for the linearly related variables ρ and ρYk are equal, and different from that 
for Y1 in general. Once the reconstruction slope is determined, (ρY1)i,R F is a linear combination of its stencil, whereas 

ρi,R F (Y1)i,R F is not. One can check that eq. (96b) leads to 
(
ρ R̃

)∗
i
=

(
ρ R̃

)
i
, while eq. (97) fails. Therefore, one can ascertain 

that first reconstruction candidate is compatible with the PVT property, which cannot be done for the second.
On the basis of the above analysis in this section, we define the following Temperature Non-Oscillatory (TNO) recon-

struction schemes.

Definition 3. High order schemes that ensure the same TVD reconstruction or the same interpolation weights for αkρk and 
αk for the five-equation and six-equation models (or ρ and ρYk for the four-equation model) are termed as temperature 
non-oscillatory (TNO). Otherwise, the schemes are termed as non-TNO.

4. Numerical results

In this section we perform several numerical tests with the purpose to verify our model and numerical methods and 
also compare with some other methods presented in literature. In the laser ablation problem (section 4.6), the variables are 
measured in the centimeter-gram-microsecond system of units, and in SI units for other tests.

4.1. Preservation of the PVT property

The purpose of this test is to check the capability of different models and numerical schemes to keep the PVT property. 
We consider the translation of material interface with initially uniform velocity u = 1.00 × 103 m/s and pressure p =
1.00 × 105 Pa. Initial phase pressures and temperatures are all in equilibrium. The computational domain is [0 m, 1 m]
and the material interface is initially located at x = 0.20 m. The EOS parameters for the left component are γ = 4.40, 
Cv = 58.82 J/(kg · K), and parameters for the right component are γ = 1.40, C v = 125.00 J/(kg · K), p∞ = 0.00 Pa. The 
right (left) pure component is approximated as a mixture with negligible amount (mass fraction 10−8) of the left (right) 
component.

We consider the following three cases:

(a) IG EOS without temperature discontinuity. The left component has the parameter p∞,1 = 0.00 Pa and the temperature 
is spatially uniform T = 3000.00 K. Such setting leads to a density of 0.17 kg/m3 on the left and 0.67 kg/m3 on the 
right.

(b) SG EOS without temperature discontinuity. The left component has the parameter p∞,1 = 6.00 × 108 Pa and the tem-
perature is spatially uniform T = 3000.00 K. Such setting leads to a density of 1000.15 kg/m3 on the left and 0.67 kg/m3

on the right.
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Fig. 2. Pure translation of a two-fluid system: numerical solutions for initial condition without temperature discontinuity. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

(c) IG EOS with temperature discontinuity. The left component has the parameter p∞,1 = 0.00 Pa. The temperature is 
discontinuous at the interface with 3000.00 K for the left component and 1000.00 K for the right component. Such 
setting leads to a density of 0.17 kg/m3 on the left and 2.00 kg/m3 on the right.

Non-physical oscillations can be caused by both models and numerical methods. We demonstrate this below.

Comparison of models Here and in the following subsections, we evaluate four different models:

(a) The conservative four-equation model with one temperature (4-eqn model 1T.) [46],
(b) The five-equation model with one temperature and one pressure (5-eqn model 1T.) [3],
(c) The six-equation model with two temperatures (6-eqn model 2T.) [75],
(d) The proposed six-equation model with two temperatures and thermal relaxation (6-eqn model 2T. relaxed).

To shield the impact of numerical methods, we use the TNO reconstruction schemes in solving all the above models. 
Computations with the above models are performed on a 100-cell grid to the moment t = 5.00 × 10−4 s. The numerical 
results for Case (a) and (b) are illustrated in Fig. 2. From Figs. 2a and 2b, it can be seen that all models with TNO schemes 
maintain the PVT property without triggering oscillations for Case (a). However, in Case (b), when solving the conservative 
four-equation model with the TNO scheme, the computation fails after a few steps due to complex wave speed. In this 
case, the quasi-conservative models show more robustness and are free of oscillations at the interface (see Figs. 2c and 2d). 
As demonstrated in Fig. 3, in Case (c) with temperature discontinuity, both the conservative four-equation model and the 
six-equation model with temperature relaxation lead to oscillations, the other models maintain the pressure-velocity equi-
librium.

Comparison of numerical schemes As mentioned above, in Case (b) when solving the conservative four-equation model with 
the TNO reconstruction scheme, the computation fails due to lack of robustness. Here we have used the reconstruction 
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Fig. 3. Pure translation of a two-fluid system: numerical solutions for initial condition with temperature discontinuity.

Fig. 4. Pure translation of a two-fluid system: numerical solutions to the conservative four-equation model with non-TNO reconstruction.

Fig. 5. Pure translation of a two-fluid system: numerical solutions to the six-equation model with non-TNO reconstruction.

variable [ρ u p Y1], which is non-TNO. From Fig. 4 we see that the non-physical pressure/temperature spikes arise in the 
numerical results obtained with the conservative four-equation model. This error can infect the solution in the computa-
tional domain through the heat conduction.

We continue to show that non-TNO scheme leads to non-physical oscillations of the six-equation model. If we use the 
interface-sharpening scheme Overbee [12] for reconstructing the volume fraction, and MINMOD for the phase densities, we 
obtain the results shown in Fig. 5. One can see that the oscillations appear as a result of this non-TNO scheme.
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Table 2
The performance of different model/scheme combinations for the pure translation problem.

Initial condition Model Scheme Oscillation

Without temperature discontinuity Four-equation [46] TNO NO
Five-equation [3] TNO NO
Six-equation without TR TNO NO
Six-equation with TR TNO NO

With temperature discontinuity Four-equation [46] TNO YES
Five-equation [3] TNO NO
Six-equation without TR TNO NO
Six-equation with TR TNO YES

With/without temperature discontinuity All models Non-TNO YES

TR = temperature relaxation.

For clarity, we summarize the performance of different model/scheme combinations in Table 2.

Remark 8. In the following tests the six-equation model is solved with Procedure (B) of Table 1 under instantaneous pres-
sure relaxation and temperature relaxation. In this case, in fact, the solution to the conservative four-equation model [46] is 
obtained but with a different numerical scheme.

Both the six-equation model and the four-equation model are reduced systems of the BN model which is a relaxation 
system. Different reduced models have different wave structures and numerical performance for a finite computational 
time step. It is well known that the thermal equilibrium assumption results in non-physical oscillations at interface in 
the hydrodynamic step. Unlike the four-equation model, the six-equation model does not assume thermal equilibrium at 
the hydrodynamic stage. Moreover, the six-equation model retains more degrees of freedom for relaxation than the four-
equation model, allowing to consider difference in relaxation time scales.

4.2. Convergence test

We check the convergence performance of our algorithm with a manufactured exact solution as follows:

(αkρk)(x, t) = 0.5 kg/m3, p(x, t) = 100 Pa, α1(x, t) = 0.6,

and the velocity is the solution of the viscous Burgers equation (see [49])

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂2x
,

u(x, t) = 1 + (2a − 1)exp((1 − a)ξ/ν)

1 + exp((1 − a)ξ/ν)
, ξ = x − at − x0. (98)

The constant are a = 0.5 m/s, x0 = 0.1 m, ν = 0.01 m2/s. The properties of two fluids are γ1 = 4.4, Cv,1 = 40 J/(kg · K)

and γ2 = 1.4, Cv,2 = 340 J/(kg · K), which ensures initial temperature equilibrium. Inserting these manufactured solutions 
to the model equations, one can obtain additional r.h.s. source terms that make exact solution valid. We take the solutions 
at t = 0.1 s as the initial condition and numerically evolve solution of the model with additional source terms to t = 0.2 s. 
The dependence of numerical error with the spatial step �x is demonstrated in Fig. 6. The orders of accuracy in L1, L2 and 
L∞ space are 1.52, 1.70, and 1.90, respectively.

4.3. Multicomponent heat conduction problem

We consider the multicomponent heat conduction problem from [61]. The material interface is located at the center of 
the computational domain [0 m, 1 m]. The fluid on the left is characterized by parameters

γ1 = 3.42, P∞,1 = 8.99 × 108 Pa, C v,1 = 1231 J/(kg · K), λ1 = 1 × 106 W/(m · K), T1 = 360 K

and that on the right

γ2 = 1.40, P∞,2 = 1.00 × 108 Pa, C v,2 = 1000.00 J/(kg · K), λ2 = 1 × 105 W/(m · K), T2 = 300 K.

The initial pressure is uniform p1 = p2 = 1 × 105 Pa. The insulated wall boundary conditions are imposed on both 
sides. As time evolves, the fluids reach a steady state where the interface location x = 0.48 m, the density on the left 
872.24 kg/m3 and on the right 802.06 kg/m3, and the equilibrium temperature 350.30 K [61]. The heat exchange between 
phases is realized through the nozzling term in [61]. In our approach this effect is considered through the temperature 
relaxation procedure. Our numerical results in Fig. 7 show the evolution of density, temperature, pressure and velocity 
towards the steady state. Good agreement with the analytical solutions is observed.
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Fig. 6. The error dependence on the grid size.

Fig. 7. Evolution of the numerical solutions of the six-equation model toward the analytical steady solution.

4.4. Shock tube problem with heat conduction

In this section we consider a two-fluid shock tube problem with the purpose of evaluating different models. Two fluids 
are initially at rest and separated by the material interface located at x = 0.7 m separating them. The fluid on the left has 
the EOS parameters as γ = 4.40, p∞ = 6.00 ×108 Pa, Cv = 1606.00 J/(kg · K), and that on the right γ = 1.40, p∞ = 0.00 Pa, 
Cv = 714.00 J/(kg · K). The initial pressure and temperature on both sides are given as follows:

0.00 < x < 0.70 m : p = 1.00 × 109 Pa, T = 293.02 K,
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Fig. 8. Numerical results for the two-fluid shock tube problem without heat conduction.

0.70 < x < 1.00 m : p = 1.00 × 105 Pa, T = 7.02 K.

The initial densities are determined from the corresponding EOS.

Test without heat conduction Computations are performed on a 1000-cell uniform grid. The obtained numerical results ob-
tained at the time moment t = 2.00 × 10−4 s are compared to the exact Riemann solution in Fig. 8. The exact solution 
consists of a leftward rarefaction wave, a rightward contact wave (interface) and a rightward shock wave.
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From the density profiles Fig. 8b and temperature profiles Fig. 8d, one can see that the shock wave velocity in the five-
equation model with one temperature appears to be overestimated. This stems from the different estimation of mixture 
acoustic velocity inside the diffused zone.

Note that as a solution to the Euler equations, the exact Riemann solution does not include any thermal relaxation. 
Therefore, the solution to the two-temperature six-equation model with no thermal relaxation is expected to better match 
the exact solution than that with thermal relaxation. In Fig. 8e we plot the two temperatures of fluids calculated in the 
temperature-disequilibrium six-equation model without temperature relaxation. As seen, the temperature of the first fluid 
quite well matches the exact solution on the left of the interface, while the temperature of the second fluid similarly does 
on the right. Thermal relaxation drives the two temperatures into an equilibrium temperature – the profile denoted as 
“6-eqn model 2T. relaxed” in Figs. 8c and 8d.

Test with equal phase thermal conductivity The above two-fluid shock tube problem is now considered with taking into ac-
count the phase heat conduction effect. The diffusion PDEs are solved with the explicit method of local iterations if not 
mentioned. The thermal conductivity is set to be a large number for comparison purpose. We first assign the same heat 
conduction coefficient for the two fluids λ1 = λ2 = 1.00 × 106 W/(m · K). The numerical results obtained with differ-
ent models are compared in Fig. 9. The results marked as converged (“Conv”) are computed on a fine grid consisting of 
20000 computational cells. The difference between the converged solutions of different models is indiscernible and they 
are taken as the reference solution for comparison. To demonstrate the difference between the models, we show also the 
numerical solutions for a coarse grid of 200 cells. The results for the proposed model (6-eqn model 2T.R.) agree much 
better with the reference solution than the five-equation model (see Figs. 9c and 9d). The results of the four-equation 
model are also satisfactory since the heat conduction seems to be not strong enough to spread its erroneous temperature 
spikes.

We then compare the results of different relaxation procedures A, B, C and the fully conservative four-equation model 
in Fig. 10. The relaxation procedure (C) produces numerical results that are slightly different from others. The computation 
time consumed on a grid of 200 cells are 79.95 s, 69.04 s, 77.71 s, and 57.20 s, respectively. On a grid of 1000 cells they are 
2757.78 s, 1570.20 s, 2733.53 s, and 1307.24 s, respectively.

As the thermal conductivity is increased to λ1 = λ2 = 1.00 × 107 W/(m · K), we find that these models do not converge 
to the same solution. This is demonstrated in Fig. 11, and is more clearly seen in the temperature profiles. The results of 
the four-equation model on a 20000-cell grid diverge from those of the five-equation and six-equation models to the right 
of the material interface. This can be explained by the numerical errors in the diffused zone, which then contaminate the 
results in the second fluid due to large thermal conductivity.

In Fig. 12 we verify the explicit method of local iterations that is used to solve efficiently the parabolic part of the 
model (heat conduction). Here we compare this method with the implicit scheme solved by conventional Newtonian iter-
ations. In the implicit scheme, the preconditioned conjugate gradient method is used for solving the system of algebraic 
equations. We see that the results obtained with both schemes on a 100-cell grid agree very well with the reference solu-
tion.

Test with non-uniform thermal conductivity and viscosity This test considers the shock tube problem for two fluids which 
have different thermal conductivities and viscosities. For the left fluid, the thermal conductivity and dynamic viscosity are 
assumed to be λL = 1.00 × 107 W/(m · K) and μL = 5.00 × 102 Pa · s and those for the right are λR = 1.00 × 106 W/(m · K)

and μR = 1.00 Pa · s. The viscosity and thermal conductivity are averaged with volume fractions, i.e. λ = ∑
k αkλk , μ =∑

k αkμk . Here, we compare the performance of the five-equation model and the six-equation model. From Fig. 13 one 
can see that the convergence performance of the proposed six-equation model is still superior to that of the five-equation 
model.

4.5. Two-phase problem

In this section, numerical experiments are performed for two-phase flows where the phases are mixed and may occupy 
the same location in space.

Shock propagation in a water-gas mixture The material properties of the phases are the same as in the previous test. The 
volume fraction of each component is initially 0.50 in the whole computational domain. Other initial data is given as 
follows:

x < 0.5 m : P = 1.00 × 109 Pa, T = 1000.00 K;
x > 0.5 m : P = 1.00 × 105 Pa, T = 300.00 K.

Here, the heat capacities of the fluids described by the SG EOS and IG EOS are 588.33 J/(kg·K) and 833.33 J/(kg·K), respec-
tively. Initial densities are determined by the corresponding EOS of each phase. For comparison purpose, the conductivities 
of gas and water are set by effective values of 1.00 × 107 W/m/K and 1.00 × 105 W/m/K, respectively. Computations are 
performed to the moment t = 2.00 × 10−4 s on a 1000-cell uniform grid. The numerical results are shown in Fig. 14. One 
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Fig. 9. Numerical results for the two-fluid shock tube problem with equal phase heat conductivity λ = 1.00 × 106.

can see that including temperature relaxation changes considerably the solution. The heat conduction process smears the 
temperature profile near the contact discontinuity, also resulting in corresponding changes in other variables.

Comparison between different relaxation procedures We compare the numerical results when λ1 = λ2 = 107 W/m/K obtained 
with different relaxation procedures on a grid of 200 cells in Fig. 15. Again, it can be seen that the results of the procedure 
(C) deviate from the others. The relaxation procedure (B) accomplishes the computation within 40.69 s with the explicit 
scheme, while the others take more than 3000 s. This is because in procedures (A)(C) we have to solve the heat equation 
for each phase whose stable time step is much smaller than the mixture heat equation.
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Fig. 10. Numerical results with different relaxation procedures. All the relaxations are achieved within each computational time step.

Shock wave in solid alloys We further consider an alloy impact problem from [56]. The alloy is composed of two compo-
nents epoxy and spinel. The volume fractions of these two components are 0.595 and 0.415, respectively. We solve this 
problem as a two-phase one with the six-equation model. The materials are characterized by the following EOS parame-
ters:

• Epoxy – γ = 2.94, P∞,1 = 3.20 × 109 Pa, ρ = 1185.00 kg/m3,
• Spinel – γ = 1.62, P∞,2 = 1.41 × 1011 Pa, ρ = 3622.00 kg/m3.

The schematic of this problem is displayed in Fig. 16. Calculations are carried out in the model without thermal relax-
ation, as the time scale of this problem is much smaller than the characteristic relaxation time. However, the mechanical 
relaxation is implemented.

For many metals, the shock velocity S linearly depends on the impact velocity uL . Calculations of the shock wave prop-
agation are done for different velocities uL . The results obtained are plotted in Fig. 17 and compared with the experimental 
data that is available from [56]. As can be seen, a linear profile of S well agrees with the experimental data.

4.6. Laser ablation problem

This section addresses an application problem related to the field of inertial confinement fusion (ICF) – the laser ab-
lation problem. In the direct-drive ICF capsule, the laser is used as an energy source to accelerate the plastic (CH, i.e., 
phenylethylene C8H8) target creating high temperature and high pressure environment for inward implosion.

One-dimensional planar target First, the laser ablation problem is considered in the 1D approximation. It is assumed that 
the target is plane, and the laser emission is uniform and normal to the target surface. The target is placed in vacuum that 
is approximated as a fluid with extremely low density. As shown in Fig. 18, the laser radiation comes from the right and its 
energy is absorbed by the CH material that then turns to high temperature ablated plasma. The energy absorption occurs up 
to the critical density point (where the incident power energy equals the reflected one) and over a distance dS (absorption 
area) to the right of the critical density point. We consider the following composite target consisting of two different CH 
materials separated by the material interface at a distance xL

• CH #1 ρ = 1.00, γ = 1.666, Cv = 86.27,
• CH #2 ρ = 0.80, γ = 1.220, Cv = 76.27,

hereinafter dimensions used are centimeter, gram and microsecond.
The vacuum is approximated as the material CH #2 with a density of 8.00 × 10−6. The critical density is ρcrt = 0.39 that 

can be calculated according to the inverse bremsstrahlung absorption theory.
The electron, ion and photon in the plasma are assumed to be in thermal equilibrium. The thermal conductivity of the 

plasma is approximated with the one-temperature Spitzer-Harm model [87,47] and is a nonlinear function of density and 
temperature:

λS H = 9.44

(
2

)3/2
(kB Te)

5/2 kB Ne√ 4

1
, (99)
π mee Ni Ze (Ze + 4) ln�ei
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Fig. 11. Numerical results for the two-fluid shock tube problem with equal phase heat conductivity λ = 1.00 × 107.

where kB is the Boltzmann constant, Te is the electronic temperature, Ne is the electron density, e is the electronic charge, 
me is the electronic mass, Ni is the ion density, Ze is the degree of ionization. For a certain plasma,

Ni = N0

Ac
ρ, Ne = Ze Ni, (100)

where Ac is the average atomic number, N0 is the Avogadro’s number.
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Fig. 12. Numerical results for the two-fluid shock tube problem obtained with the explicit and implicit scheme on a 100-cell grid.

Fig. 13. Numerical results for the two-fluid shock tube problem with for the case of different phase coefficients of viscosity and heat conductivity.

ln �ei is the Coulomb logarithm of laser absorption and determined with

ln �ei =

⎧⎪⎨⎪⎩
max

(
1, ln lD

lLD

)
,

Z 2
e

3kB Te
≥ ldB ,

max
(

1, ln lD
ldB

)
,

Z 2
e

3kB Te
< ldB ,

(101)

where lD is Debye length, lLD is Landau length, ldB is De Broglie wavelength.
Here, for simplicity, we assume equal phase conductivity defined with the same Spitzer-Harm relation.
Within the absorption distance dS = 2.00 × 10−3, the deposited laser power intensity is assumed to be constant, I =

1.00 × 103. In the vicinity of the right interface, the density is smoothed in the region from xR to xR R by an exponential 
function of the spatial coordinate. The geometry of the computational domain is specified as L = 1.00 ×10−1 and xL = 0.45L, 
xR = 0.50L, xR R = 0.51L. The initial temperature T = 3.00 × 10−4 in the whole computational domain. Pressure is calculated 
with the EOS of each material.

Calculations are performed with three models (the four-equation model, the one-temperature five-equation model and 
the proposed six-equation model) and two grids consisting of 1200 and 9600 equally distributed cells. To improve the 
material interface resolution, we implement the MUSCL scheme with the Overbee limiter [13]. This scheme is applied to 
phase masses αkρk and the volume fraction α1 for the five- and six-equation model, and to mixture density ρ and mass 
fraction Y1 for the four-equation model.

The numerical results of these three models at t = 6.00 ×10−3 are compared in Fig. 19. All three models tend to converge 
to the same solution. The results show only minor differences. For example, convergence in density for the four-equation 
model and convergence in temperature for the six-equation model are found to be worse in comparison with the other two 
(Figs. 19a, 19b, 19e, and 19f). There is also small difference in the interface velocity, as seen in Figs. 19c and 19d.
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Fig. 14. The numerical results for the water-gas multiphase shock tube problem. The lines ‘no T.R.’, ‘with T.R.’, ‘with T.R. H.C.’, represent the numerical 
results without temperature relaxation, with temperature relaxation, with temperature relaxation and heat conduction, respectively.

Fig. 15. The numerical results with different relaxation procedures for the water-gas multiphase problem. The time consumption of procedures (A), (B), and 
(C) are 3399.52 s, 40.69 s, and 3577.38 s, respectively.

To demonstrate the interface-sharpening effect, we compare the results obtained with the MINMOD limiter to those 
obtained with the Overbee scheme in Fig. 20. One can see that with the Overbee limiter, the diffused interface is within 
2-3 computational cells, which is much less in comparison to the MINMOD scheme.

For the present problem, all materials are described with the ideal gas EOS. In this case, the effective temperature 
averaging procedure (eq. (76)) of the one-temperature five-equation model and the temperature relaxation procedure (eq.
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Fig. 16. Schematic of the alloy impact problem.

Fig. 17. Shock velocity diagram for the epoxy/spinel alloy impact problem. The experimental data is from [56].

Fig. 18. The laser ablation of a multicomponent planar target.

(73b)) of the six-equation model yield the same result for temperature. The former neglects the effect of temperature 
relaxation on volume fraction within the diffused interface. This diffused interface is narrowed into 2-3 computational cells 
thanks to the interface-sharpening technique. Therefore, the advantage of the proposed model for this problem is not so 
evident as that for the water-air shock tube problem in section 4.4.

Laser ablative Rayleigh–Taylor instability in a 2D thin target Next we consider the laser ablation problem in the 2D formulation. 
The interface is initially perturbed and has the following form:

xinter f ace = xR − Amcos
(
2π y/L y

)
,

where Am is the perturbation amplitude taken as Am = 0.02L y .
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Fig. 19. Numerical results for the laser ablation of a multicomponent planar target.

The laser ablation of a thin target is considered, which is accompanied with the development of Rayleigh–Taylor insta-
bility. The problem is a two-phase version of that in [47]. The problem set-up is displayed in Fig. 21. The left and right 
ends of the target are located at xLL = 0.50L and xR = 0.70L, respectively. The two CH materials are separated by a planar 
interface at xL = 0.65L. The evolution of the ablated target modeled with the proposed six-equation model is demonstrated 
in Fig. 22. Here, the numerical Schlieren is qualitatively compared with the experimental results for single material from 
GEKKO XII [5].

The numerical results obtained with different models are compared in Fig. 23. We can see that although the density 
distributions obtained with the three models are similar in appearance, the shapes of the material interfaces are different 
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Fig. 20. Comparison of the numerical results obtained the Overbee and MINMOD limiter schemes.

Fig. 21. Schematic of the laser ablation of a thin two-phase target.

Fig. 22. Evolution of the numerical Schlieren obtained with the proposed six-equation model. The figures on the right are experimental images from [5].

from each other. The material interface obtained with the five-equation model is more diffusive and quite different from the 
others. The difference in critical density distribution can be seen from the laser absorption area. Again the one-temperature 
five-equation model result is found to be much different from the other two, mostly due to the exceeded numerical diffusion 
of the material interface and violation of the second law of thermodynamics in the diffused zone.

As demonstrated in Fig. 24, with physical diffusions being included, the numerical results tend to converge with the grid 
refinement and approach the fully resolved DNS (direct numerical simulation).
34



C. Zhang, I. Menshov, L. Wang et al. Journal of Computational Physics 466 (2022) 111356
Fig. 23. Comparison of the numerical results obtained with the four- (the first row), five- (the second row) and the six-equation model (the third row). 
Displayed results from left to right: density, volume fraction, temperature, laser absorption area, numerical Schlieren.

Fig. 24. Numerical results on grids with different resolution (from top to bottom 720×120, 960×160, 1440×240, 1920×320 cells). The columns from left 
to right display the results for density, pressure and temperature, respectively.

Conclusion

In this paper we have established a temperature disequilibrium model for modeling compressible two-phase flows with 
taking into account the dissipative thermal conduction and viscosity. We have proposed numerical methods based on the 
fractional step approach for solving the proposed model. In this approach, the hyperbolic part of the governing equations 
is solved with the Godunov-HLLC scheme, and the parabolic part with the method of local iterations based on Chebyshev 
parameters.
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The proposed model has demonstrated the following advantages.

• It is thermodynamically consistent.
• It ensures temperature equilibrium during the heat conduction process by implementing a special phase thermal relax-

ation.
• It includes the effect of mechanical relaxation, thermal relaxation and heat conduction on the volume fraction.
• Numerically, it maintains the pressure, velocity and temperature equilibrium, thus avoids spurious oscillations in the 

vicinity of material interfaces.
• It shows superior convergence performance when compared to other models with non-physical diffused mixture.
• Tanks to its special relaxation procedure, it has better computational efficiency in solving the heat conduction equation, 

especially non-linear ones.
• Thanks to its physical consistency with the most complete Baer-Nunziato model, our model can be used for simulating 

two-phase flows with both resolved and non-resolved interfaces.

We have compared the proposed six-equation model with the one temperature, one pressure five-equation model both 
analytically and numerically. Our analysis shows that this five-equation model is not consistent with the second law of 
thermodynamics. Numerical experiments on the laser ablation of a CH target demonstrate that the temperature-equilibrium 
five-equation model yields numerical results much different from those of the four-equation and six-equation models.

In our future work we plan to include mass diffusion into our model.
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Appendix A. Derivation of the five-equation model (21) with asymptotic analysis

By performing manipulations of the conservative form (21) with the method similar to [56,93], one can obtain the 
equations for the primitive variables z = [sk, uk, pk, αk] as follows:

αkρk Tk
Dksk

Dt
= (u I − uk) ·Mk + (pk − pI )Fk + (pI − pk) (u I − uk) · ∇αk

+ (uk − u I ) ·
(
τ I · ∇αk

)
+Gk (102a)

αkρk
Dkuk

Dt
= ∇ ·

(
αkτ k − αk pk I

)
−

(
τ I − pI I

)
· ∇αk +Mk (102b)

Dk pk

Dt
= −ρka2

Ik

αk
Fk + �k

uk − u I

αk

[(
τ I − ρka2

Ik

�k
I

)
· ∇αk −Mk

]
+ �kGk

αk
− ρka2

k∇ · uk (102c)

DIαk

Dt
= Fk (102d)

where

ρka2
Ik

αk
= ρka2

k

αk
+ �k

pI − pk

αk
, Gk = Sk +Qk + qk + Ik,

the material derivative of a variable � related to the velocity um (m = k, I) is
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Dm�

Dt
= ∂�

∂t
+ um · ∇�.

We aim to reduce eq. (102) in the limit of zero mechanical relaxation time, i.e.,

ε ∼ 1

ϑ
∼ 1

η
→ 0.

We assume an asymptotic solution in the following form

z = z(0) + εz(1) +O(ε2).

In the order O(1/ε), only terms involving relaxations Mk and Fk of eq. (102) retain, which yields

u(0)
I = u(0)

1 = u(0)
2 = u(0), (103a)

p(0)
I = p(0)

1 = p(0)
2 = p(0). (103b)

In the order O(1), with eqs. (103a) and (103b), eq. (102) becomes

αkρk Tk
Dsk

Dt
=Gk, (104a)

αkρk
Du

Dt
= ∇ ·

(
αkτ k − αk pI

)
−

(
τ I − pI

)
· ∇αk +M(0)

k , (104b)

Dp

Dt
= −ρka2

Ik

αk
F (0)

k + �kGk

αk
− ρka2

k∇ · u, (104c)

Dαk

Dt
= F (0)

k , (104d)

where the superscripts “(0)” over the primitive variables are omitted for simplicity.
With eq. (104c) and the relation 

∑
F (0)

k = 0, one can solve

F (0)
2 = α2

A − A2

A2
∇ · u + A

�2G2α1 − �1G1α2

A1 A2
, F (0)

1 = −F (0)
2 . (105)

Eliminating M(0)

k and F (0)

k , eqs. (104b) and (104c) become

Du

Dt
= 1

ρ
∇ ·

(
τ − pI

)
, (106a)

Dp

Dt
+ A∇ · u = A

∑ �kGk

Ak
. (106b)

Reformulations of eqs. (104a), (104d), (106a), and (106b) give the conservative form of the reduced five-equation model eq.
(21).

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2022 .111356.
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