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 Abstract: The efficacy of the cancer vaccine is influenced by several factors, but one of the most 

important is the immunosuppressive tumor microenvironment, which can attenuate treatment ef-

fects. The combination of therapeutic cancer vaccines with other immunotherapies or conventional 

therapeutic approaches can promote vaccine efficacy by increasing immune surveillance and tumor 

immunogenicity and modulating immune escape in the tumor microenvironment. Inhibitory check-

points have a significant role in the modulation of anticancer immune responses, and according to 

preclinical and clinical trials, administration of immune checkpoint inhibitors (ICIs) in combination 

with cancer vaccines can markedly improve their therapeutic effects, considering their low clinical 

efficacy. In addition, these combinatorial therapies have acceptable safety and minimal additional 

toxicity compared to single-agent cancer vaccines or ICIs. In this review, based on the results of 

previous studies, we introduce and discuss treatments that can be combined with therapeutic cancer 

vaccines to improve their potency. Our major focus is on checkpoint blockade therapies, which are 

the most well-known and applicable immunotherapies. 
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1. INTRODUCTION 

Therapeutic cancer vaccines, which have been the sub-

ject of researchers’ attention for almost one century, are 

considered promising and reasonably safe approaches for 

cancer treatment, especially for tumors that do not elicit a 

strong immune response [1-3]. In addition, the greatest ben-

efit provided by a vaccine is that effective treatment can be 

achieved with a few injections, and the immunological 

memory developed by the immune system can also protect 

patients during relapse events. In contrast to classical pre-

ventative vaccination against infectious disease, cancer vac-

cines are mainly administered after the onset of the disease 

and rely on tumor-specific or tumor-associated antigens 

based on different platforms, such as peptide- or protein-

based, nucleic acid-based, microbial-based, and cell-based 

constructs [4-6]. Despite mostly favorable preclinical out-

comes of this therapeutic strategy, cancer vaccination is still 

not considered a definitive treatment for patients. Even after 

antigen selection and vaccine design, which are the most 
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difficult steps in developing these therapeutics, cancer vac-

cines may not be efficient or adequately immunogenic [7, 

8]. Several aspects, such as the immunosuppressive tumor 

microenvironment (TME), can influence vaccine efficacy. 

Therefore, overcoming inhibitory signals in immune cells 

by blockade of immune checkpoints or their ligands is a 

promising strategy to improve the clinical benefits of cancer 

vaccines [9-11]. Immune Checkpoint Inhibitors (ICIs), such 

as blockers of cytotoxic T-lymphocyte-associated protein 4 

(CTLA-4), programmed death protein-1 (PD-1), and pro-

grammed death ligand-1 (PD-L1), improve anticancer im-

mune responses by blocking negative regulatory signaling. 

The treatment of some types of cancers, such as lung, renal 

cell and bladder cancers and melanoma, was revolutionized 

after the discovery of ICIs; however, other malignancies, 

such as prostate and pancreatic cancers, have not demon-

strated sufficient clinical improvement in response to single-

agent ICIs [12-14]. 

Thus far, three therapeutic cancer vaccines have been 

approved by the Food and Drug Administration (FDA): (1) 

talimogene laherparepvec (T-VEC), which is a viral-based 

vaccine for advanced melanoma, (2) Bacillus Calmette-

Guerin (TheraCys®), which is a live attenuated vaccine for 
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non-muscle invasive bladder carcinoma, and (3) Sipuleucel-

T (Provenge®), which is a dendritic cell (DC)-based vaccine 

for metastatic castration-resistant prostate cancer (mCRPC) 

[15-18]. PROSTVAC was another promising cancer vac-

cine, but it failed in a phase III clinical trial [19]. Further-

more, the therapeutic DNA vaccine encoding the E6/E7 

fusion protein of human papillomavirus (HPV) subtypes 16 

and 18 (HPVE6/E7GX-188E vaccine) is a widely used vac-

cine for the prevention of cervical carcinogenesis [20]. 

There are also several cancer-treating FDA-approved ICI 

monoclonal antibodies, but most of them are based on the 

blockade of CTLA-4, PD-1, and PD-L1. The most promi-

nent ones are Ipilimumab, Nivolumab, Pembrolizumab and 

Atezolizumab [21]. 

Considering that only a limited number of patients suc-

cessfully respond to a single treatment of immune check-

point blockers (ICBs) or cancer vaccines alone, and accord-

ing to preclinical and clinical research, combinatorial  

approaches, including concurrent administration of ICIs and 

cancer vaccines, have been explored for their synergistic 

effects because the potential drawbacks of each approach 

alone can be rectified by the other [21, 22]. For instance, 

robust T-cell activation induced by a vaccine can cause the 

expression of regulatory checkpoints, so administering ICIs 

simultaneously with or after cancer vaccination is a logical 

strategy. Indeed, these active immunotherapies lead to a 

robust and long-lasting immune response in cancer patients 

[11]. Synergistic effects of these combinational therapies 

have previously been shown in some in vitro studies. These 

studies proved that combining CTLA-4 or PD-1/PD-L1 

blockade with therapeutic cancer vaccines can reinforce 

tumor antigen-specific immune responses to cancerous cell 

lines or tumor-bearing mice. The immunologic mechanism 

of this amplified immune response is not completely known, 

although based on these in vitro investigations, it may be 

through an increase in tumor-infiltrating lymphocytes 

(TILs) numbers and activities, such as CD8+ T cells, as well 

as decreases in suppressing immune cells, such as Treg cells 

[23-25]. This review reports the most recent and remarkable 

clinical trial outcomes of combinatorial therapies that use 

cancer vaccination alongside ICIs and other classical thera-

pies.  

2. COMBINATORIAL CANCER IMMUNOTHERAPY 

2.1. Checkpoint Inhibitors Combined with Cancer Vac-

cines  

Fig. (1) illustrates some inhibitory checkpoints/ligands 

and their FDA-approved blocker antibodies that are dis-

cussed below. 

2.1.1. Anti-PD-1 (Nivolumab and Pembrolizumab) 

2.1.1.1. Pembrolizumab 

Pembrolizumab is an anti-PD-1 antibody that first re-

ceived FDA approval for use in patients with non-squamous 

NSCLC or ipilimumab-refractory advanced melanoma [21, 

26, 27]. Various preclinical and clinical trials of immuno-

therapies have investigated its efficacy when used alone and 

in combination with other cancer therapies for different ma-

lignancies, and most of them have reported promising out-

comes. Tested treatments include coadministration of pem-

brolizumab with radio/chemotherapy, metabolic regulators, 

costimulatory receptor agonists, other checkpoint blockers, 

nanoparticles and cancer vaccines. Its combination with 

therapeutic cancer vaccines appears to be the most common 

[28-33] (Tables 1 and 2). 

A phase Ib study investigated the effects of pembroli-

zumab combined with T-VEC in advanced head and neck 

squamous cell carcinoma patients. According to initial data 

from this study (n = 36), the disease control rate (DCR) and 

overall response rate (ORR) were 38.9% and 16.7%, respec-

tively. In this trial, 200 mg of pembrolizumab was adminis-

tered by i.v. every 3 weeks after intratumoral T-VEC injec-

tion [34]. A similar study evaluated this combinatorial ap-

proach for unresectable IIIB-IV stage melanoma and reported  

 

Fig. (1). Some inhibitory checkpoints/ligands and their FDA-approved blocker antibodies. CTLA4 (cytotoxic T-lymphocyte associated pro-

tein 4), PD-1/PD-L1 (programmed-death 1/ligand), TIM-3 (T- cell immunoglobulin and mucin domain 3), and LAG-3 (lymphocyte activa-

tion gene-3) are some inhibitory checkpoints or ligands along with their specific blocker antibodies that are used in therapeutic approaches. 

These FDA-approved monoclonal antibodies are Ipilimumab and Tremelimumab (CTLA-4 blocker), Nivolumab and Pembrolizumab (PD-1 

blocker), and Atezolizumab, Avelumab, Durvalumab (PD-L1 blocker). The figure was produced with the assistance of Biorender 

(https://biorender.com/). (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Table 1. Selected cancer vaccines in combination with one or more ICIs and other therapeutic compounds.  

Vaccine ICI Other Treatments Malignancy Phase NCT 
Number of 

Patients 

DPX-Survivac Pembrolizumab Cyclophosphamide 
Peritoneal, ovarian, or 

fallopian tube cancer 
II NCT03029403 42 

GVAX Pembrolizumab Cyclophosphamide, SBRT Pancreatic cancer II NCT02648282 58 

GVAX, CRS-207 Pembrolizumab Epacadostat Pancreatic cancer II NCT03006302 44 

NeoVax Pembrolizumab Temozolomide, Radiotherapy Glioblastoma I NCT02287428 56 

GVAX Nivolumab 
Ipilimumab/CRS-207, Cy-

clophosphamide 
Pancreatic cancer II NCT03190265 63 

pTVG-HP Nivolumab GM-CSF 
Non-metastatic, PSA-

recurrent prostate cancer 
II NCT03600350 41 

Dendritic cell-based 

p53 vaccine 

Nivolumab 

Ipilimumab 
- Small-cell lung cancer I/II NCT03406715 14 

Abbreviations: NCT, number of clinical trials; ICI, immune checkpoint inhibitor; NCT, number of clinical trials; GM-CSF, granulocyte-macrophage colony-stimulating factor, 

PSA, prostate-specific antigen. 

Table 2. Selected trials administering immune checkpoint blockers in combination with cancer vaccines. 

Checkpoint Blockers Cancer Vaccines Type of Malignancies Study Phases  References or NCT 

Pembrolizumab 

T-VEC  
Melanoma/ Advanced head and neck 

squamous cell carcinoma 
Phase III [31-33] 

DNA vaccine encoding PAP mCRPC Ongoing trials NCT02499835 

HPVE6/E7GX-188E Cervical cancer Phase I/II trial NCT03444376 

PVX-410 
HLA-A2+ metastatic triple negative 

breast cancer 
Phase I NCT03362060 

Nivolumab 

NEO-PV-01 Melanoma/lung cancer/bladder cancer Phase I NCT02897765 

Multi-peptide vaccines 
Unresectable naive or Ipilimumab-

refractory stages III to IV melanoma 
Phase I [42-45] 

Viagenpumatucel-L NSCLC Phase II [46, 47] 

Atezolizumab 

A personalized RNA mu-
tanome vaccine 

(RO7198457) 

Melanoma, NSCLC, TNBC, HNSCC, 

colorectal cancer and RCC 
Phase I NCT03289962 

Sipuleucel-T and 
RO7198457 (an mRNA 

vaccine) 

mCRPC/locally advanced or metastatic 

tumors 
Phase I 

NCT03024216 

NCT03289962 

Durvalumab 

DC/AML vaccine (fusion of 

autologous AML  
AML Phase II NCT03059485 

Neoantigen DNA vaccine Triple-negative breast cancer Phase I NCT03199040 

BCG (Bacterial cancer vac-

cine) 
Bladder cancer Phase I/II NCT03317158 

Avelumab TG4001 Oropharyngeal cancer Phase I/II NCT03260023 

Ipilimumab 

PROSTVAC and Sipuleucel-
T 

mCRPC Phase I [59, 60]  

GVAX  chemotherapy-naive mCRPC Ongoing trials [61] 

Pexa-vec  Metastatic/advanced solid tumors Phase I NCT0297715 

NeoVax Clear cell RCC Phase I NCT02950766 

Anti-Lag3 Ab 

(IMP321) 
Peptide vaccines 

Metastatic breast carcinoma, metastatic 
melanoma, and advanced pancreatic 

adenocarcinoma 

Ongoing trials [69, 71] 

Abbreviations: NCT, number of clinical trials; mCRPC, acute myeloid leukemia (AML); metastatic castration-resistant prostate cancer; NSCLC, non-small cell lung cancer; 

TNBC, triple-negative breast cancer; RCC, renal cell carcinoma; AML, acute myeloid leukemia; HNSCC, head and neck squamous cell carcinoma. 
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an ORR of 62%, almost twice that of pembrolizumab (34%) 

and T-VEC (26%) administered alone (n = 713) [35, 36]. 

Similarly, combining a DNA vaccine encoding prostatic 

acid phosphatase (PAP) with pembrolizumab has shown 

promising results in patients with mCRPC (n = 66) (NCT 

02499835) [37]. In recent trials, pembrolizumab was coad-

ministered with three vaccines, namely, DPX-Survivac, Ne-

oVax, and a peptide vaccine, for the treatment of advanced 

ovarian cancer, pancreatic ductal adenocarcinoma/colorectal 

adenocarcinoma, and glioblastoma, respectively. However, 

some conventional therapies were also included in these 

clinical trials (NCT03029403, NCT02600949, NCT02287528). 

HPVE6/E7GX-188E (a DNA vaccine) was also combined 

with pembrolizumab for cervical cancer patients in a phase 

I/II trial (n = 60) (NCT03444376). Finally, a phase I study is 

ongoing in patients with HLA-A2+ metastatic triple-

negative breast cancer with a mixture of PVX-410 vaccine 

plus pembrolizumab (NCT03362060). 

Overall, this combinatorial approach did not increase the 

toxicity of each monotherapy, and it seemed to have a man-

ageable safety profile. The most common adverse effects 

(AEs) were fever, chills, fatigue, rash and arthralgia, all of 

which are manageable. However, more critical AEs, such as 

autoimmune hepatitis, grade 3 aseptic meningitis, and grade 

4 pneumonitis, were also reported in a few patients, which 

led to the exclusion of these patients from the respective 

studies based on previously defined protocols [34, 36]. 

2.1.1.2. Nivolumab 

Nivolumab is another anti-PD-1 monoclonal antibody 

that has received FDA approval for several malignancies, 

such as NSCLC, unresectable/metastatic melanoma, refrac-

tory Hodgkin’s lymphoma, and advanced renal cell carci-

noma (RCC) [21, 38, 39]. It is also being investigated in 

several preclinical and clinical studies alongside other ther-

apies, such as radio/chemotherapy, costimulatory receptor 

agonists, other checkpoint blockers, and cancer vaccination 

[38, 40-43]. Nivolumab and the NEO-PV-01 vaccine were 

administered in a phase I study (NCT02897765) in melano-

ma, lung cancer, and bladder cancer patients. 

Most of the completed or ongoing trials have shown 

promising results after coadministration of nivolumab and 

different cancer vaccines, although the addition of nivo- 

lumab to the gp100 peptide vaccine did not enhance its clin-

ical benefit in advanced melanoma patients [44-46]. Two 

similar phase I trials evaluated the treatment efficiency of 

multi-peptide vaccines plus Nivolumab (MART-1/NY-

ESO-1/gp100 with Montanide ISA 51 VG) for patients with 

unresectable naïve or Ipilimumab-refractory melanoma 

(stages III-IV). These studies illustrated that this combina-

tion could stimulate immunological activity with promising 

survival outcomes in advanced melanoma patients, and in 

one of them, a median RFS of 47.1 months was reported, 

which was significantly longer than the historical median 

RFS (12-21 months) [47-50]. Viagenpumatucel-L, which is 

an allogenic cell-based vaccine derived from a gp96-Ig-

secreting tumor cell line, was combined with nivolumab in a 

phase II study for the assessment of remedial effects in 

NSCLC [51, 52]. Finally, in a preclinical study, a DC tumor 

lysate-based vaccine combined with PD-1 mAbs demon-

strated long-term survival in mice bearing large established 

glioma tumors [53]. 

Interestingly, the beneficial effects of anti-PD-1 and 

vaccine combinations are also dependent on their admin-

istration time, so differently timed combination strategies of 

vaccines and checkpoint blockers will have varying effects 

on the final results. For example, successful responses to a 

prostate-specific antigen (PSA)-targeted DNA vaccine 

against prostate cancer were only observed with concurrent 

use of PD-1 checkpoint blockade but not with their sequen-

tial administration; however, for TG4010 (Muc-1-targeted 

MVA vaccine), PD-1 blockade should be administered sev-

eral days after the vaccine [54, 55]. These time-dependent 

effects were also observed in some other checkpoint block-

ers. Similarly, it has been observed that CTLA-4 blockade 

restricted tumor growth more efficiently when administered 

1 day after vaccination, whereas same-day administration 

did not produce antitumor responses [56]. Nevertheless, 

according to other evidence, CTLA-4 and PD-1 blockade 

administration before cancer vaccination diminished tumor 

progression and improved long-term survival.  

Similar to the above-mentioned trials on pembroli-
zumab, these combinatorial approaches with nivolumab 
were relatively safe and well-tolerated. Mild to moderate 
fatigue and injection-site reaction were the most common 
AEs; although grade 3 irAEs (immune-related adverse ef-

fects), such as optic neuritis, fever, pneumonitis, and rash, 
may also occur, they are easily managed with systemic ster-
oids [44, 48]. 

2.1.2. Anti-PD-L1 (Atezolizumab, Avelumab, and Durval-

umab) 

2.1.2.1. Atezolizumab 

Atezolizumab is an anti-PD-L1 monoclonal antibody 
that has been FDA approved for some malignancies, includ-
ing locally advanced/metastatic urothelial carcinoma and 
NSCLC [21]. It is also being tested in combination with 

various vaccine platforms in order to improve its therapeutic 
capability (Table 2). A personalized RNA mutanome vaccine 
(RO7198457) in combination with atezolizumab is being 
explored for the treatment of melanoma, non-small cell lung 
cancer (NSCLC), triple-negative breast cancer (TNBC), 
head and neck squamous cell carcinoma (HNSCC), colorec-

tal cancer, and renal cell carcinoma (RCC) (NCT03289962) 
in a phase I trial. Furthermore, in a phase II trial, the CDX-
1401 vaccine (DEC-205/NY-ESO-1 fusion protein) was 
coadministered with atezolizumab and guadecitabine in re-
current ovarian cancer patients (NCT03206047). Finally, 
Sipuleucel-T and RO7198457 (an mRNA vaccine) in com-

bination with atezolizumab are separately undergoing phase 
I trials for mCRPC and locally advanced or metastatic tu-
mors (NCT03024216, NCT03289962).  

2.1.2.2. Avelumab 

Avelumab is another anti-PD-L1 antibody with FDA ap-

proval for locally advanced/metastatic urothelial carcinoma 



1076    Current Drug Targets, 2022, Vol. 23, No. 11 Soltani et al. 

 

and metastatic Merkel cell carcinoma [21]. TG4001, which 

is a viral vector-based HPV-targeted vaccine, is being com-

bined with avelumab for oropharyngeal cancer in a phase 

I/II study. This clinical trial is still continuing, and currently 

available outcomes have shown an increase in overall sur-

vival up to 3 years. However, some AEs have been reported 

as well (n = 150) (NCT03260023).  

2.1.2.3. Durvalumab 

Durvalumab is also FDA approved for some malignan-

cies, such as locally advanced/metastatic urothelial carci-

noma [21]. There are several ongoing combination trials of 

vaccines plus durvalumab (Table 2). A neoantigen DNA 

vaccine for patients with triple-negative breast cancer is 

being examined in combination with durvalumab (phase 

I/NCT03199040). This mAb has also been combined with 

MEDI0457 (DNA vaccine) for p16 or HPV16/18+ in 

HNSCC patients (NCT03162224). Additionally, for bladder 

cancer, there is a phase I/II trial in which an intravesical 

bacterial cancer vaccine (BCG) in combination with durval-

umab plus EBRT (NCT03317158) is being analyzed. In a 

phase II study (NCT03059485), the DC/AML vaccine (fu-

sion of autologous acute myeloid leukemia (AML) cells and 

DCs) administered alone or with durvalumab is also being 

investigated in AML patients after chemotherapy-induced 

remission. Finally, in patients with platinum-resistant/ 

refractory peritoneal malignancies, ONCOS-102 (intraperi-

toneal viral oncolytic vaccine) has been tested alone or in 

combination with durvalumab and thus far has demonstrated 

beneficial and safe outcomes. In fact, this study is still con-

tinuing; however, current secondary results have shown 

objective response rate (ORR), and progression-free surviv-

al (PFS) prolonged up to 15 months and overall survival up 

to 4 years (n = 67; NCT02963831).  

2.1.3. Anti-CTLA-4 (Ipilimumab and Tremelimumab) 

2.1.3.1. Ipilimumab 

Ipilimumab, which is recognized as a CTLA-4 blocking 

monoclonal antibody, first acquired FDA approval for meta-

static melanoma treatment [57]. It caused a dramatic im-

provement in the overall survival (OS) of melanoma pa-

tients, though it failed in achieving significant clinical re-

sults in other solid tumors as a single agent [21]. Therefore, 

in several trials, it is coadministered with other cancer ther-

apies, such as metabolic regulators, chemotherapy, other 

checkpoint blockers, and cancer vaccines, in order to im-

prove its efficacy in solid tumor treatment [32, 58-60].  

Although initial research results in humans failed to 

demonstrate that cancer vaccine and ipilimumab combina-

tions had clinically relevant benefits, more recent and ad-

vanced vaccine platforms have considerably improved by 

adding ICIs (Table 2). [61, 62]. For instance, in a phase II 

study, the ORR and OS of patients with pretreated advanced 

melanoma were markedly improved by using a combination 

of DC vaccine plus ipilimumab compared to either one 

alone (n = 39) [63]. Several investigations have analyzed the 

potential benefit of combining ipilimumab with mCRPC 

vaccines. Two-phase I trials assessed PROSTVAC and Sip-

uleucel-T with escalated-dose ipilimumab in mCRPC pa-

tients (1, 3, 5, and 10 mg/kg) [64, 65]. The average OS of 

patients receiving subcutaneous PROSTVAC alongside 10 

mg/kg ipilimumab was 37.2 months, which was significant-

ly longer than historical controls of PROSTVAC or ipili-

mumab alone (n=30) [64]. In another study, fixed-dose 

GVAX plus escalated-dose ipilimumab were coadministered 

in chemotherapy-naive mCRPC. In 25% of patients, PSA 

declined by> 50% from baseline and, interestingly, four 

patients attained a stable condition (n = 28) [66]. Other stud-

ies evaluated the curative efficacy of ipilimumab with vac-

cines for advanced melanoma. A phase II trial analyzed T-

VEC combined with intravenous ipilimumab (n=198) and 

indicated that ORR was markedly higher (39% vs. 18%) in 

the combination therapy group compared to subjects who 

received ipilimumab alone [67]. Another trial indicated that 

advanced melanoma patients who received ipilimumab with 

a gp100 peptide vaccine had an OS of 10 months, which 

was higher than the 6.4-month OS in patients who received 

the gp100 vaccine alone. Nevertheless, another phase II trial 

that used peptide vaccines with an extended dose of ipili-

mumab failed to show significant responses [53]. In other 

malignancies, vaccine-ipilimumab combinations have 

shown significant effects. For instance, ipilimumab with 

intratumoral injections of Pexa-Vec and NeoVax was tested 

in phase I clinical trials for metastatic/advanced solid tu-

mors and clear cell RCC (NCT0297715, NCT02950766), 

respectively. In another study, 30 previously treated pancre-

atic adenocarcinoma patients were divided randomly into 

groups receiving ipilimumab alone or ipilimumab plus 

GVAX. Overall survival for one year was superior in the 

combination group (7 vs. 27%) [68].  

Combining ipilimumab with therapeutic cancer vaccines 

is not only able to enhance antitumor activity and the ulti-

mate survival of patients but also a relatively safe and well-

tolerated approach with no additional toxicity. The most 

frequently occurring AEs in groups that received combina-

tion therapies seemed to be fatigue, chills, diarrhea, pruritus, 

rash, colitis and endocrine events, which were all managea-

ble and responded to steroids and hormone replacement. 

However, in trials that used GVAX, injection-site reactions 

and influenza-like illness were also reported as immune-

related AEs [68, 69]. 

2.1.3.2. Tremelimumab 

Tremelimumab, which is a fully human anti-CTLA-4 

monoclonal antibody, is being investigated in the treatment 

of several cancers, such as melanoma, mesothelioma, and 

non-small cell lung cancer. Not many trials have examined 

the therapeutic effects of this checkpoint blocker in combi-

nation with cancer vaccines. A phase I/II study combining 

an mRNA vaccine, BI1361849, with tremelimumab and 

durvalumab on patients with NSCLC has indicated promis-

ing results. This clinical trial (initiated in May, 2017) is con-

tinuing, although its current outcomes have shown an in-

crease in overall survival up to 5 years. (n=59) [70]. It 

seems that more studies are needed to evaluate the remedial 
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effects of this checkpoint blocker in association with cancer 

vaccines. 

2.1.4. Anti-LAG-3 and TIM-3 

LAG-3 (CD223) and TIM-3 (CD366; also known as 
HAVCR2) are other inhibitory receptors that are expressed 

on dysfunctional or exhausted TILs upon persistent antigen-
ic stimulation [71, 72]. In several trials, their specific block-
ing antibodies are being tested alone or in combination with 
other conventional therapies for the treatment of various 
malignancies, including hematologic or solid tumors, and 
have demonstrated promising outcomes; however, none of 

them are FDA approved yet [73, 74]. Furthermore, numer-
ous studies investigate the therapeutic effects of LAG-3 and 
TIM-3 blockade in combination with other ICIs or even 
with cancer vaccines. They are usually coexpressed with 
conventional inhibitory checkpoints, particularly PD-1, and 
their dual blockade has shown more clinical benefits than 

the blockade of only one of them [75]. Although these 
checkpoint blockers seem to be capable and beneficial adju-
vants for cancer vaccines, to date, not many studies have 
tested this combinatorial approach. A LAG-3-targeting 
agent known as IMP321, which is a soluble recombinant 
fusion protein, has been administered as monotherapy or in 

association with other treatments, such as peptide vaccines, 
in metastatic breast carcinoma, metastatic melanoma, and 
advanced pancreatic adenocarcinoma patients; these combi-
nations were able to induce specific CD4 and CD8 T-cell 
responses [74, 76]. More investigations are needed in this 
field, especially for combinatorial approaches using cancer 
vaccines with anti-TIM-3 antibodies. 

2.1.5. Checkpoint Blocker Cocktails in Combination with 

Cancer Vaccines 

Some analyses with similar approaches have applied 

more than two therapeutic components in cancer combinato-

rial therapy. For instance, several studies are concurrently 

examining the curative efficacy of the GVAX vaccine in 

combination with dual checkpoint inhibitors, such as ipili-

mumab and anti-PD-1 antibodies (Nivolumab and Pem-

brolizumab), or with neoadjuvant and other conventional 

cancer therapies, such as cyclophosphamide for pancreatic 

cancer (NCT03190265). They have progressed to phase II, 

and given that pancreatic cancer is considered a cold tumor 

that does not elicit a strong immune response, these ap-

proaches are anticipated to produce favorable outcomes for 

this malignancy [77]. Following are some of the most recent 

clinical trials examples using therapeutic cocktails contain-

ing ICIs: 

2.1.5.1. Pembrolizumab Cocktails 

a) Pembrolizumab plus cyclophosphamide was co-

administered with DPX-Survivac (peptide vaccine) 

in patients with peritoneal, ovarian or fallopian tube 

cancer. The trial is in phase II and has shown prom-

ising data (NCT03029403). 

b) Pembrolizumab plus cyclophosphamide, SBRT, 

and Adjuvant was coadministered with the GVAX 

vaccine in pancreatic cancer patients in the phase II 

trial and has shown favorable outcomes 

(NCT02648282). 

c) Pembrolizumab plus Epaccadostat+CRS-207 was 

coadministered in combination with GVAX in pa-

tients who have been diagnosed with pancreatic 

cancer, and the trial is in phase II (NCT03006302). 

d) Pembrolizumab plus temozolomide and radiother-

apy was coadministered in combination with a per-

sonalized neoantigen peptide vaccine (NeoVax) in 

patients with glioblastoma. The trial is still in phase 

I (NCT02287428). 

2.1.5.2. Nivolumab Cocktails 

a) Nivolumab plus ipilimumab, CRS-207, and cyclo-

phosphamide was coadministered with GVAX 

(GM-CSF-secreting tumor cells) in pancreatic can-

cer patients in a phase II study (NCT03190265). 

b) Nivolumab plus GM-CS was coadministered with a 

DNA vaccine encoding PAP antigen (pTVG-HP) in 

nonmetastatic, PSA-recurrent prostate cancer pa-

tients in a phase II study (NCT03600350). 

c) Nivolumab plus ipilimumab was coadministered in 

combination with a dendritic cell-based p53 vaccine 

in patients with small-cell lung cancer. The trial is 

in phase I/II and has reported promising data 

(NCT03406715). 

2.1.6. Predictive Biomarkers 

To date, no effective biomarkers have been identified to 

predict which patients will respond to immunotherapy, alt-

hough recent studies have indicated that a high mutational 

burden in addition to mismatch repair deficiency can pro-

duce neoantigens and ultimately increase the immunogenici-

ty of tumors [78, 79]. These features may be biomarkers for 

the response to ICI treatment in general. The predictive val-

ue of these biomarkers changes with combination therapies. 

Evidence suggests that the numbers of regulatory T cells 

(Tregs) and myeloid-derived suppressor cells (MDSCs) may 

be biomarkers in these approaches because a marked in-

crease in peripheral Tregs has been detected in non-

responder patients in trials that used nivolumab or ipili-

mumab plus vaccines. This trend of suppressive immune 

cells was proven to correlate with progressive disease [44, 

80]. Treg cell frequency in the tumor microenvironment and 

peripheral blood is an important predictive factor in ICI-

based immunotherapy. Numerous studies have reported pos-

itive correlations between intratumoral FoxP3+ Treg infiltra-

tion with poor prognosis/clinical outcomes in various tumor 

types [81]. 

Furthermore, tumor mutational burden or tumor muta-

tional burden (TMB) is an emerging biomarker of sensitivi-

ty to immune checkpoint inhibitors. According to numerous 

studies, patients with high TMB status treated with immune 

checkpoint blockade therapy have shown prolonged PFS 

and OS compared to those with low or intermediate TMB 
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[82, 83]. Immunohistochemistry (IHC) PD-L1 expression 

pattern is perhaps the most widely used predictive bi-

omarker for distinguishing patients who effectively respond 

to ICIs [81].  

2.2. Classical Cancer Therapies Combined with Cancer 

Vaccines 

2.2.1. Chemotherapy  

Chemotherapy, as a prevalent and conventional therapy 
for cancer treatment, mainly utilizes cytotoxic agents, which 

give rise to DNA damage and tumor phenotype alterations 
that eventually make cancerous cells more susceptible to 
cytotoxic T lymphocytes (CTL) killing [84, 85]. Further-
more, these agents have some direct or indirect effects on 
antitumor immune system functions and thus might be ef-
fective adjuvants for cancer vaccines [86]. Chemotherapy is 

proven to not only decrease tumor burden and suppressive 
immune cells, such as Treg and MDSC but also reinforce 
the immune response by enhancing dendritic cells (DCs) 
maturation, increasing natural killer cells (NK)-mediated 
immunosurveillance, and expanding immune-supportive 
cells, such as M1 macrophages and CD4+ and CD8+ T cells 

[87-89]. Several chemotherapeutic agents, including Docet-
axel, Gemcitabine, Cyclophosphamide (CTX) and Irinotec-
an, have been coadministered with vaccination in various 
clinical trials. Metastatic breast cancer patients were evalu-
ated in a phase II trial using docetaxel alone or in combina-
tion with PANVAC (which contains MUC-1, CEA, and 

costimulatory molecules B7.1, ICAM-1, and LFA-3). Medi-
an PFS was considerably increased in the combination ther-
apy group (7.9 months vs. 3.9 months; n=48 p = 0.09). Ac-
cording to their results, there was no significant difference 
in adverse events between the two arms of the study, and 
most of AEs were mild and manageable [90]. Similarly, in 

another study, the clinical benefits of docetaxel in combina-
tion with Ankara vaccine (TroVax; targeted tumor antigen 
5T4) were indicated in mCRPC patients because better me-
dian PFS was observed in the combination therapy group 
(n=80, 9.67 months vs. 5.1 months). Comparative safety and 
immunological/clinical efficacy were also reported [91]. 

In a phase II study on resected pancreatic cancer pa-

tients, gemcitabine in combination with the Algenpantucel-

L vaccine and 5-fluorouracil-based standard adjuvant 

chemoradiotherapy improved the median PFS and OS in 12 

months compared to previous data [92, 93]. Similar research 

was conducted with a p53 synthetic long peptide (SLP) vac-

cine in ovarian cancer patients, although the results were 

mixed. According to its result, predominant grade 3/4 tox-

icities were just nausea/vomiting and dyspnea. Grade 1/2 

toxicities consisted of fatigue (78%) and Pegintron-related 

flu-like symptoms (72%) [94]. Additionally, clinical 

benefits of the irinotecan plus G17DT vaccine were demon-

strated in metastatic colorectal cancer patients. Study out-

comes demonstrated that treatment with G17DT in combi-

nation with irinotecan results in an acceptable anti-G17 im-

mune response, which correlated with promising survival. 

Survival was significantly longer for anti-G17 responders 

than for non-responders (9.0 vs. 5.6 months; P < 0.001). 

They also showed that the combination approach did not 

significantly increase toxicity [95]. 

Despite mostly promising outcomes, there are also some 

contradictory and unfavorable data on this approach. In a 

clinical study (n = 22), an allogeneic HER2+ GMCSF-

secreting whole-cell breast cancer vaccine was administered 

to metastatic breast cancer patients one day after receiving 

300 mg/m2 CTX and 2 mg/kg trastuzumab (NCT00399529). 

Based on its outcomes, this combination immunotherapy 

was safe, with clinical benefit rates at 6 months and 1 year 

of 55% (95% confidence interval (CI), 32%-77%; P = 

0.013) and 40% (95% CI, 19%-64%), respectively. Median 

progression-free survival and overall survival durations 

were 7 months (95% CI, 4-16) and 42 months (95% CI, 22-

70), respectively [96], and in a similar phase II/III study, 

CTX was combined with OPT-822. However, vaccination + 

CTX did not improve PFS or OS in any of these studies 

(NCT01516307) [97]. The Viagenpumatucel-L vaccine plus 

CTX was used in patients with advanced NSCLC who failed 

to respond to multiple prior therapies (NCT02117024). Evi-

dently, more investigations are required in order to improve 

the efficacy of this treatment cocktail. 

2.2.2. Antiangiogenic Therapy 

The supply of nutrients and oxygen to cancerous cells is 

a critical factor in their proliferation, immune escape, and 

metastatic dissemination. Proangiogenic molecules, such as 

vascular endothelial growth factor (VEGF), play important 

roles in this process, and hence, numerous antiangiogenic 

agents targeting the VEGF/VEGF receptor (VEGFR) path-

way (e.g., Bevacizumab, Sunitinib and Sorafenib) have been 

developed in the cancer treatment [98, 99]. Accordingly, 

several preclinical studies have demonstrated that these 

agents also have synergistic effects with therapeutic cancer 

vaccines. For instance, low doses of anti-VEGFR2 antibody 

(DC101) combined with a mitomycin C-pretreated 

MCaP0008 cancer cell vaccine significantly improved tu-

mor control in murine models of breast cancer [100]. 

To date, these combinatorial approaches have not 

demonstrated significant clinical efficacy in human trials, 

although numerous clinical trials are ongoing. A DC-based 

vaccine (AGS003) was combined with sunitinib in interme-

diate- and low-risk mRCC patients (n = 462) [101] (NCT 

01582672). In addition, in phase II studies, bevacizumab 

was coadministered with different peptide vaccines in glio-

blastoma patients (NCT02754362, NCT01814813). 

2.2.3. Hormone Therapy 

The combination of therapeutic cancer vaccines with 

hormonal therapy, especially in hormonally driven tumors, 

such as prostate cancer and breast cancer, is an attractive 

and potentially effective approach, although not many trials 

have been conducted in this regard. Two ongoing phase II 

trials are investigating the treatment efficacy of PROST-

VAC in combination with an androgen receptor antagonist 

(Enzalutamide) in metastatic prostate cancer patients 

(NCT01867333, NCT01875250). The combination of a PSA 
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pox virus vaccine with sequential androgen ablation therapy 

has shown promising outcomes [102, 103]. 

2.2.4. Radiotherapy  

Radiotherapy (RT), as a conventional cancer treatment, 

is considered a part of standard care for different malignan-

cies. This approach can enhance the destruction of tumor 

cells via direct and indirect effects on both cancerous and 

immune system cells. According to several studies, it can 

also be an impressive adjuvant for therapeutic cancer vac-

cines and exert synergistic effects with them. In preclinical 

research on mouse models, the combination of vaccines and 

RT was demonstrated to enhance vaccine-mediated destruc-

tion of tumor cells via upregulation of ICAM-1, MHC, Fas, 

and tumor-associated antigens (TAAs) [104-106]. Several 

ongoing trials are evaluating the safety and efficacy of this 

combinatorial approach. A phase I study is evaluating the 

efficacy of local radiation in combination with a self-

adjuvanted mRNA cancer vaccine (RNActive(R)) for pa-

tients with stage IV non-small-cell lung cancer (NSCLC) 

(NCT01915524). This trial demonstrated that RNActive 

self-adjuvanted mRNA vaccines have the potential to simul-

taneously induce immune responses to a wide panel of anti-

gens commonly expressed in tumors [107]. Additionally, in 

a phase II study, the therapeutic potency of samarium-153 

EDTMP (Sm-153) (a radiopharmaceutical agent) alone or in 

combination with the PSA-tricom vaccine is being evaluated 

in metastatic castration-resistant prostate cancer (mCRPC) 

patients after receiving docetaxel [108, 109]. A phase III 

trial in patients with intermediate/high-risk localized pros-

tate cancer is investigating the combination of RT and aglat-

imagene besadenovec (ProstAtak®), which is a prostate can-

cer vaccine (NCT01436968). 

2.3. Other Immunotherapies Combined with Cancer 

Vaccines 

As mentioned above, cancer vaccination alone can rarely 
induce an immune response strong enough for complete 
tumor eradication, and therefore, some combination strate-
gies are needed to improve their potency and efficiency. 

Indeed, numerous studies have indicated that immunomodu-
lating treatments may be potential candidates for combina-
tion with tumor vaccines and may eventually lead to a more 
powerful anti-cancer immune response. These agents that 
can enhance the therapeutic effects of vaccines by reinforc-
ing T-cell activation and expansion, along with DC matura-

tion, contain immune-enhancing cytokines and immune ag-
onists. 

2.3.1. Immunocytokines 

Coadministration of immunostimulatory cytokines, such 

as interleukin-2 (IL-2), IL-7, and granulocyte-macrophage 

colony-stimulating factor (GM-CSF), or blockade of immu-

nosuppressive cytokines, such as transforming growth fac-

tor-β (TGF-ß) combined with cancer vaccines, can augment 

their effects [110]. Multiple clinical trials have investigated 

these combinatorial approaches. IL-2, which has gained 

FDA approval for metastatic renal cell carcinoma (mRCC) 

and metastatic melanoma, was coadministered at a high 

dose with a gp100 peptide vaccine in 185 patients with lo-

cally advanced stage III and stage IV cutaneous melanoma 

[111, 112]. The trial is in phase III and has demonstrated a 

better overall clinical response (16% vs. 6%, P = 0.03) in 

the combination group [112]. However, a phase I/II investi-

gation that used a DC vaccine plus low-dose IL-2 for mRCC 

or breast cancer patients failed to show significant clinical 

responses [113]. The combination of Sipuleucel-T plus sub-

cutaneous IL-7 (CTY107) is currently being evaluated in a 

phase III study (NCT01881867). The most frequently ap-

plied cytokine in combination with cancer vaccines appears 

to be GM-CSF; for instance, Sipuleucel-T and T-VEC, 

which are FDA-approved vaccines, have been engineered to 

secrete GM-CSF. However, according to some studies, GM-

CSF is an inert adjuvant for vaccines. A phase III trial that 

administered a peptide vaccine alone or with GM-CSF in 

patients with stage IV or high-risk stage III melanoma failed 

to identify any survival benefit [114, 115]. The combination 

of the PROSTVAC vaccine with GM-CSF is under analysis 

in a phase III trial (NCT01322490). 

2.3.2. Immune Agonists 

Stimulation of costimulatory receptors, such as OX40, 4-

1BB, CD137, GITR and ICOS, or the use of immunostimu-

latory adjuvants, such as TLR ligands, can be beneficial 

when combined with therapeutic cancer vaccines. Concur-

rent administration of utomilumab (4-1BB agonist) and the 

ISA101b vaccine in HPV-16-positive incurable oropharyn-

geal cancer patients is currently in a phase II clinical trial 

(NCT0325800). Furthermore, for resected stage IIb-IV mel-

anoma patients, an allogenic vaccine has been engineered to 

express the HLA-A2/4-1BB ligand. Coadministration of this 

vaccine with cyclophosphamide has shown some benefits in 

clinical investigations (NCT01308294). In a phase I/II trial 

(NCT00534209), vaccine therapy with allogeneic B7.1/ 

HLA-A1 was administered to patients with stages IIIb/IV 

NSCLC who completed first-line chemotherapy. Toll-like 

receptor (TLR) ligands are promising candidates for the 

development of immune responses induced by cancer vac-

cines. Some ligands of these receptors are now used as ad-

juvants in both cancer and infectious disease vaccines. 

TLR3, 4, 7/8, and 9 agonists are promising cancer immuno-

therapeutics [116]. According to a study, HPV-16 E7 DNA 

vaccine in combination with α-GalCer (α-Galactosylcera- 

mide) and MPL (monophosphoryl lipid A) that are TLR4 

ligand and natural killer T cell, respectively, shows the po-

tential to reinforce immune responses against cervical can-

cer [117]. 

CONCLUSION 

To date, no effective biomarkers have been confirmed 

for predicting which patients will respond to immunothera-

py, although recent studies have indicated that a high muta-

tional burden, in addition to mismatch repair deficiency, can 

produce neoantigens and ultimately increase tumor immu-

nogenicity [79]. These features represent nonspecific favor-

able biomarkers for ICI treatment response. The value of 
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these predictive biomarkers varies among combination ther-

apies. The numbers of Tregs and myeloid-derived suppres-

sor cells (MDSCs) might represent valid biomarkers be-

cause in trials testing nivolumab or ipilimumab in combina-

tion with vaccines in non-responder patients, a marked in-

crease in peripheral Tregs was detected. This trend of sup-

pressive immune cells was proven to correlate with progres-

sive disease [80]. According to various preclinical and clini-

cal data, the combination of vaccines and immune check-

point inhibitors can improve the therapeutic effects of each 

agent by intensifying immunogenicity and modulating the 

immunosuppressive tumor microenvironment, and these 

synergistic effects have been proven in both in vitro and 

clinical investigations [25]. Although the majority of clini-

cal trials support the synergistic effects of combination ther-

apy, some do not obtain such results. Finally, more ongoing 

investigations evaluating these combinatorial approaches 

will contribute to improving cancer treatment in the near 

future.  
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