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SKUKUZA

What is this life

If full of care

We have no chance

To drive and stare,

No chance to see

In bush we pass

Where rhinos find

Their good in grass,

No chance to see

In broad day-light

Streams full of stars

Like skies at night.

A poor life is

If full of care

We have no time

While drive, to stare.

S.B. Gerasimov
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PREFACE

This symposium was motivated by the quest for establishing a solid research collaboration in

the field of theoretical nuclear physics, and in related areas, between the Physics Department of

the University of South Africa (UNISA) and the Joint Institute of Nuclear Research (JINR) as

envisaged in the recently-signed agreement between the South African Department of Science

and Technology (DST) and the JINR.

The number of participants in the symposium was limited to 28, with 10 invited speakers

being selected from each side. Researchers from Venda and Rhodes Universities were also

included. Speakers were requested to provide somewhat extended details of their research topic,

the questions addressed, and future trends in the field. The resulting proceedings are, thus,

intended to serve as guidance for the pending collaboration and as substrate material for the

students and young researchers who will be brought into the joint ventures. With this in mind,

these proceedings will be made available to all interested researchers and students. It is hoped

that the DST-JINR research collaboration will become more inclusive, long-lasting, and fruitful

as a result.

I would like to acknowledge here the pioneers of this collaboration, namely Profs. R.M. Adam,

V.G. Kadyshevsky, and A.N. Sissakian. Special thanks goes to Dr D.V. Kamanin, Prof. V.V.

Voronov, and Prof. T.S. Maluleke who enthusiastically endorsed this endeavor, and to my

colleagues at UNISA and Ms K. Tadi for their assistance in administrative matters.

S.A. Sofianos





Dispersion Total Photoproduction Sum Rules for Nucleons and

Few-body Nuclei Revisited

S.B. Gerasimov∗

Joint Institute for Nuclear Research,141980 Dubna, Russia

Questions on the presence and quantitative role of the constant terms in the real part of the
high-energy photon-nucleon and photon-nucleus amplitudes representing the contribution of
the non-Regge (the fixed j=0-pole) singularities in the finite-energy sum rules (FESR) for
the photoabsorption cross sections on nucleons and the lightest atomic nuclei are discussed.
New testable relations are presented for relevant combinations of the Compton scattering
amplitudes. The importance of more detailed and precise data on the pion photoproduction
off the neutron is stressed as the prerequisite for an analysis of newly derived integral sum
rules for the nucleon and lightest nuclei total photoabsorption cross sections including the
presently poorly known values of the pionic ”sigma-terms” and the j=0 fixed-pole residues in
the real part of respective Compton scattering amplitudes. Combining the spin-depending
dispersion–the GDH and Cabbibo-Radicati sum rules, and the relativistic dipole-moment-
fluctuation sum rules with only main valence quark configuration of nucleons taken into
account, the distribution and correlation functions of the quark electric dipole moment oper-
ators in the nucleon ground state are expressed via the experimentally measurable resonance
nucleon photoexcitation amplitudes. These functions are of interest for checking detailed
quark-configuration structure of the nucleon state vector.

I. INTRODUCTION

In this report the following topics will be touched upon. First we propose and discuss a new
version of the finite-energy integral sum rules both for nucleons and lightest (A = 2, 3, 4)–nuclei
which may serve to be the source of information on the scalar pion densities inside nuclei being at
the same time the counterparts of the well-known non-relativistic Thomas-Reiche-Kuhn (TRK)
sum rules for the electric-dipole nuclear photoeffect. Then the relativistic ”bremsstrahlung-
weighted” sum rules will be discussed following from both the dispersion relations and the
current-algebra-type approaches which enable to estimate the asymmetry degrees of the different
flavour-parton distribution and correlation functions of the nucleon. Let us remind that in the
1954 seminal paper of Gell-Mann, Goldberger, and Thirring (GGT) [1] on the use of the causality
condition in quantum theory the idea of the ”superconvergence” sum rule technique was first
suggested and applied to the photonuclear absorption processes.

The GGT sum rule follows from the assumption of validity of the unsubtracted dispersion
relations for the difference, presumably vanishing as ν → ∞,

∆T = TγA(ν) − ZTγp(ν) − NTγn(ν) (1)

of the forward Compton scattering amplitudes on the nucleus with atomic number A = Z + N
and the sum of amplitudes on the Z free protons and N free neutrons. After inclusion of the
Thompson value −(αQ2)/M ( M and Q being the hadron mass and electric charge in units of
the electron charge), for every hadron amplitude T (ν = 0) at zero photon energy, the sum rule

∗
Electronic address: gerasb@theor.jinr.ru



2 Dispersion Total Photoproduction Sum Rules for Nucleons . . .

reads

2π2 α

Mn
(
−Z2

A
+ Z) +

∫ ∞

νγπ

dν[Zσγp(ν) + Nσγn(ν) − σγA(ν)] =

∫ νγπ

νthr

dνσγA(ν) (2)

The first term in left hand side of (2) practically coincides with the ”kinetic” part of the long-
known TRK sum rule for the electric dipole nuclear photoabsorption

σ0(E1) ≡

∫ ∞

νthr

σE1(ν) dν = 4π2Σn(En − E0)|〈n|Dz |A〉|2 = 2π2〈A|[Dz [H,Dz]]|A〉

= (2π2αNZ)/(AMn) + 2π2〈A|[Dz [V̂NN ,Dz ]]|A〉 (3)

where the first term results from the double commutator with the kinetic energy operator of the
nuclear hamiltonian H. The present work originates partly from earlier papers of the author
[2–4] dealing with sum rules for total photon-hadron cross-sections and aims to present some
new experimentally testable and theoretically interesting relations emerging from the dispersion
FESR phenomenology.

II. TOWARDS GENERALIZED GGT SUM RULE

It was always tempting and rewarding to combine the power of dispersion relation approach,
which is based on very general underlying assumptions and explains many general properties of
the scattering amplitudes as well as provides useful relations between them in a rather simple
way, with particular dynamical ingredients of a given quantum system such as, for instance, im-
plications of the broken chiral symmetry and pionic dynamics dominating peripheral properties
and low-energy interactions of hadrons and nuclei.

A. A glance at a possible role of pion degrees of freedom on GGT sum rule

In [2, 4] an attempt was maid to introduce corrections to the GGT approach understood as a
familiar Impulse Approximation (IA) scheme applied to the γA -forward scattering amplitude.
The approximate relevance of IA is seen from the fact that it corresponds to taking into account
the singularities closest to the physical region of the peripheral scattering process (t ≤ 0, t =
(k − k

′

)2 is the invariant 4-momentum transfer for elastic scattering).
The respective cut in the complex t-plane is defined by the diagrams schematically represented

in Fig. 1a, while the next to the leading ”anomalous” threshold, given by Fig. 1b, will be the
”normal” 2π -exchange diagrams, with the cut starting at t = 4m2

π.

∼∼∼ © ∼∼∼ ∼∼∼ © ∼∼∼

րց
...
...

(a) =⇒ © −→ © =⇒ (b) =⇒ © =⇒

Fig. 1: (a) Cut in the complex t-plane, (b) Leading ”anomalous” threshold (”normal” 2π -
exchange diagram.)

In Fig. 1a the solid lines refer to nucleons and nuclei, the wavy (dotted) lines represent
photons and pions. Thus this graph represents the impulse approximation (IA), while Fig. 1b
defines the correction related with the nuclear ”collective” pion cloud and thus is effective due to
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short-ranged NN -correlation inside nuclei. Their relative role can qualitatively be characterized
by the ratio

t0(IA)

t0(2π)
≃

8mnεb

(A − 1) 4m2
π

(4)

where t0 refers to the beginning of the respective cut in the complex t-plane, mn is the nucleon
mass, εb is the nuclear binding energy. For instance, this ratio is ∼ 0.22 (0.40 and 0.66) for the
D (3He and 4He respectively).

This indicates that, naturally, for 3He and 4He the ”pionic” contributions will be significantly
more important compared to deuteron. Equation (4) also signals that, in the considered respect,
the situation for heavier nuclei is expected to be much alike the 4He case because of nearly equal
binding energy per nucleon.

B. Towards the measurement and systematization of 〈A|φ∗φ|A〉

A further step in implementing the relevant pionic degrees of freedom into the GGT sum
rule was an observation inferred from models providing the convergence of the σtot

0 -integral. It
was first suggested [3] and then perturbatively (to one-loop order) checked [5] in scalar, φ3-
type ”super-renormalizable” model that the generalized Thomas-Reiche-Kuhn is valid for total
photoabsorption cross section

σ0 =

∫

dνσtot(ν) = 2π2〈φ1|[D[H,D]]|φ1〉, (5)

where the charged scalar field φ1 is locally connected with two scalar fields, φ2 being charged one
and the other, φ3, neutral. The double commutator is then interpreted via the known Schwinger-
term, i.e., the equal-time commutator of the time- and spatial-component of the electromagnetic
current operator. Hence, the generalized, ”GGT

′

”-sum rule, implicitly including the integrals
of the absorptive parts of the amplitudes presented by the diagrams with 2π-exchanges, was
written [4] in the form

σγA
0 − Zσγp

0 − Nσγn
0 = 2π2α

[

NZ

Am
+

∫

d~x (〈A|φ∗φ|A〉 − Σi〈Ni|φ
∗(x)φ(x)|Ni〉)

]

. (6)

The photonuclear sum rule including the terms 〈A|φ∗φ|A〉 and 〈N |φ∗φ|N〉, represented by the
Feynman diagram in Fig. 2, was later rediscovered [6], found to be a useful exploration tool
[7], and widely discussed (e.g., [8] and further references therein) in view of the interesting idea
about possible partial restoration of the chiral symmetry in real nuclei.

∼∼∼ • ∼∼∼
...
...

=⇒ © =⇒

Fig. 2: Feynman diagram representing photonuclear sum rule.

The matter is that, up to constant factors, the matrix element corresponding to the seagull
graph of Fig. 2, which in the forward direction is gauge invariant and may have a direct bearing
to measurable quantities, is essentially of the same structure as the matrix element presented in
Fig. 3.
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⊗
...
...

=⇒ © =⇒

Fig. 3: Matrix element corresponding to the seagull graph of Fig. 2.

The symbol ⊗ denotes the local, scalar quark-current and therefore it is directly connected with
the Σπ-term, hence with the chiral symmetry breaking and its possible (partial) restoration in
nuclear matter.

C. FESR and problem of ”Big Circle” contribution

The standard FESR technique enables one to deal with the amplitudes defined in the finite
region of the complex energy plane

f(ν) =
1

2πı

∮

dz
f(z)

z − ν
(7)

where f(ν) is the spin-averaged, forward Compton scattering amplitude and the integration
contour includes both sides of the cuts along the real axes −R ≤ ν ≤ R closed by a circle
of a ”big” radius R. As usual the problem consists in the justified and economical choice for
the representation of amplitudes in the complex energy plane to fulfill the integration over the
large but finite-radius circle in the complex plane. We keep the original GGT idea of a relation
between the photon-nucleus scattering amplitude and a relevant combination of the photon-
nucleon amplitudes at sufficiently large photon energies, but our choice of the ”superconvergent”
combination of Compton amplitudes fγA(p,n) is different from GGT. It includes amplitudes of
two nuclei with A1 = Z1 + N1, A2 = Z2 + N2 and is assumed to satisfy the condition

lim
|ν|→R

[

1

A1
fA1

−
1

A2
fA2

]

=
Z1N2 − N1Z2

A1A2
(fp − fn)|ν=R +

Sπ(A1)

A1
−

Sπ(A2)

A2
(8)

where

Sπ(Ai) ≃
α

3

∫

d3x〈Ai|~φ(x)~φ(x)|Ai〉 (9)

and the scalar product in the integrand is understood to be in the isospin space. The upper
limit νmax ≡ R in all integrals should be chosen from the compromise provisions.

The first term derived in the approximation linear in Ai, (i = 1, 2) is parameterized through
the a2(J

P ; IG = 2+; 1−) -Reggeon exchange in the t-channel and includes in addition the real
constant term seemingly taking place [9] in the Refp and referring as the residue of the j = 0
fixed-pole in the complex angular momentum plane. Hence one should put R ≥ 1.5 ÷ 2.0 GeV
to apply the Regge-pole phenomenology with the commonly used parameters [11]

Im[fp(ν) − fn(ν)] =
ν

4π
(σtot

p − σtot
n ) = ba2

ν1/2

Re(fp(ν) − fn(ν)) =
1

4π
ba2

(−ν1/2) + Cp − Cn

σtot
p (ν) − σtot

n (ν) =
24.6

ν1/2
(10)

Following [9], we accept Cp ≃ −3.0µb ·GeV and put the Cn-value rather arbitrarily to be either
Cn = (2/3)Cp or Cn = 0 for the sake of further numerical estimations.
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Due to the dominant scalar-isoscalar nature of the pionic operators we accept Sπ(p) ≃ Sπ(n)
while Sπ(Ai) 6= 0 will disclose its essential nonlinear dependence on the atomic number A of real
nuclei.

III. ESTIMATION OF THE NEUTRON-TO-PROTON RATIOS FOR INTEGRAL

PHOTOPRODUCED PION YIELDS

The meson photoproduction cross-sections on the neutron are largely unknown and should
be extracted e.g. from the deuteron data. Of all possible photo-meson reactions, the best known
is the single pion photoproduction. Therefore we treat the neutron cross-sections entering our
sum rules as follows. The σtot

γn (ν) is split into two parts:

σtot
γn = σ(γn → πN) + σ(γn → 2πN) + · · ·

The single pion production cross-section is taken according to theoretical calculation with fairly
good multipole amplitudes of the MAID Collaboration [10].

The detailed experimental study of the meson photoproduction on the deuteron target can
be performed at a number of the ”intermediate-energy” electron accelerators (e.g., JLab(USA),
MAMI-C(Mainz, FRG)). So, anticipating the appearance of a new γn-data, needed for the
checking of FESR sum rule for the difference of the γp- and γn- Compton amplitudes and
extracting the value Cp−Cn, required further for definition of the nuclear sum rules, we present
first the dependence of the experimentally measurable ratios Rtot

n/p(R
non−res
n/p ), defined as,

R
tot(non−res)
n/p =

σtot
0 (γn → 2π + X)

σtot
0 (γp → 2π + X)

(
σnon−res

0 (γn → 2π + X)

σnon−res
0 (γp → 2π + X)

) (11)

as the function of several plausible values of Cn, taking Cp = −3.0µb · GeV for granted. The
results are presented in Table I.

TABLE I: The Rtot

n/p and Rnon−res

n/p as the function of several plausible values of Cn.

Cp Cn Rtot

n/p Rnon−res

n/p

0 0 0.95 0.98
-3 -2 0.72 0.62
-3 0 0.60 0.39

For illustrative reasons, we indicate the results of the modelling the neutron-to-proton ratios
as follows from the ratios of the electric dipole moment fluctuation in the lowest hadronic Fock-
components of the nucleon with at least one charged pion,

N ↔ π + N, 2π + N,π + ∆(1231) ,

Then

〈 ~D2(n ↔ pπ−)〉

〈 ~D2(p ↔ nπ+)〉
≃ 1 + 2ε, ε =

mπ

mN
(12)

〈 ~D2(n ↔ nπ+π−)〉

〈 ~D2(p ↔ pπ+π−)〉
≃

(1 + 4ε)〈~r2
π+π−〉

(1 + 2ε)〈~r2
π+π−

〉 + 2ε〈(~rπ+π− · ~rpπ−)〉
≥ 1, (13)
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and, analogously to (12),

〈 ~D2(n ↔ π∆)〉

〈 ~D2(p ↔ π∆)〉
≃ 0.66 (0.41) (14)

The first value in (14) refers to the sum over all possible charge ππ-states produced in the final
decay stage π∆ → ππN , while the second ratio corresponds to the selection of the π+π− final
states. The numerical relevance of (14) to the last two rows in Table I testifies on the crucial
importance of the correlation of the valence and nonvalence partonic composites of the nucleon
in producing of the ultimate characteristics of the Compton scattering amplitude.

IV. SOME NUMERICAL RESULTS AND DISCUSSION OF THE PHOTONUCLEAR

SUM RULES

As an example of the generalized nuclear sum rule applications, we choose a pair of lightest
nuclei - the deuteron and 3He. While in the deuteron case the total photoabsorption cross
section is known well above our taken νmax ≃ 1.6GeV, the σtot(γ

3He) is known to 0.8 GeV [12],
hence, in this case, we have to take νmax = 0.8GeV. The major purpose of using these new
types nuclear sum rules may be the extraction of information about the value of difference of
the nuclear matrix elements:

∆

(

Σπ(A)

A

)

=
α

3

∫

d~x
m2

π

2

[

1

A1
〈A1|~φ(x) · ~φ(x)|A1〉 −

1

A2
〈A2|~φ(x) · ~φ(x)|A2〉

]

.

The term ∆Σπ(A) can thus be extracted from experimentally measurable quantities to give
useful information on the values closely related with the chiral symmetry characteristics in
real nuclei. Of special interest is the situation when Z1N2 − N1Z2 = 0 in (8) (deuteron- and
4He-pair for example). The contribution of the a2-Reggeon is then absent and the optimal
value of νmax = R in dispersion integrals of cross sections could probably be taken at a lower
value. Qualitatively, this newly chosen R-value should provide a reasonable balance between
the contribution of the same group of most important nucleon resonances into the real parts
of nuclear Compton amplitudes represented by the terms Sπ(Ai) and the respective imaginary
parts entering into dispersion integrals in the form of the corresponding nuclear photo-pion
production cross sections. For arbitrary A1 = Z1 + N1 and A2 = Z2 + N2 our general sum rule
reads

2π2

[

fA1
(ν = 0) + Sπ(A1)

A1
−

fA2
(ν = 0) + Sπ(A2)

A2

+
Z1N2 − Z2N1

A1A2
· (

2ba2
ν

1/2
max

2π2
− Cp + Cn)

]

=
σνmax

0 (γA1)

A1
−

σνmax

0 (γA2)

A2
(15)

where fAi
(ν = 0) ≃ −(αZ2

i )/(Aimn) is the Thompson zero-energy amplitude, Sπ(Ai) is defined
in Eq. (9) and the integration in σνmax

0 extends from the photodisintegration threshold to the
upper bound νmax. In the case of 3He and deuteron the integration was carried out with the
cross-sections tabulated in [12] up to νmax = 0.8GeV. The low-energy integrals up to the pion
photoproduction thresholds νγπ were approximated by

σ
νγπ

0 = 60
NZ

A
(1 + κexp

A ) [µb · GeV] (16)
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where κexp
He−3(d) = 0.75 ± .10 (0.37 ± 0.11), following [13]. To have an idea about the scale of Sπ

for the nuclei considered, we confronted the calculated values of

(2π2α)/(3)[(1/3)Sπ(3He) − (1/2)Sπ(d)] ≃ 7.75 (1.17)µb · GeV

for Cp = −3, Cn = −2 (0) with the value

60[(2/9)κ3He − (1/4)κd] = (1/3)40(0.75 ± 0.10) − (1/2)30(0.37 ± 0.11) ≃ 4.4 ± 2.1µb · GeV

representing the ”potential parts” in the difference of non-relativistic TRK sum rules

2π2α[(1/3)〈3He|[D, [VNN ]]|3He〉 − (1/2)〈d|[D, [VNN ]]|d〉]

The correspondence looks reasonable because the non-relativistic value is in between two values
following from a more general sum rule with different values of Cn. We also draw the attention
to a strong dependence of the abovementioned estimations on two chosen numerical values of
Cn, which emphasizes the significance of the sum rule as a source of new interesting information.
The pion-nucleon sigma-term

σ =
m̂

2mp
〈p|ūu + d̄d|p〉, m̂ =

1

2
(mu + md),

and, generally, sigma-terms of a given hadron are proportional to the scalar quark currents

〈A|mq q̄q|A〉 , q = u, d, s , A = π,K,N, ZAN − nuclei.

These are of great physical significance because they are related to the hadron masses, to the
meson scattering amplitudes [14], to the strangeness content of A, and to the properties of
nuclear [15] and dark [16] matter. Our derived and discussed photoabsorption sum rules are
focused on the comparison of the scalar pion densities, hence on important part of the pionic
σ-terms for different nuclei, to trace their dependence on the atomic number. In particular,
the deuteron sum rule provides thereupon the situation most close to free nucleons while the
helium-4 would play the role of a drop of the real nuclear matter.

In view of the above discussion the following looks to be practically important: i) To extend
measurements of the total photoabsorption on the 3He and 4He-nuclei at least up to energy
of photons 1.5 ÷ 2.0 GeV. ii) To complete calculation of 〈A|[D[H,D]]|A〉, A =3(4)He, with best
modern potentials and respective wave functions as well as with estimation of relativistic cor-
rections.

V. QUARK-HADRON DUALITY SUM RULES FOR SPIN-DEPENDENT

PHOTOABSORPTION CROSS SECTIONS AS CONSTRAINTS ON THE NUCLEON

WAVE FUNCTION STRUCTURE

As it is known, while many sum rules were first derived from the dispersion approach [17–20],
it was demonstrated that the same relations can be obtained with the help of current algebras
and the pz → ∞ techniques. Here, we intent to use the valence quark approximation and the
infinite momentum frame (IMF) approach to bridge between the results following from sum rules
and those pertinent to mainly the dynamical approaches based on the three-quark relativistic
equations relating description of the ground and excited baryon states. Following formally to
the pz → ∞ techniques derivation of the Cabibbo-Radicati [21] or GDH sum rule [22], one can
obtain the relation

4π2α

(

1

3
〈 ~D2〉 − (

κN

2mN
)2

)

=

∫

dω

ω
σres

tot(ω), (17)
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formally alike the relation obtained by Gottfried [23] which, however, should be assumed as
based on the three active valence quark approximation providing the convergence of the right-
hand-side integral (i.e., exemplifying the resonance-(nonvacuum) Reggeon-duality [24, 25]) but
leaving for the left-hand-side entries the status of directly non-measurable quantities. Leaving
the discussion of nonvalence degrees of freedom for future development, we concentrate on what
can be found from such truncated relations. The next idea is to relate the electric dipole moment
correlator and the mean-squared radii operators sandwiched by the nucleon state vectors in the
”infinite - momentum frame”. With the definitions

D̂ =

∫

~xρ̂(~x) d3x =

3
∑

j=1

Qq(j)~dj , (18)

r̂2
1 =

∫

~x2ρ̂(~x) d3x =
3

∑

j=1

Qq(j)~dj
2

(19)

where Qq(j) and ~dj are the electric charges and configuration variables of point-like interacting
quarks in the infinite-momentum frame of the bound system, i.e. the nucleon, we have

〈r2
1〉P =

4

3
α −

1

3
β; 〈r2

1〉N = −
2

3
α +

2

3
β (20)

〈D̂2〉P =
8

9
α +

1

9
β +

8

9
γ −

8

9
δ (21)

〈D̂2〉N =
2

9
α +

4

9
β +

2

9
γ −

8

9
δ (22)

〈D̂2
S〉P,N =

1

36
(2α + β + 2γ + 4δ), (23)

where 〈 ~d1
2
〉 = 〈 ~d2

2
〉 = α, 〈 ~d3

2
〉 = β, 〈 ~d1 · ~d2〉 = γ, 〈 ~d1 · ~d3〉 = 〈 ~d2 · ~d2〉 = δ, indices ”1” and ”2”

refer to the like quarks (i.e. to the u(d)- quarks inside the proton (neutron)), and the ”3”, to
the odd quark. Our valence approximations assume that all cross sections are understood as the
nucleon resonance excitation cross sections; all radii 〈r2

1〉p,n, as the valence quark distribution
radii 〈r2

1〉
b
p,n, not including the sea quark and/or meson current effects. Next use the dipole

moment algebra in the ”pz → ∞” - frame and the GDH sum rule for the anomalous magnetic
moments of nucleons.

4

3
π2α〈D̂2〉P (N) = JγP (N)

p (
1

2
) + JγP (N)

p (
3

2
) (24)

4

3
π2α〈r̂2

1〉
b
N = JγP

a (
3

2
) − JγP

p (
1

2
) + 4JS

p (
1

2
) (25)

JV (S)
p,a (I) =

∫ ∞

νthr

dν

ν
σp,a(γ

V (S)N → N⋆(I)) (26)

Not touching many relations checked perturbationaly in field-theoretic models [5], we only men-
tion below one more sum rule checked approximately but non-perturbationly within the QED,
that is the sum rule for the photoelectric absorption on hydrogen-like system (ZeA) of the elec-
tron bound on the Coulomb center with electric charge +(eZ) and obeying the Dirac equation

4π2α[
1

3
〈re2

1 〉 − (
µe

2me
)2] = Jtot(γ + ZeA) . (27)

The inclusion of µe and evaluation of left hand side via the Dirac equation diminishes the
difference of about 7% between left hand side earlier written [26] without the µe, and the right
hand side, calculated numerically in [26], to quite acceptable level O(1%).
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Evaluation of the relativistic electric dipole moment fluctuation sum rules for the nucleon
was carried out with the PDG compilation [27] of the pion photoproduction data on the proton

and neutron A
P (N)
1/2 and A

P (N)
3/2 . With the pionic degrees of freedom omitted explicitly in our

calculations, we calculated all integrals over photoexcited nucleon resonances in the narrow
resonance approximation, when

Jres
p(a) ≃

4πmn|A
res
3/2(1/2) |

2

m2
res − m2

n

, (28)

where mn(res) is the nucleon (or resonance) mass. The final results are

α =
3

2
JP

p (
1

2
) + 3JN

p (
1

2
) − 2JV

p (
1

2
) + Jp(

3

2
) −−

3

2
Ja(

3

2
) ≃ 0.62 ± 0.06 fm2 (29)

β = 3JP
p (

1

2
) + 6JN

p (
1

2
) − 8JV

p (
1

2
) + Jp(

3

2
) ≃ 0.78 ± 0.12 fm2 (30)

γ =
3

2
JP

p (
1

2
) −

3

2
JN

p (
1

2
) − 2JV

p (
1

2
) −

1

2
Jp(

3

2
) +

3

2
Ja(

3

2
) ≃ −0.18 ± 0.04 fm2 (31)

δ =
9

4
[JP

p (
1

2
) + JN

p (
1

2
)] − 5JV

p (
1

2
) −

1

2
Jp(

3

2
) ≃ −0.25 ± 0.07 fm2 (32)

The Dirac rms of the valence quark distribution are

〈r2
1〉

P =
4

3
α −

1

3
β ≃ .57 ± 0.06 fm2, (exp :0.662 fm2) (33)

〈r2
1〉

N = −
2

3
α +

2

3
β ≃ +.105 ± 0.052 fm2 ,

exp : 〈r2
ch〉

N −
3µN

2mN
= −.113 + .126 = +.013 fm2 (34)

At the same time

〈r2
1〉

S =
1

2
[〈r2

1〉
P + 〈r2

1〉
N ] = .34 ± 0.04 fm2 , (exp : .336(1 ± 0.1) fm2) (35)

The missing dynamical ingredient which defines the negative sign of 〈r2
ch〉

N and provides the
needed positive contribution to the 〈r2

1〉
P is the isovector 2π-intermediate state in the ”current

channel” of the nucleon form-factors (it was qualitatively demonstrated, e.g., in Refs. [28, 29]).
We conclude with the following remarks:

1. (Hopefully) useful constraints on the ”asymmetry” of the nucleon relativistic wave function
are obtained that give a hint of a role of the spin-dependent dynamics in the distribution
and correlation of valence quarks in the nucleon.

2. As a prospect for the future: Possible extension of derived relations to the virtual photon
interactions looks promising (e.g., for probing the higher twist contributions, etc.)

3. The accumulation of more detailed and accurate neutron data is highly desirable to di-
minish the uncertainties of the presented results.
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Four-Nucleon System: The Doorway to Nuclear Physics
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Four-nucleon scattering, photo-, and electro-disintegration processes are considered within
the integral equation approach to few-body systems. Various open questions related to these
processes are discussed. These include questions related to the construction of nucleon-
trinucleon interactions, the ratio of the 4He(γ, p)3H and 4He(γ, n)3He cross sections in the
giant dipole resonance region, and the existence or not of a dip (dip-puzzle) in the five-fold
differential cross-section of the electro-disintegration at high missing momenta.

I. INTRODUCTION

4He is the lightest nucleus with well-established properties. Being also the first close shell
nucleus, it became the subject, since early fifties, of numerous theoretical and experimental
studies related to bound, scattering, photo-, and electro-disintegration processes. These studies
continued unabated till today especially on the latter two topics. While for the bound state
problem several methods exist for exact calculations with realistic interactions (Faddeev-type,
Hyperspherical, Monde Carlo, etc.), the handling of reaction processes is far from being satis-
factory. Although for energies below the three-body (2+1+1) break-up threshold calculations
can be carried out, for higher energies one faces formidable numerical problems arising mainly
from the three-body break-up threshold.

It is, therefore, clear that to study at present scattering problems, reasonable approximations
to exact formalisms should be employed in conjunction with the use of traditional methods of
Nuclear Physics such as the employment of effective interaction between the various clusters.
One, however, should be extremely careful in constructing such interactions, since for light nuclei
the collective characteristics of the many body problem are manifested in a different way and
one has, instead, strong dependence of the underlying interactions, on parity, orbital angular
momentum, energy, and mass. Furthermore, this could only be done at low energies as no
enough experimental data are available at high energies, to construct them in an unambiguous
way. Such constructions have a number of drawbacks in any case. Prejudices in shape and
range enter the choice of the potentials and, most importantly, they fit the available data in a
collective way and thus incorrect on- and off-shell effects may enter the calculations.

Another strategy is to start the construction of the potentials by using phase shifts obtained
via a reliable theoretical model. In the present work we solved the Alt, Grassberger, and Sandhas
(AGS) scattering equations [1, 2] for the 3+1 → 3+1 process, using the K-matrix approximation
[3] and then we employed the inverse scattering method of Fiedeldey and Lipperheide [4], to
obtain the required interactions. In this way we may avoid using arbitrary optical potentials
and, in addition, we naturally account for the ℓ-, E-, and parity-dependence of these potentials.

Similarly to scattering, the two-fragment electro-disintegration process 4He(e, e′p)3H has been
the subject of several experimental investigations for various kinematics (see, for example, [5–
9]). On the theoretical front, the exact treatment of this process and the inclusion of the final
state interactions (FSI) entails the same problems encountered in the scattering. Therefore,

∗
Electronic address: sofiasa@science.unisa.ac.za
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calculations have been simplified by approximations and model assumptions [10–12]. In Plane-
Wave Impulse Approximation calculations exhibit a characteristic dip, actually zero, in the five-
fold differential cross-section around a missing momentum of ∼ 450 MeV/c, which does not show
up in the experimental data. Laget [11] included FSI effects and meson exchange currents (MEC)
by means of a Feynman diagrammatic approach. Although this resulted in a partial filling of the
dip, these investigations also underestimated the data considerably in this region. Similar results
were obtained when FSI was taken into account via effective nucleon-trinucleon interactions
[10, 12, 13]. The same behavior was found by Nagorny et al. [14] who incorporated the FSI via
the pole contribution of the p3H→ p3H scattering matrix [15]. The agreement with the data is
again fairly satisfactory, but the zero is exhibited as well [9]. At lower missing momenta, less
than 300 MeV/c, calculations show a good agreement with the data and the PWIA performs
reasonably well in this region where the FSI could be expected to be more important than in
the higher missing momenta region. In contrast, in the region 300 MeV/c < Q < 600 MeV/c the
results strongly depend on the way the FSI effects are included. For example, as pointed out in
[9] the Laget results underestimate the cross section by a factor of 4 and those of Schiavilla by
a factor of 2. At even higher missing momenta, above 600 MeV/c, where the MEC contribution
is becoming important, the agreement with the data is again fair. We, therefore, conclude that
the zero in the PWIA cross section is not necessarily a manifestation of strong FSI or MEC
effects. Instead, one should look for other explanations, such as the dependence of the results
on the model used, the interaction forces employed, the determination of the bound state wave
functions, etc.

The photo-disintegration of 4He into various channels, especially into n+3He and p+3H, is
yet another interesting and controversial topic and numerous experimental and theoretical works
were carried out during the last 50 years. The field is rich in physics and the various investigations
were focused mainly on understanding the reaction mechanism, the possibility of extracting
information on the short range interaction between nucleons, the charge symmetry breaking
question, the electromagnetic structure of the nucleon, and on the importance of contributions
stemming from the various ingredients involved in the process. However, this problem for a
long time has been a controversial topic in photonuclear physics. For example, early data for
incident photon energies around 30 MeV appeared consistent with the picture of a giant dipole
resonance at low energies, a picture also supported by various model calculations such as by
shell [16] and resonating group [17] models. However, AGS calculations [18, 19] for these photo-
processes do not show any pronounce giant dipole resonance. The controversy is still raging and
many experimental as well as theoretical works appear regularly which show, alternatively, the
existence of a pronounced giant dipole resonance or otherwise for both the 4He(γ, n)3He and
4He(γ, p)3H reactions.

In the present work we discuss, in brief, all these open questions and show that in fact they
can be addressed in a unified way. In Sec. II we present the formal AGS theory for the three
reactions, in Sec. III we present and discuss our results while in Sec. IV we summarize our main
conclusions.

II. FORMAL THEORY

A. Bound and Scattering Equations

Let us briefly recall the Faddeev formalism for three nucleons which is based on the assump-
tion that the particles interact via pairwise forces, i.e V =

∑
i<j≤3 V (rij) ≡

∑
γ Vγ . Then the
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Schrödinger equation for the three-body bound system is written as

|Ψ3〉 = G0(z)V |Ψ3〉 = G0(z)

3∑

γ=1

Vγ |Ψ3〉 (1)

or, after some simple rearrangements, as

|Ψ3〉 =

3∑

γ=1

G0(z)Tγ(z)G0(z)|Fγ〉 . (2)

where z = E3 is the three-particle binding energy, Tγ(z) is the two-body T -matrix operator in
three-body space,

Tγ(z) = Vγ + VγG0(z)Tγ(z) , (3)

while the form factors |Fγ〉 obey the three coupled, six-dimensional, Faddeev equations

|Fγ〉 =
∑

β 6=γ

Tβ(z)G0(z)|Fβ〉, (4)

The corresponding AGS equations for the transition matrix Uβα are given by [2]

Uβα(z) = (1 − δβα)G−1
0 (z) +

∑

γ

(1 − δβγ)Tγ(z)G0(z)Uγα(z) . (5)

Similarly to the three-body case, the Schrödinger equation for the bound state of four particles
reads

|Ψ4〉 = G0(z)
6∑

γ=1

Vγ |Ψ4〉 (6)

where now z = E4 is the four-particle binding energy. In this equation the sum is running
over the six two-body potentials, and G0(z) is the free four-particle resolvent operator. Unlike
the three-body system, however, in the four-body we have two-fragment partitions of the form
(i, jkl)) and (ij, kl)) (usually referred to as 3+1 and (2+2) partitions respectively). It is useful
to label these partitions (1)(234),(4)(123), (12)(34), · · ·, by σ, τ . The notation γ ⊂ σ means
considering only those two-body indices γ that are part of the three-body or the (2+2)-subsystem
contained in partition σ, e.g., (23), (34), (42) for (1)(234), but not (12), (13), (14); or (12) and
(34) for (34)(12), but not (13), (14), (23), (24). Quite similarly to the three-particle case, cluster
functions |Fσ

β 〉 are defined as [2]

|Fσ
β 〉 =

∑

τ 6=σ

∑

γ

(1 − δτ
βγ)Vγ |Ψ4〉 , (7)

with δτ
βγ = δβγ if β, γ ⊂ τ , or δτ

βγ = 0 otherwise. Then Eq. (6) is replaced by the 18 coupled
nine-dimensional integral equations for the form factors Fσ

β

|Fσ
β 〉 =

∑

τ 6=σ

∑

γ

U τ
βγ(z)G0(z)Tγ(z)G0(z) |Fτ

γ 〉 (8)

with β ⊂ σ and γ ⊂ τ , and where U τ
βγ(z) are the AGS transition operators for (2+2)- or the

three-body subsystems obtained from the respective AGS equations

U τ
βα(z) = (1 − δτ

βα)G−1
0 (z) +

∑

γ

(1 − δτ
βγ)Tγ(z)G0(z)U τ

γα(z) . (9)
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We emphasize that in Eq. (8) both U τ
βα(z) and Tβ(z) are operators in the four-body space. The

four-nucleon bound state wave function is obtained from the solutions of Eq. (8) via

|Ψ4〉 =
∑

σ

∑

βγ

G0TβG0U
σ
βγG0TγG0|F

σ
γ 〉 β, γ ⊂ σ (10)

The scattering equations for the four-body AGS transition operators are [2]

Uσρ
βα(z) = (1 − δσρ) δβα G−1

0 (z)T−1
β (z)G−1

0 (z)

+
∑

τ

∑

γ

(1 − δστ )U τ
βγ(z)G0(z)Tγ(z)G0(z)U τρ

γα(z) . (11)

The above equations are of course exact but multi-dimensional and thus the computational
complexity is enormous. Simplifications, however, can be accomplished by going over to effective
two-body equations which after partial wave decomposition become one-dimensional integral
equations. This reduction is achieved in two steps. In the first step one employs a separable
expansion of the two-body T-matrix Tα(z),

Tα(z) =
∑

nm

|αn〉 tα,nm(z) 〈αm| . (12)

Inserting (12) in (11) leads, after multiplication with 〈αn|G0| and G0|βm〉, to the effective
three-body equation

Ũσρ
αn,βm(z) = (1 − δσρ) G̃−1

0αn,βm
(z) +

∑

τ 6=σ

∑

γm′

T̃ τ
αn,γm′G̃0γm′ ,γm′

Ũ τρ
γm′,βm(z) . (13)

with

Ũσρ
αn,βm = 〈αn|G0U

σρ
α,βG0|βm〉 , T̃ τ

αn,βm = 〈αn|U τ
αβG0|βm〉 , G̃0αn,βm

= δαβδnmtα,nm

(14)
The second step then consists of introducing a separable expansion of the resulting three-body
and (2+2)-body subsystem amplitudes [20–22]

T̃ σ
αn,βm =

∑

s

∑

µν

|Γσs,µ
βn (z)〉hσs

µν (z) 〈Γσs,ν
αm (z)| . (15)

As in the first step, one multiplies by 〈Γσs,µ
αn |G̃0 and G̃0|Γ

ρr,µ
βµ 〉 to obtain the Lippmann-Schwinger

type equation

T
σs,ρr
µν = V

σs,ρr
µν +

∑

τ,t

∑

µ′ν′

V
σs,τt
µµ′ G

τt
0, µ′ν′ T

τt,ρr
ν′ν (16)

with obvious notation and with s, r, and t representing three-body subsystem channels.
Further to the above formal description one has to include also spin and isospin and to

antisymmetrize the amplitudes (see, for example, [19]). For central forces, the total angular
momentum J , the total spin S and isospin I, and their corresponding three-components as well
as the total orbital angular momentum L are conserved. Thus (16), after antisymmetrization
and partial wave expansion, reduces to

ISL
T

r,s(q, q′; z) = ISL
V

r,s(q, q′; z)

+
∑

j=t,qu

4π

∫ ∞

0
q′′

2
dq′′ISL

V
r,j(q, q′′; z)Gj

0(z −
2

3
q′′

2
)ISL

T
j,s(q′′, q′; z) (17)
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where r and s stand for the three-body doublet state t and quartet state qu respectively. Explicit
arguments and other details for the above relations can be found, for example, in [3, 19–22].
The effective potentials are given by

ISL
V

r,s(q, q′; z) = ISL
A

r,s(q, q′; z)

+
∑

j=dd,φφ

4π

∫ ∞

0
q′′2dq′′ ISL

B̃
ii,r(q, q′′; z)Gii

0 (z −
1

2
q′′2) ISL

B
ii,s(q′′, q′; z)(18)

where the A, B̃ and B corresponds to the effective interactions for the processes 3 + 1 → 3 + 1,
2 + 2 → 3 + 1, and 3 + 1 → 2 + 2 and are calculated from the expansion functions Γ for the
3 + 1 and 2 + 2 sub-amplitudes [21]. The most important aspect in the last equation is that
the effective interaction is a sum of a genuine (direct) 3 + 1 → 3 + 1 scattering term and a
rescattering, via 2 + 2, term which contributes in a collective way.

B. Electro-processes

The perturbative Hamiltonian H ′ for the interaction between the electron and the nucleons
of the α-particle can be chosen to be that of McVoy and van Hove [23], which was also employed
in the electro-disintegration of the trinucleon system [24–26]. This Hamiltonian, correct to the
order of ~

2Q2/M2c2, is given by

H ′ = −
4πe2

q2
µ

〈vf |

4∑

j=1

{
F1N (q2

µ)e−iQ·xj
q2

8M
−

F1N (q2
µ)

2M
[(pj · α)e−iQ·xj + e−iQ·xj(pj · α)] (19)

−i

[
F1N (q2

µ) + κF2N (q2
µ)

2M

]
σj · (xj × α) e−iQ·xj +

q2
µ

8M2
[F1N (q2

µ) + 2κF2N (q2
µ)] e−iQ·xj

}
|ui〉 .

Here xj and pj are the position and momentum operators of the j-th nucleon, σj is the nucleon
spin operator, α is the Dirac matrix acting on the free electron spinors |vi〉 and |vf 〉, while q2

µ is
the exchanged four-momentum squared. Furthermore, F1N and F2N are the form factors of the
nucleon, κ is the anomalous moment of the nucleon in nuclear magnetons, and M is the nucleon
mass.

When the scattered electron and the ejected nucleon are measured in coincidence, the
electron-proton coincidence cross section is given by

d5σ

dEfdΩpdΩe

=
σM

(~c)3(2π)3
ρf

4EiEf cos2
θ

2

|M(q)|2 (20)

where σM is the Mott differential cross section, σM = e4 cos2 θ
2/4E2

i sin4 θ
2 , Ei(Ef ) is the energy

of the incoming (outgoing) electron, and ρf is the relativistic density of states. The transition
matrix, properly antisymmetrized with respect to the four nucleons [27], is given by

M(q) = 2 (−)〈q; Ψ3|H
′|Ψ4〉 , (21)

where the factor of 2 stems from antisymmetrization of the scattering states, H ′ is the Hamil-
tonian describing the interaction between the electron and nucleons, Eq. (19), (−)〈q; Ψ3| is the
scattering state for the ejected proton that moves away with momentum q with respect to the
residual three-nucleon bound state |Ψ3〉, and |Ψ4〉 is the four-nucleon bound state. For proton
knock-out, the transition matrix reduces to

M = −〈vf |vi〉MQ + 〈vf |α|vi〉 · (Melec + Mmag) , (22)
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where

MQ = 2 (−)〈q; Ψ3|HQ|Ψ4〉 , Melec = 2 (−)〈q; Ψ3|Helec|Ψ4〉 , Mmag = 2 (−)〈q; Ψ3|Hmag|Ψ4〉

The Hamiltonians HQ, Helec, and Hmag are given by

HQ = F p
ch(1 +

q2
µ

8M2
)

4∑

j=1

e−iQ·xj λj (23)

Helec =
F p

ch

2M

4∑

j=1

(pje
−iQ·xj + e−iQ·xjpj)λj , (24)

Hmag =
i

2M
F p

mag

4∑

j=1

e−iQ·xj
σj × Qλj , (25)

Here the superscript p refers to the proton and λj = e/2 (1 + τ3
j ) is the isospin operator for

nucleon j while F p
ch and F p

mag are the charge and magnetic form factors of the proton defined by

F p
ch = F1p +

q2
µ

4M2
κpF2p , F p

mag = F1p + κpF2p . (26)

The analytical fit to the proton form factors F1p and F2p given by Janssens et al. [28] can be
used in the calculations.

Squaring the matrix element, summing and averaging over the electron spin, and inserting
the resulting expression in Eq. (20), we obtain

d5σ

dEf dΩp dΩe
=

σM

(~c)3(2π)3
|pp|Ep

1 −
Ep

E3H

pp · p3H

|pp|2

{
|MQ|

2 (27)

−
1

2
sec2 θ

2
(M∗

QJ + J∗MQ) · (k̂i + k̂f )
1

2
sec2 θ

2
(J · k̂iJ

∗ · k̂f + J · k̂fJ
∗ · k̂i) + |J|2 tan2 θ

2

}
,

where J = Melec + Mmag. The determination of the coincidence cross section is thus reduced
to the determination of the nuclear matrix elements MQ and J. However, this presupposes the
knowledge of the scattering states −〈Ψσs;qσ| where again σ is the two-fragment channel and s
the three-nucleon or the 2 + 2–subsystem bound states in this channel.

Alternatively, the amplitude M can be obtained using an integral equation reduced via the
use of Møller operators. We demonstate this in the simple two-body case where the transition
amplitude is defined by

M(p) =− 〈p|H ′|ΨD〉 = 〈~p|Ω(−)†H ′|ΨD〉 . (28)

Using the relation

Ω(−)† = 1 + V G†
0Ω

(−)† (29)

we obtain

M(p) = 〈p|H ′|ΨD〉 + 〈p|V G†
0Ω

(−)†HE1|ΨD〉

= 〈p|H ′|ΨD〉 +

∫
〈~p|V G†

0|p〉dp 〈p|Ω(−)†H ′|ΨD〉 (30)



S.A. Sofianos 17

which is of the form

M = B + V G0M (31)

In the multichannel case one defines Møller-type operators by [29]

Ω
σ(−)†
βα (z) = δβα +

∑

τ

∑

γ

(1 − δστ )U τ
βγ(z)G0(z)Tγ(z)G0(z)Ωτ(−)†

γα (z) (32)

or in matrix form in the αβ-space

Ωσ(−)†(z) = 1 +
∑

τ

KστΩτ(−)†(z) (33)

where the kernel Kστ
βγ is the same as in the four-body transition operator (11). The scattering

states are then written as

(−)〈qσ; Ψσs
3 | = 〈qσ; Ψσs

3 |Ωσ(−)†(z) ≡ 〈qσ| < Ψσs
3 |

[
1 +

∑

τ

KστΩτ(−)†(z)

]
(34)

which leads, after some straightforward algebra, to the integral equation

Mσs
elec(qσ; z) = Bσs

elec(qσ; z) +
∑

ρr

∫
d3q′

ρ V
σs,ρr(qσ ,q′

ρ; z)Gρr
0 (z −

q′2

2Mρ
)Mρr

elec(q
′
ρ; z) (35)

where we have introduced the notation

Mσs
elec(qσ ; z) =

∑

β⊂σ,n

〈qσ| 〈G
σs
βn| tβn 〈gβn|G0 Ω

σ(−)†
β H ′|Ψ4〉 (36)

for the full electromagnetic transition amplitude and

Bσs
elec(qσ; z) =

∑

β⊂σ,n

〈qσ| 〈G
σs
βn| tβn 〈gβn|G0H

′|Ψ4〉 (37)

for the corresponding Born term.

C. Photo-processes

Here, the electromagnetic Hamiltonian is much simpler,

H ′ = −
~

mc

∑

j,ν

ej eikγ ·xj ǫ̂γ,ν · kj , (38)

the expansion of which provide us the various electric and magnetic multiples. In the above,
ej is the charge of the particle j, ǫ̂γ,ν is the polarization direction of the incident photon, xj

the position coordinate, kγ the incident photon energy, and ν = 1, 2 corresponds to the two
polarizations directions of the photon.

Take, for example, the expansion

eikγ ·xj ǫ̂γ · k ∼ ǫ̂γ · k︸ ︷︷ ︸
E1

+ikγ · xj ǫ̂γ · k (39)
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The second term can be written as

ikγ · xj ǫ̂γ · k =
i

2
(kγ · xj ǫ̂γ · k− ǫ̂γ · xjkγ · k) +

i

2
(kγ · xjǫ̂γ · k + ǫ̂γ · xjkγ · k)

=
i

2
(kγ × ǫ̂γ)(xj × k)

︸ ︷︷ ︸
M1

+
i

2
(kγ · xjǫ̂γ · k + ǫ̂γ · xj + ǫ̂γ · xjkγ · k)

︸ ︷︷ ︸
E2

(40)

To proceed, one has to transform the coordinates into Jacobi ones. This can be easily done by
defining the operator λj = e/2 (1 + τ3

j ). Since

τ3|p〉 = |p〉 τ3|n〉 = −|n〉 (41)

we have

λj|p〉 = 1|p〉j , λj|n〉 = 0|n〉j , (42)

where |p〉 ≡ | + 1
2〉 and |n〉 ≡ | − 1

2 〉.
Using the above relations in the electromagnetic Hamiltonian results in the following opera-

tors in the CM system for the 3+1 coordinates

Îp ≡ λ1 − λ2 , Îq ≡
1

2
(λ1 + λ2 + 2λ3) , Îu ≡

1

3
(λ1 + λ2 + λ3 − 3λ4) (43)

where p, q, and u represent the [ij], [(ij), k], and the [[(ij), k], l] Jacobi coordinates. In this
notation the Hamiltonian for the E1 transition for the 3+1 coordinates read

HE1 = −
~

mc

[
Îp ǫ̂γ · p + Îq ǫ̂γ · q + Îu ǫ̂γ · u

]
(44)

Similar relations can be easily derived for the 2+2 coordinates and for other photo-transitions.
The Siegert theorem can be easily applied using the relation ki = ım [H,xi]. Remembering

that this relation is squeezed between the three and four bound state wave functions we obtain

〈Ψ3|HE1|Ψ4〉 ∼ (E3 − E4)xi = Eγxi (45)

The differential disintegration cross section, for unpolarized incident photon beam and for a
specific fragmentation σ = (ijk, l) is given by

dσσ

dΩ
=

µq

2π~2

2∑

ν=1

|Mν,σ(q)|2 , (46)

where µ is the reduced mass of the outgoing fragments. The amplitude |Mν,σ| is defined as usual
via

|Mν,σ(q)| = 2 (−)〈qσ; Ψ3|HEM|Ψ4〉 (47)

Using the same procedure as in the electro-disintegration we then obtain

Mσs
pho(qσ; z) = Bσs

pho(qσ; z) +
∑

ρr

∫
d3q′

ρ V
σs,ρr(qσ ,q′

ρ; z)Gρr
0 (z −

q′2

2Mρ
)Mρr

pho(q
′
ρ; z) (48)

The above equations include all subsystem information and coupling of the corresponding (2+2)-
and (3+1)-channels in the most transparent and unambiguous way.
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D. Unification of the Reaction Processes

From the above theoretical description, it is obvious that the scattering, electro-
disintegration, and photo-disintegration processes for the two-, three-, and four-body systems
can be cast into effective Lippmann-Schwinger equations schematically written as

T = V +

∫
VG0T , Melec = Belec +

∫
VG0Melec , Mpho = Bpho +

∫
VG0Mpho (49)

where M is the relevant transition amplitude and B the corresponding Born term. The FSI
effects are, therefore, included via the kernel which is exactly the same in all three types of
reactions, namely VG0. The only differences among these processes are those introduced by
selection rules, mainly in the photo-disintegration reactions.

III. RESULTS AND DISCUSSION

A. Scattering

The low energy scattering (below the three-body break-up) can be tackled using the Faddeev,
Hyperspherical Harmonics, and AGS formalisms (see, for example, Refs. [30–32]). Beyond the
break-up threshold, however, calculations have not yet been satisfactorily performed. Efforts
to describe four-body reaction cross sections with optical potentials were also unsatisfactory.
One such effort was that of Podmore and Sherif [33] who introduced an ℓ-dependence in the
interaction; another was that by Neudachin et at. [34] based on symmetry arguments. However,
the constructed potentials have dubious off-shell characteristics and the question of constructing
them reliably is far from being properly addressed.

To get some information on the characteristics of the effective 3+1 interaction we employed
the AGS formalism in the K-matrix approximation [3] to obtain the phase shifts for the various
channels. In Fig. 1 (left) we demonstrate the strong ℓ-dependence of the real part of these
phase shifts for the spin S = 0 and isospin I = 0 3+1 channel at ELab=50 MeV incident nucleon
energy. It is seen that for even partial waves the δℓ are positive while for odd partial waves
negative, implying that the underlying interaction is attractive and repulsive respectively. Thus
any effort to describe cross-sections with a single potential could be catastrophic if this feature is
not taken into account. Using the phase shifts at ELab = 50 MeV and 88 MeV incident nucleon
energies and the inverse scattering procedure of Lipperheide and Fiedeldey [4] at fixed energy,
we constructed potentials shown in Fig. 1 (right). The exhibited E- and ℓ-dependence are
manifested in all channels and in different way. Thus any attempt to use effective interactions
in order to include FSI effects in the various reactions should include these characteristics, by
starting, for example, from the above potentials and improve them by fitting experimental data.

B. Electro-processes

The kinematics of the two-body disintegration reaction 4He(e, e′p)3H considered is shown in
Fig. 2 (left). Since the complicated cut structure prevents solving Eq. (35) at energies beyond
the break-up thresholds, we work in the PWIA, i.e. we compute (37) in order to obtain the
transition matrix elements MQ and J. For this we insert HQ and Helec into Eq. (37), anti-
symmetrize, and evaluate the resulting expressions at on-shell energies. Furthermore, in order
to bring the problem into manageable proportions we choose the nucleon-nucleon interaction
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FIG. 1: Phase shifts for the S = 0 and I = 0 3+1 channel at ELab=50 MeV incident nucleon energy (left)
and the 3+1 interactions generated by inversion of the even and odd partial waves for ELab=50MeV and
88MeV (right).
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FIG. 2: Kinematics for the process 4He(e,e′p)3H , left, and the five-fold differential cross section as a
function of the missing momentum Q for the kinematics of Ref. [6], right.

to be the Malfliet-Tjon (MT I+III) potential [35] which is proved, all along, to give very good
scattering results at energies below the three-body break-up threshold.

In Fig. 2, right, we present our AGS results and compare them with the experimental data of
van den Brand et al. [6]. It is seen that the PWIA results obtained within the AGS formalism
at these low missing momenta reproduce the data well except in the lower region where the
FSI effects are expected to be important. Similar results were obtained also using the integro-
differential equation approach (IDEA) formalism [36]. The results for higher missing momenta
Q are shown in Fig. 3. The kinematics and the experimental data are those of [8, 9] for the
ω = 215 MeV case (left) and for the Saclay kinematics (right) [7] . For comparison we also
included the PWIA results of [12], obtained with wave functions constructed via the IDEA of
Ref. [36] and of Laget (see Refs. [8, 9, 11]). The latter were obtained using the Urbana potential
and wave functions constructed with the variational Monte Carlo (MC) method. The agreement
of our AGS calculations with the experimental data, is remarkable, and in disagreement with
the results obtained by other methods based on variational wave functions. This holds true also
in comparison with other results reported in [9].
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FIG. 3: Five-fold 4He(e,e′p)3H differential cross section as a function of the missing momentum Q for
the NIKHEF kinematics [8, 9] (left) and for the Saclay kinematics [7] (right).

C. Photo-processes

For decades experimental measurements and theoretical model calculations for the total cross
section σT , were wildly varied especially around 30 MeV incident photon energies where, for
either or both the n and p, σT was ranging from 1 mb/sr to 3 mb/sr. In Fig. 4 we present
the results obtained by solving the full photo-disintegration AGS-type integral equations for
energies below the three-body break-up threshold. We see that there is no sign of existence
of a pronounce giant resonance which is in disagreement with other theoretical results in the
field (the latest being those of Ref. [37]) but in good agreement with the experimental data of
[38–40]. In the same figure, Fig. 4 (right), we present results for incident photon energies in the

FIG. 4: Total cross section for 4He(γ, n)3He at low energies (left): Full solution (E1+E2) with exchange
currents (—) and without (- - -)(Born term only); the experimental data are from [38], �, [39], , and
[40], ∗. For higher energies (right): (—) Born term (E1+E2), (- - -) (E1+E2+M1); the experimental data
are from [40], �, and [41], ◦.

region 50-80 MeV and compare the with the results of [40] and [41]. These results were obtained
using only the Born amplitude and the agreement with the data indicates that the FSI are small
in this region and beyond.

From the above results as well as from those obtained for the (γ,p) reaction show that there
is no significant charge symmetry breaking, at least to the extend that it generates a factor of
2 or more in the ratio σp/σn. A small difference between σp and σn is of course expected due
to Coulomb effects and in the details of the spin-isospin projections. Indeed in the latter case
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we found that the E2 contribution to the photo-proton differential cross section is 25 larger as
compared to the contribution to the photo-neutron. While this has relatively small contribution
to the total cross section the effects of E2 on differential cross sections is important.

In Fig. 5 (left) we present the differential cross section for (γ,n) at 51 MeV in comparison
with the results of Sims et al. [42]. In the same figure, right, we demonstrate the importance of
E2 contribution to the (γ,p) and the (γ,n) reactions by plotting the differential cross sections at
Eγ = 64 MeV incident photon energy. The effects for E2 stemming from spin-isospin projections
for the (γ,p) reaction distinguish the p and n data quite well.

FIG. 5: Differential cross section: � (γ,p) [41], (γ,n) [42]. The upper curves are for p and n as indicated
while the lower correspond to the E2 contribution only.

IV. CONCLUSIONS

Our conclusions can be summarized as follows: i) The construction of effective interactions
among light clusters should be carried out with care by taking into account the ℓ-, E-, parity-,
and the overall channel dependence. While for the E-dependence one requires all important
phase shifts at even and odd partial waves ℓ and for a specific spin-isospin channel, the con-
struction of E-independent but ℓ-dependent potential requires the knowledge of phase shifts
for the corresponding ℓ at all energies. Any other construction could results to a non-unique
potential. ii) The use of our potentials obtained using exact methods, can serve as starting point
for further improvements. iii) The PWIA is quite good in describing the scattering, electro-,
and photo-disintegration data and for energies beyond the ’giant’ dipole resonance region. This
comes as no surprise to us as the FSI is included in the same way in all three processes via
integral equations derived using the exact AGS formalism and Møller-type operators. iv) The
main reason for the agreement of our results with the data appears to be the use of wave func-
tions obtained from the AGS integral equations with their complete coupling scheme and duly
antisymmetrized. iv) Another reason is the way of calculating the nuclear matrix elements.
Consider, for example, the electro-disintegration Born term. This is a sum of purely 3+1 com-
ponents and rearrangement 3+1→2+2→3+1 terms and therefore it is highly unlikely that the
two terms have a simultaneous zero at a specific missing momentum which generates the dip
found by other methods.

The overall conclusion is that the study of reaction processes for four-body systems using
exact methods is, at present, a very difficult task. The alternative way of using effective in-
teractions, although possible, requires extreme care in their construction. Otherwise all sort of
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ambiguities could creep in which, in turn, could results in dubious conclusions concerning the
reaction mechanisms involved.
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Electromagnetic excitations in baryons are investigated within the constituent quark model
(CQM). The required configuration space three-quark wave functions are constructed us-
ing the Integrodifferential Equation Approach (IDEA) and the hypercentral approximation
(HCA) while the properly antisymmetrized total wave functions by using, in addition, the
underlying SU(6) spin-flavor symmetries. A relativistic generalization of the HCA in mo-
mentum space is also presented and applied. The results obtained for the photoexcitation
cross-sections for the E1, E2, and M1 transitions are compared with the experimental data
as well as with the results of other methods.

I. INTRODUCTION

The static properties of baryons within the CQM can be studied using various approaches.
Among them, the Hyperspherical Harmonics (HH) method is perhaps the most suitable [1–
3]. Within this formalism, the baryon spectrum, for instance, can be described quite well and
three-body wave functions can be easily constructed using the spatial and the underlying SU(6)
spin-flavor symmetries [4] allowing us to investigate electromagnetic excitations, form factors,
etc.
An interesting version of the HH formalism is the two-dimensional IDEA [5, 6] method in which
two-body correlations are taken into account exactly. In the case where the correlations are weak,
one may use instead of the IDEA the much simpler HCA [7–11] to study baryon properties in a
simple and transparent way. Both the IDEA and HCA reproduce the spectrum of baryons quite
well, and provide us with reliable three-quark wave functions [6].
HCA has the big advantage that it depends only on the hyperradius which is a collective coor-
dinate and its success is due to the fact that the two-quark correlations are indeed weak. This
approximation has been extensively used by Giannini and collaborators in a variety of investi-
gations concerning baryons [12, 13]. The most appealing feature of the HCA, however, lies in
the fact that one may employ it not only in non-relativistic calculations but also in relativistic
ones. This becomes possible by transforming it in momentum space where one can introduce
relativistic generalizations to obtain an one-dimensional integral equation. As in the genuine
two-body case [14, 15], the reduce equation is well-defined even when confining potentials are
introduced.
We recall here that, disregarding intrinsic spin, the Schrödinger equation can be altered in
three ways to take relativistic effects into account: (i) The relativistic kinetic energy operator
must be used. (ii) The interaction must be replaced with a Lorentz-invariant form, which

∗
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introduces retardation effects. (iii) In an integral equation approach, a Lorentz-invariant measure
is required. These relativistic corrections are easily taken into account within the HCA and using
a reduction scheme in which all particles are on mass shell, as in [15] and [16].
In the present work we are concerned with the electromagnetic excitations of baryons which are
studied using various quark-antiquark potentials and by employing the IDEA and HCA methods
to extract the relevant wave functions.
In Sec. II we describe our formalism. In Sec. III we give details on how the M1, E1, and E2
transition amplitudes are calculated while in Sec. III we discuss how relativistic effects are taken
into account. Finally, in Sec. IV we present our results and discussions. Some details on the
Jacobi coordinates are given in Appendix A.

II. FORMALISM

The photoexcitation process is described by the transition amplitude

Mfi = 〈Ψf |H ′|Ψi〉, (1)

where Ψi is the initial baryon ground state wave function, Ψf is the final excited state wave
function, and H ′ is the perturbative Electromagnetic Hamiltonian which consists of the electric
and the magnetic multipoles which in our case are taken to be the E1, E2, and M1, i.e

H ′ = HE1 +HE2 +HM .

In what follows we shall discuss this process in some detail starting from the description of the
relevant wave functions.

A. The Wave Functions

The total antisymmetric wave function for a three-quark system can be expressed as a product
of the symmetric (S) and the antisymmetric (A) components:

ΨS

total = ψspace × Φflavor × χspin
︸ ︷︷ ︸

S

×Ccolor
︸ ︷︷ ︸

A

. (2)

The color wave function is totally antisymmetric. The structure of the symmetric component
depends on the transition considered and can be constructed using the various symmetries
involved.
The space wave functions for the three-quark system can be obtained using the IDEA [5]. In the
IDEA method the fully symmetric configuration space wave function for the L = 0 and L = 2
states are [6]

ΨS
L(~ρ, ~η) =

1

r5/2

[
PS

L (z12, r) + PS
L (z23, r) + PS

L (z31, r)
]
, (3)

where ~ρ and ~η are the Jacobi coordinates (see Appendix A), r is the hyperradius, and zα =
2ρ2

α/r
2 − 1, α = 12, 23, 31. The explicit form of the mixed symmetric and mixed antisymmetric

states, ΨMS

1 (~ρ, ~η) and ΨMA

1 (~ρ, ~η), for L = 1 are given in [4].
In terms of the Young tableau [17], the fully symmetric three-quark spin states are constructed
using

1 2 3 , σ = 3/2 , µ = −3/2, −1/2, 1/2, 3/2
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with states |χσ
S12s3

〉 = |(s1s2)S12, s3;σ〉 so that, for example, when σ = 3/2 S12 = 1 and µ = 1/2
we have

χS
3
2

1
2

=
1√
3
(|α1α2β3〉 + |α1β2α3〉 + |β1α2α3〉) , (4)

where α(β) stand for spin up(down). For the mixed symmetry spin states when the first tableau
is symmetric with respect to the interchange of particles 1 and 2 we have

1 2

3
, σ = 1/2 , µ = −1/2, 1/2

such that if σ = 1/2 and µ = 1/2 then

χMS

1
2

1
2

=
1√
6
(2|α1α2β3〉 − |α1β2α3〉 − |β1α2α3〉) . (5)

When the second tableau is antisymmetric with respect to the interchange of particles 1 and 2
we have, for σ = 1/2 and µ = 1/2 for example,

χMA

1
2

1
2

=
1√
2
(|α1β2α3〉 − |β1α2α3〉) . (6)

The SU(3) flavor states are constructed from the quark states, as in the spin case, the corre-
sponding dimensions and symmetry types being [18]

⊗ ⊗ = ⊕ ⊕ ⊕

SU(3) : 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 (7)

A MS MA S

In the case of non-strange baryons, the resulting states coincide with the standard isospin states.
For the decuplet states there are 10 fully symmetric states where, e.g., for one of the deltas we
have

|ΦS
∆+〉 ≡ |ΦS

3
2
, 1

2

〉 =
1√
3

(|uud〉 + |udu〉 + |duu〉) . (8)

There are two types of linearly independent mixed symmetry octet states, each type having a
total of 8 states. The first type is symmetric under the interchange of the flavor indices of the
first two quarks, while the second is antisymmetric under this interchange. For instance, in the
proton case we have

(i) Symmetric Octet State:

∣
∣
∣ΦMS

P

〉

≡
∣
∣
∣ΦMS

1
2

1
2

〉

=
1√
6

(2|uud〉 − |duu〉 − |udu〉) . (9)

(ii) Antisymmetric Octet State:

∣
∣
∣ΦMA

P

〉

≡
∣
∣
∣ΦMA

1
2

1
2

〉

=
1√
2

(|udu〉 − |duu〉) . (10)
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For the spin-flavor functions, combining the three fundamental representations of SU(6) we get
the following dimensions and symmetry types:

SU(6) : 6 ⊗ 6 ⊗ 6 = 20 ⊕ 70 ⊕ 70 ⊕ 56 (11)

A MS MA S

The completely symmetric, the symmetric with respect to (12), and the antisymmetric with
respect to (12) SU(6) octet states formed from the SU(3) states Φ and SU(2) states χ are

| ξS 〉 =
1√
2

[

|ΦMS 〉|χMS 〉 + |ΦMA〉|χMA〉
]

, (12)

| ξMS〉 =
1√
2

[

|ΦMS 〉|χMS 〉 − |ΦMA〉|χMA〉
]

, (13)

| ξMA〉 =
1√
2

[

|ΦMS 〉|χMA〉 + |ΦMA〉|χMS 〉
]

. (14)

Finally, the singlet, antisymmetric color state is

CA
color =

1√
6
(RBY −BRY +BY R− Y BR+ Y RB −RY B), (15)

where R, B and Y stand for Red, Blue and Yellow respectively. This state does not enter into
the calculations and therefore, in what follows will be suppressed.
The initial total wave function for the proton ground state, with L = 0, S = 1/2, and J = 1/2
is given by

|Ψi〉 =
∣
∣ξS
〉 ∣
∣ΨS

0

〉
. (16)

The final total wave function for the first excited state, with L = 1, S = 1/2, and J = 1/2 or
3/2, of the proton is

|Ψf 〉 =
1√
2

[∣
∣
∣ξMS

〉 ∣
∣
∣ΨMS

1

〉

+
∣
∣
∣ξMA

〉 ∣
∣
∣ΨMA

1

〉]

(17)

while that of the second excited state, with L = 2 , S = 1/2, and J = 3/2 or 5/2, has the form

|Ψf 〉 =
∣
∣ξS
〉 ∣
∣ΨS

2

〉
. (18)

For the M1 transition (S = 1/2) → (S = 3/2) [24] where the proton and ∆+(1232) both have
an angular momentum of L = 0, the total wave function for the initial state of the proton is
still given by Eq. (16), while the final wave function for the delta is

∣
∣Ψf

〉
= ΦS

∆χ
S
∆

∣
∣ΨS

∆

〉
. (19)

The flavor wave function, ΦS
∆, for this transition is given by Eq. (8) while the spin wave function,

χS
∆, is given by Eq. (4).

B. Electromagnetic Transitions

1. Electric Dipole Transitions

The Hamiltonian for the electric dipole (E1) transition, in the case of three quarks of equal mass
m, is given by

HE1 = −1

c

3∑

j=1

λj ǫ̂γ · ~̇xj , (20)
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where ǫ̂γ denotes one of the polarization directions of the incident photon and ~̇xj = ~pj/m with
~pj being the momentum of quark j.
For u and d quarks, the charge operator of the j-th quark has the form

λj =
e

6
(1 + 3τ z

j ) , (21)

where τ z
j is the third component of the isospin of the j-th quark.

Going over to Jacobi coordinates (see Appendix A) we may express HE1 in terms of ~̇ρN and ~̇ηN

as

HE1 = −1

c
ǫ̂γ ·

[

~̇ρN (λ2 − λ1) + ~̇ηN (2λ3 − λ2 − λ1)
]

. (22)

Similarly to the nuclear case [19], we introduce the operators Ip and Iq

Ip = −(λ2 − λ1) =
e

2
(τ z

1 − τ z
2 ) , Iq =

1

2
(λ1 + λ2 − 2λ3) =

e

2
(
τ z
1 + τ z

2 )

2
− τ z

3 ) (23)

in terms of which the Hamiltonian takes the form

HE1 =
1

c
ǫ̂γ ·

[

~̇ρN Ip + 2~̇ηN Iq

]

=
1

c
ǫ̂γ ·

[

1

2
~̇ρ Ip +

√
3

3
~̇η Iq

]

, (24)

i.e., instead of the form (20) where the Hamiltonian is expressed in terms of the individual
particle charge and coordinate, in the last relation it is written in terms of the more appropriate
Jacobi coordinates and the charge operators Ip and Iq acting on quasiparticles [19]. Similar
relations can be derived for higher transitions.

2. Magnetic Dipole Transitions

The magnetic dipole (M1) causes the transition γP → ∆+(1232), in which the proton (P),
after absorbing a photon (γ), is excited to the delta (∆+). The corresponding Hamiltonian is
expressed as

HM1 = −i
3∑

j=1

µj
q(~σj × ~kγ) · ǫ̂γ , (25)

where the quark magnetic moments are assumed to be of the Dirac form,

µj
q =

λje~

2mc
=
λjMp

m
µnm , (26)

with µnm =
e~

2Mpc
being the nuclear magneton and Mp the proton mass. Using the identity

(

~σj × ~kγ

)

· ǫ̂γ = −~σj ·
(

ǫ̂γ × ~kγ

)

(27)

we obtain

HM1 = i

3∑

j=1

µj
q~σj ·

(

ǫ̂γ × ~kγ

)

. (28)

Since M1 does not contain any orbital operators, in this transition the spin must change instead.
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III. TRANSITION AMPLITUDES

In what follows we shall discuss the various transition amplitudes starting with the electric
dipole one.

A. Electric Dipole Transition Amplitude

In order to express the transition amplitude in terms of the conjugate momenta ~p, ~q of ~ρ, ~η we
use the reduced masses µ12 = m/2 and µ12,3 = 2m/3. For the HE1 Hamiltonian we get

HE1 =
1

mc
ǫ̂γ ·

[

~p Ip +

√
3

2
~q Iq

]

, (29)

where ~p = µ12d~ρ/dt = m/2~̇ρ and ~q = µ12,3d~η/dt = 2/3m~̇η . The Siegert theorem is applied
using the commutation relations

~p = −iµ12
1

~
[~ρ,H] , ~q = −iµ12,3

1

~
[~η,H] . (30)

Then

〈Ψf |~p|Ψi〉 = i
m

2~
(Ef − Ei)〈Ψf |~ρ|Ψi〉 , 〈Ψf |~q|Ψi〉 = i

2m

3~
(Ef − Ei)〈Ψf |~η|Ψi〉 , (31)

where Ei and Ef are the energies of the initial and final states respectively. Working out the
spin and flavor projections we obtain, for the matrix element,

ME1 =
eEγ

2
√

6i~c

〈

ΨMA

1 |ǫ̂γ · ~ρ|ΨS
0

〉

− eEγ

2
√

6i~c

〈

ΨMS

1 |ǫ̂γ · ~η|ΨS
0

〉

, (32)

where Eγ = Ef − Ei

The integrals in (32) were evaluated using Euler angles α, β, γ as external and ρ, η, x = ~ρ · ~η/ρη
as internal coordinates. Here the ρ̂ is chosen to coincide with the z′ axis and η̂ is in the x′ − z′

plane. Thus only a five dimensional integration has to be done numerically since both ΨS
0 and

the two components of Ψ1 are invariant with respect to a rotation about the z-axis and thus do
not depend on α. After averaging over the direction of ~k and the two polarization directions [20]
one obtains the following expression for the absolute square of the transition matrix elements

|ME1|2 =
e2E2

γ

72 (~c)2

∣
∣
∣〈ΨMA

1 |ρz|ΨS
0 〉 − 〈ΨMS

1 |ηz|ΨS
0 〉
∣
∣
∣

2
. (33)

Therefore, the following integrals are required

〈

ΨMA

1 |ρz|ΨS
0

〉

= 2π

∫ π

0
sin βdβ

∫ 2π

0
dγ

∫ ∞

0
ρ2dρ

∫ ∞

0
η2dη

×
∫ 1

−1
dxΨMA

1 (ρ, η, x, β, γ)ρ cos βΨS
0 (ρ, η, x) , (34)

〈

ΨMS

1 |ηz|ΨS
0

〉

= 2π

∫ π

0
sin βdβ

∫ 2π

0
dγ

∫ ∞

0
ρ2dρ

∫ ∞

0
η2dη

∫ 1

−1
dx

× ΨMS

1 (ρ, η, x, β, γ)η(cos β cos θ − sin β cos γ sin θ)ΨS
0 (ρ, η, x) . (35)

The corresponding integrated photoabsorption cross section for a single excited electric dipole
state i.e, in the long wavelength limit [21, 22], is

Σ1 =

∫

dEγη
E1
γ =

4π2c

ω
|ME1|2 . (36)
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B. Electric Quadrupole Transition Amplitude

Similarly to the E1 case, the use of commutation relations in the amplitude for the E2 transition
yields

ME2 = 〈Ψf |HE2|Ψi〉 ≡ − Eγ

2~c
〈Ψf |ǫ̂γ · ~ρ Jρ|Ψi〉 −

√
3Eγ

6~c
〈Ψf |ǫ̂γ · ~η Jη|Ψi〉 (37)

where Jρ and Jη are the isospin E2 operators corresponding to the ρ and η coordinates config-
uration. The ME2 transition amplitude for the proton can now be written as

ME2 =
e

6~c
Eγ

〈
ΨS

2

∣
∣ (ǫ̂γ · ~ρ)(~kγ · ~ρ) + (ǫ̂γ · ~η)(~kγ · ~η)

∣
∣ΨS

0

〉
(38)

For a single excited electric quadrupole state, the integrated photoabsorption cross section [21,
22] is

Σ2 =

∫

dEγη
E2
γ =

π2c

3ω
|ME2|2 . (39)

C. Magnetic Dipole Transition Amplitude

The matrix element of the magnetic transition is expressed as

MM1 = 〈Ψf |HM1|Ψi〉 = i
(

ǫ̂γ × ~kγ

) 3∑

j=1

〈Ψf |µj
qσ

z
j |Ψi〉 , (40)

where Ψi and Ψf are given by Eqs.(16) and (19) respectively.

The process γP → ∆+(1232) (1
2
+ → 3

2
+
) can take place by interaction with either the

magnetic dipole (M1) or electric quadrupole (E2). In the quark model the latter transition is
forbidden [23] because it is proportional to the charge operator which cannot cause transitions
between quark spin 1/2 and 3/2 states, and hence the matrix element vanishes by orthogonality
of the quark spin wave functions.
The M1 transition involves the quark magnetic moments – hence the spin operator – and this
can lead to transitions (S = 1/2) → (S = 3/2) [24]. The transition matrix can be written as

MM1 = i
(

ǫ̂γ × ~kγ

)

〈Ψf |µ1
qσ

z
1 + µ2

qσ
z
2 + µ3

qσ
z
3 |Ψi〉 . (41)

Using the flavor, spin and configuration space wave functions we obtain

MM1 = i(ǫ̂γ × ~kγ)
2
√

2

3
µP

〈
ΨS

∆|ΨS
0

〉
, (42)

where µP = µu − µd.
Averaging over the two polarization directions we obtain for the M1-matrix element

|MM1|2 =
2α

9

E2
γ~c

(mc2)2
I2
M1 , (43)

where IM1 is the overlap integral given by

IM1 = 8π2

∫ ∞

0
ρ2dρ

∫ ∞

0
η2dη

∫ 1

−1
dxΨS

∆(ρ, η, x)ΨS
0 (ρ, η, x) . (44)

Like in the electric transitions, the photoabsorption cross section for a single excited magnetic
dipole state is

ΣM1 =

∫

dEγη
M1
∆ =

4π2~c

~ω
|MM1|2 . (45)
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IV. RELATIVISTIC EFFECTS

Relativistic effects can be incorporated via the momentum space representation of the HCA.
This involves the Fourier transformation, in the D-dimensional space, of the Schrödinger-like
equation

[

−~2

m
∇2 + V̂(r,Ωr) − E

]

Y[L0](Ωr)Φ[L0](r) = 0. (46)

The conjugate of the D-dimensional Jacobi vector ~ξ(~ξ1, ~ξ2, . . . , ~ξA−1) is ~κ(~κ1, ~κ2, . . . ,= ~κA−1),
where the Jacobi coordinates ~κi are defined in an identical manner to those in position space

~κA−1 = ~k2 − ~k1

~κA−2 =
2√
3

(

~k3 −
~k1 + ~k2

2

)

. . .

~κA−I =

√

2I

I + 1



~kI+1 −
1

I

I∑

j=1

~kj





. . .

~κ1 =

√

2(A − 1)

A



~kA − 1

A− 1

A−1∑

j=1

~kj





~K =
1

A

A∑

j=1

~kj ,

where the ~ki are the conjugates of the individual particle coordinates ~ri. The Zernike-Brinkman
(ZB) hyperspherical coordinates in momentum space can be defined in the same way as in
position space [25]. In particular, the definition of κ, the analogue of the hyperradius r in wave
number space, should be noted:

κ2 =

A−1∑

j=1

κ2
j . (47)

The Fourier transform of the HCA to the wave function in the D-dimensional space is given by

F
{
Y[L0](Ωr)Φ[L0](r)

}
=

1

(2π)D/2

∫

ei~κ·~ξY[L0](Ωr)Φ[L0](r) dΩr r
D−1 dr , (48)

while the expansion in hyperspherical harmonics of the plane wave by

ei~κ·~ξ =
(2π)D/2

(κr)(D−2)/2

∞∑

[L]0

iLY[L](Ωκ)Y †
[L](Ωr)JL+ 1

2
(κr), (49)

where L = L + (D − 3)/2 and with {Ωκ} the set of D − 1 angles and hyperangles in κ-space.
Substituting (49) into (48), results in

F
{
Y[L0](Ωr)Φ[L0](r)

}
= iLY[L0](Ωκ)Θ[L0](κ), (50)

where

κ
D−2

2 Θ[L0](κ) =

∫ ∞

0
r

D−2
2 Φ[L0](r)JL+ 1

2
(κr) dr , (51)
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using the orthonormality of the hyperspherical harmonics. The functions r(D−2)/2Φ[L0](r) and

κ(D−2)/2Θ[L0](κ) are therefore related to each other by means of the Hankel transform of order

L0 + 1
2 [26].

Fourier transformation of Eq. (46), followed by pre-multiplication by Y †
[L0]

(Ωκ) and integration
with respect to Ωκ yields the following equation for bound states in the HCA,

(κ2 + κ2
E) f[L0](κ) +

A(A− 1)

2

∫ ∞

0
U0(κ, κ

′)f[L0](κ
′) κ′ dκ′ = 0, (52)

where ~2κ2
E/m = −E and f[L0](κ) = κ(D−2)/2Θ[L0](κ) and where

U0(κ, κ
′) =

m

~2

∫ ∞

0
JL0+

1
2
(κ′r)V0(r)JL0+ 1

2
(κr)r dr . (53)

To include relativistic effects due to kinetic energy, the kinetic energy term in Eq. (46) must be
replaced by its relativistic counterpart, i.e





A∑

j=1

√

−~2c2∇2
j +m2c4 + V (r,Ωr) −Mc2



Y[L0](Ωr)Φ[L0](r) = 0 , (54)

where M = Am+E is the total mass of the system of A particles. Using the relations

~κ · ~ξ + 2A ~X · ~K = 2~k · ~x (55)

and

~κ1(j)
=

√

2A

A− 1
(~kj − ~K), (56)

where ~X = 1
A

∑A
i1 ~ri, ~x ≡ (~r1, ~r2, . . . , ~rA) and ~k ≡ (~k1, ~k2, . . . ,~kA), we find that the hypercentral

component T0(κ) of the kinetic energy is given by

T0(κ) =

∫

Y †

[L0]
(Ωκ)





A∑

j=1

√

~2c2
2(A − 1)

A
κ2

1(j)
+m2c4



Y[L0](Ωκ)dΩκ (57)

and can be evaluated numerically for small numbers of particles. Moreover, analytic expressions
are available [10] to determine matrix elements of an operator which is a symmetric sum of
terms over the index j. The relativistic generalization of Eq. (52) is therefore

m

~2

[
T0(κ) −Mc2

]
f[L0](κ) +

A(A− 1)

2

∫ ∞

0
U0(κ, κ

′)f[L0](κ
′) κ′ dκ′ = 0 . (58)

It is possible to show that Eq. (58) reduces to its non-relativistic counterpart (52) by performing
a Taylor expansion of the square root in Eq. (57), and applying (56), as well as the momentum
space generalization of the hyperradius r

r =

√
√
√
√

A−1∑

j=1

ξ2j =

√
√
√
√
√

2

A

A∑

i=1
i<j

(~ri − ~rj)2 =

√
√
√
√2

A∑

j=1

(~rj − ~X)2 . (59)
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A. Linear Confining Potential in Momentum Space

Confining potentials may be treated in momentum space [14, 15] by recognizing that the Fourier
transform of a linear confining potential does indeed exist in a distributional (if not a classical)
sense. For example, the linear potential is derived from the Yukawa potential in the following
way:

Vlinear = λ lim
µ→0

∂2

∂µ2

e−µr

r
. (60)

The strategy in this work is to extend the two-body formalism of Hersbach [15] to the HCA,
and hence to many-body calculations. To begin with, it should be noted that the hypercentral
potential corresponding to a linear two-body potential is linear in the hyperradius r. The
potential matrix element (see (53)) corresponding to the linear confining potential in the HCA
is therefore

U0(κ, κ
′) = Λ lim

µ→0

∂2

∂µ2

∫ ∞

0
JL0+ 1

2
(κr)

e−µr

r
JL0+ 1

2
(κ′r) rdr

=
Λ

π(κκ′)
3
2

lim
µ→0

∂

∂µ
µ Q′

L0

(
κ2 + κ′2 + µ2

2κκ′

)

, (61)

where QL0(x) is a Legendre function of the second kind of order L0. Note that L0 is integral
for even A and half-integral for odd A.
The behavior of U0(κ, κ

′) at the singularity κκ′ for the case where L0 is an integer is completely
analogous to that in the two-body case, and is discussed in detail in [14] and [15]. The relation
[27]

QL0(x) =
1

2
log

(
x+ 1

x− 1

)

PL0(x) + F (x), (62)

where PL0(x) is a Legendre function of the first kind of order L0, and F (x) is a function which
is finite and smooth at x = 1, may be used to show that the behavior of the Legendre functions
PL0(x) at x = 1 is not qualitatively different for integer and non-integer values of L0. The
singularity in Q′

L0
(z) at z = 1 is therefore removable for all values of L0. The two-body result

of Hersbach [15] can therefore be adapted and Eq. (58) written as

m

~2
[T0(κ) − Mc2

]
f[L0](κ) +

A(A− 1)

2

Λ

π

{
f[L0](κ)

κ

+ Pr

∫ ∞

0




Q′

L0

(
κ2+κ′2

2κκ′

)

(κκ′)
3
2

f[L0](κ
′) +

f[L0](κ)

κ′(κ′ − κ)2



κ′dκ′
}

= 0 , (63)

where Pr
∫

denotes the principal part of the integral. Coulomb and constant terms can be
included in the potential without introducing additional complications, but will be omitted for
the sake of simplicity here.

B. Retardation Effects

The Yukawa potential used in the definition of the linear confining potential in (60) has the
following form in the momentum representation:

U
Yukawa

(~k,~k′) =
4πλ

|~k − ~k ′|2 + µ2
(64)
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and needs to be replaced by the Lorentz-invariant expression

U
Yukawa

(~k,~k′) =
4πλ

−q · q + µ2
, (65)

where

q ≡ (k0 − k′0, ~k − ~k ′). (66)

In the two-body case, we introduce a retardation

τ(k, k′) =

(
t(k) − t(k′)

2~c

)2

, (67)

where t(k) − 2m is the kinetic energy operator for the two-body system. We now define an
average retardation for the A-body system by generalizing (67), i.e.

τ(κ, κ′) =

(
T0(κ) − T0(κ

′)

A~c

)2

, (68)

where T0(κ) is given by (57). Using this definition, the term Q′
L0

(
(κ2 + κ′2)/(2κκ′)

)
in equation

(63) needs to be replaced by Q′
L0

(
(κ2 + κ′2 − τ(κ, κ′))/(2κκ′)

)
. Note that at low momentum

transfer, τ ≃ (~/2mc)2 (κ2 − κ′2)2 while at high momentum transfer τ ≃ (κ− κ′)2. In the latter
case, the argument of Q′ in Eq. (63) approaches unity.

V. RESULTS AND DISCUSSIONS

The three–quark potential is assumed to be a sum of local two-body potentials between the
valence quarks V =

∑

i,j<i V ij where Vij is the quark-quark potential Vqq. These potentials
have as main characteristics their confining nature at large distances and the Coulomb-like
behavior as r → 0, which is due to the asymptotic freedom of QCD and the dominance of
one-gluon exchange between the colored constituents of the baryon at small distances.
The quark-quark potential can be expressed as a sum of the central and the spin-spin parts
Vqq = V c + V s , where V c contains, as usual, the confinement and the coulombic parts while V s

is of the general form V s = fij(r)~σi ·~σj . In our investigation we performed calculations with the
V c term alone and also with both terms included. For the calculations with the V c part only,
we used various potentials. In Table I we present the results obtain for the ground and orbitally
excited states of the nucleon with spin-independent potentials and by using the IDEA and HCA
methods. These results were obtained with the Fabre [28] and the Lichtenberg [29] potentials.
For the calculations with both terms included we used the Ono-Schöberl potential [30] and two

TABLE I: Non-relativistic and relativistic nucleon masses in MeV for orbital excitations.

IDEA HCA HCA (Relat)
Expt Potentials Potentials Potentials

L S JP Fabre Lichtenberg Fabre Lichtenberg Fabre Lichtenberg

0 1/2 1

2

+
940 1086 1085 1089 1088 1008 1043

1 1/2 3

2

−

1520 1744 1730 1744 1730 – –

2 1/2 5

2

+
1680 2245 2218 2251 2224 – –

of Silvestre-Brac potentials [31], namely the AP1 and AP2 versions. The results obtained are
shown in Table II.
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TABLE II: Delta masses in MeV obtained with spin-dependent potentials.

Quantum IDEA HCA
numbers Potentials Potentials

L S JP Expt AP1 AP2 Ono-Schöberl AP1 AP2 Ono-Schöberl

0 3/2 3

2

+
1232 1300 1307 1224 1300 1308 1225

TABLE III: The integrated photoabsorption cross sections Σ1 and Σ2 for the N(1520) and N(1680) proton
resonances respectively.

IDEA HCA
Expt Potentials Potentials
values Martin Fabre Lichtenberg Martin Fabre Lichtenberg

E1-E0 580 591 658 645 586 655 642
(MeV)

Σ1 33a 30 31 31 31 31 31
(MeVmb)

E2-E0 740 986 1159 1133 986 1162 1136
(MeV)

Σ2 19a 18 23 23 10 13 13
MeVmb)

OTHER METHODS
I.K. h.o. h.o. h.o. 3q bag I.K.

(ret) (ρ+ j)

E1-E0 580 595b 167 167 167 144 349 595b

(MeV)
Σ1 33a 92c 40c 38 43 27 13 26c

(MeVmb)

E2-E0 740 775b 334 334 334 203 – –
(MeV)

Σ2 19a 6.9c 13c 9 15 1.5 – –
(MeVmb)

aref. [32]; bref. [33]; cref. [21].
ret : retardation; ρ : classical charge density; j : current density.

These transition energies and the corresponding wave functions were used to calculate the inte-
grated photoabsorption cross sections due to the E1 and E2 transitions. Our results are shown
in Table III together with experimental values and those of other methods. For both the IDEA
and the HCA the cross sections are in good to very good agreement with the experimental
values.

TABLE IV: The integrated photoabsorption cross section ΣM1 for the ∆(1232) resonance obtained with
the spin-dependent Ono-Schöber potential.

IDEA HCA OTHER METHODS
Expt Ono-Schöberl Ono-Schöberl Ref. [33]

[E∆ − EN ] MeV 292 304 285 300b

ΣM1 (MeVmb) 63a 54 58 52
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The results obtained by other methods for the transition energies are generally very low as com-
pared to the experimental ones except those obtained via the Isgur-Karl (I.K.) model [33], which,
nevertheless, can not reproduce the experimental photoabsorption cross sections. This mainly
implies that the corresponding wave functions are not adequate to describe the photoabsorption
cross sections.
The results for the delta mass obtained with the spin-dependent Ono–Schöber potential and the
corresponding transition energy together with the cross section are presented in Table IV. The
cross sections are in good agreement with the experimental data.
The relativistic results for the nucleon ground state masses are presented in Table I and they are
in fairly good agreement with the non-relativistic ones. The accuracy of the Fourier transforma-
tions (going from one space to the other) is exhibited in Fig. 1. The shapes of the non-relativistic
wave functions, as compared to the relativistic ones are shown in Fig. 2. It is seen that they are
in good agreement and the small shifting of the shape should not affect the overlap integral for
the various transitions significantly. More work, however, is required in this respect.

FIG. 1: Fourier transformations from r– to p–space and vise versa.

FIG. 2: Non-relativistic wave functions, (—), compared to relativistic ones, (- - -).

To summarize, in this work we show that the IDEA method and its simplified version, HCA,
provide us wave functions for three quark systems which produce results for the photoexcitation
cross-sections for the E1, E2, and M1 transitions that are in good agreement with the exper-
imental data. Furthermore, a formalism has been developed to transform the very useful and
computationally economic HCA from position space to momentum space which render itself to
relativistic considerations. The relativistic generalization achieved here yields good spectra for
quark systems, and thus it is expected that it will provide an excellent model for hadronic and
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multiquark calculations. The use of a relativistic HCA should also remove justified criticism
that high energy systems are being investigated with a low energy tool.

APPENDIX A: JACOBI COORDINATES

The three-quark configuration space wave function is written as a function of the three coordi-
nates ~ri of the individual quarks: ψ(~r1, ~r2, ~r3). However, to separate the center of mass motion
it is customary to use the Jacobi coordinates, which are defined as follows

~ρ12 = ~r2 − ~r1 ≡ ~ρ ,

~η12 =
2√
3

(

~r3 −
~r1 + ~r2

2

)

=
√

3
(

~r3 − ~X
)

≡ ~η

where ~X is the center of mass, ~X = 1
3

∑3
i=1 ~ri. The hyperradius r is defined by

r2 = ρ2 + η2 = 2

3∑

i=1

(

~ri − ~X
)2

(A1)

Fixing ~X at the origin, the inverse coordinates are given by

~r1 = −1

2
~ρ−

√
3

6
~η ,

~r2 =
1

2
~ρ−

√
3

6
~η ,

~r3 =

√
3

3
~η .

Thus we may express the ~ρij , needed in constructing the wave functions, in terms of ~ρ, ~η as
follows

~ρ12 = ~r2 − ~r1 = ~ρ ,

~ρ23 = ~r3 − ~r2 = −1

2
~ρ+

√
3

2
~η ,

~ρ31 = ~r3 − ~r1 =
1

2
~ρ+

√
3

2
~η

These can be used to express any Faddeev component ψ(zij , r) in terms of the Jacobi vectors ~ρ
and ~η using zij = 2ρ2

ij/r
2 − 1.
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A treatment of three charged particle systems in continuum, based on the Coulomb-Fourier
transformation of the three-particle Hamiltonian, is presented. For systems with two heavy
and one light particle an adiabatic expansion is developed and applied to the description of
electron capture in the process

p + e + 7Be → 7Li + p + ν

which is thought to occur at the center of Sun.

I. INTRODUCTION

The quantitative description of systems with three charged particles in the continuum at low
energies is still difficult. Hamiltonians of such a systems are very far from being hypercentral
and thus hyperspherical harmonics expansions have, in general, a bad convergence. Apart
from that, the Sommerfeld parameter η = Z1Z2e

2/~v is usually greater than 1 and this creates
additional difficulties. Indeed, only some special cases with specific properties of the system have
been considered in the literature. In this respect one should mention the papers [1, 2] where
the asymptotic solution for the three-body wave function has been obtained for configurations
where all interparticle distances are much larger than the characteristic size of the system.
An alternative limiting case, considered in [3], corresponds to configurations where one Jacobi
coordinate is much larger than the other one. The near threshold breakup of hydrogen by a
proton (or electron), studied in [4], is yet another example of an approximate solution of the
three body Schrödinger equation obtained so far for three charged particles in the continuum.

Our purpose is to develop a new adiabatic expansion for a three-body Hamiltonian for a
system consisting of one light and two heavy particles. For this, we use the Coulomb-Fourier
(CF) transform formalism proposed in [6] to make a unitary transformation of the Hamiltonian,
which leads to a convenient representation, in which one long-range interaction is eliminated.
The explicit form of the obtained eigenfunctions allows us to construct a useful integral repre-
sentation of the interaction potentials for the transformed Hamiltonian. The important feature
of this representation for potentials is the appearance of a universal integral with the inte-
grand containing an exponential factor which is proportional to the square root of mass ratio
τ ∼

√

me/mp of light (electron) and heavy (proton) particles. The natural power series in τ
of this integral generates a power series representation of the transformed Hamiltonian which is
the basis for our new variant of the adiabatic representation of the problem [5].

∗Electronic address: belyaev@theor.jinr.ru
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II. EXPANSION FOR THE THREE-BODY HAMILTONIAN

In what follows we use units such that ~ = c = 1 and for the unit electric charge the
symbol e is used. Three-dimensional vectors are denoted by x,y,k,p, . . . and thir magnitudes
and respective unit vectors by x, y, k, p, . . . and by x̂, ŷ, k̂, p̂, . . .. Sometimes we combine pairs
of three-dimensional vectors and six-dimensional ones. These are denoted by, for example,
X = {x,y} and P = {k,p}. The Hilbert space of functions depending on vectors X, which in
our paper play the role of configuration space vectors, will be denoted by H. The Hilbert space
Ĥ will be associated with functions depending on momentum variables P.

Consider the ppe system, where p is proton of mass mp and e is electron of mass me (mp ≫
me). We assign the number 1 to the electron, and 2, 3 to the protons. The Hamiltonian of the
system in the center of mass frame, using mass-renormalized Jacobi coordinates, can then be
written as

H = −∆x1
− ∆y1

+ Vs(x1) +
n1

x1
+
n2

x2
+
n3

x3
.

Here Vs(x1) is a short-range potential describing strong pp interaction. Mass-renormalized charge
factors ni are defined by the formulas ni = ejek

√

2µjk, where e1 = −e, e2 = e3 = e are the
charge of the electron and proton and µij stands for the reduced mass of a pair of particles ij,
i.e. µij = mimj/(mi +mj). Introducing proton and electron masses into this formula we get
µ23 = mp/2, µ31 = memp/(me +mp), µ12 = µ31.

Before proceeding further, let us make three clarifying comments. First, throughout the
paper we systematically use a convention that indices of any pair of particles ij are considered
as a part of triad ijk which itself is a cyclic permutation of 1, 2, 3. Second, we define the
mass-renormalized Jacobi set xi, yi in such a way that the vector xi up to the factor

√

2µjk is
proportional to the relative position vector of particles j and k and the vector yi is the position
vector of particle i with respect to the center of mass of corresponding two-body sybsystem.
There are three possible sets xi, yi, i = 1, 2, 3 and different sets are related to each other by the
kinematic rotation matrix elements

xi = cijxj + sijyj

yi = −sijxi + cijyj (1)

with coefficients being defined in terms of particle masses by the formulas

cij = −
√

mimj

(mi +mk)(mj +mk)
, (2)

sij = ǫijk

√

1 − c2ij , where ǫijk is fully antisymmetric tensor normalized as ǫ123 = 1. Third, in

all mass factors we keep general situation, i.e. not neglecting me with respect to mp, making
sometimes simplifications for illustrative purposes, as for example µ31 = memp/(me + mp) =
me(1 +O(me/mp)).

Let us now turn to the solution of the Schrödinger equation

HΨ = EΨ (3)

for three particles in the continuum (E > 0). For this we will construct a special representation
in which the basis consists of eigenfunctions Ψc 0(X,P), Hc 0Ψc 0 = P 2Ψc 0, of the operator

Hc 0 = −∆x1
− ∆y1

+
n1

x1
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with repulsive Coulomb potential i.e, n1 > 0. It is obvious that this eigenfunction has the form

Ψc 0(X,P) = ψc
k1

(x1)ψ
0
p1

(y1)

where

ψ0
p1

(y1) =
1

(2π)3/2
eip1·y1 (4)

is the normalized plane wave and

ψc
k1

(x1) =
1

(2π)3/2
eip1·y1e−πγ1/2Γ(1 + iγ1)Φ(−iγ1, 1, ik1ξ1) (5)

is the normalized Coulomb wave function. The standard notations for Sommerfeld parameter
γ1 = n1/2k1, parabolic coordinate ξ1 = x1 − 〈x1, k̂1〉, Gamma function Γ(z), and Confluent
Hypergeometric function Φ(a, c, z) have been used.

Using (5) we immediately obtain the transformed Hamiltonian Ĥ,

Ĥ(P,P′) ≡ 〈ψ0
p1
ψc

k1
|H|ψ0

p′

1

ψc
k′

1

〉 = (k2
1 + p2

1)δ(k1 − k′
1)δ(p1 − p′

1)

+ v̂s(k1,k
′
1)δ(p1 − p′

1) +W2(P,P
′) +W3(P,P

′) (6)

operating on CF-transformed wave function Ψ̂(P). Here the first term corresponds to the kinetic
energy operator Ĥ0 = k2

1 + p2
1, v̂s stands for the CF-transformed short-range pp interaction

potential

v̂s(k1,k
′
1) = 〈ψc

k1
|vs|ψc

k′

1

〉 =

∫

dx1 ψ
c∗
k1

(x1) vs(x1)ψ
c
k′

1

(x1)

where ∗ means complex conjugation; Wj are Coulomb potentials nj/xj in CF representation.
Note that the contribution from the n1/x1 potential has been eliminated by the CF transform.
The functions Wj(P,P

′), j = 2, 3 have the following structure

Wj(P,P
′) = |sj1|−3v̂c

j(s
−1
j1 (p − p′))Lj(P,P

′),

where

v̂c
j(q) =

1

2π2

nj

|q|2

is the familiar Fourier transform of Coulomb potential nj/xj and the functions Lj(P,P
′), j = 2, 3

are given by the integrals

Lj(P,P
′) = lim

λ→+0

∫

dx1 eiτj〈x1,p−p′〉−λ|x1|ψc∗
k1

(x1)ψ
c
k′

1

(x1). (7)

The parameters τj, j = 2, 3, have a kinematical origin and are represented in terms of kinematic
rotation matrix elements (1) as

τj = cj1/sj1.

Noting that τ3 = −τ2 which is the consequence of equality of heavy particles (protons) masses
and using the definition (2) and the fact that me ≪ mp we get

τ2 =
√

me/2mp(1 +O(me/mp)),



42 Adiabatic Movement of Three Charged Particles . . .

which shows that τj are small. This allows us to expand the exponential factor in the integrand
of (7) and obtain the general expression

Lj(P,P
′) = δ(k1 − k′

1) +
iτj
1!
L(1)(P,P′) +

(iτj)
2

2!
L(2)(P,P′) +

(iτj)
3

3!
L(3)(P,P′) + ... (8)

Here L(l)(P,P′) are integrals

L(l)(P,P′) = lim
λ→+0

∫

dx1 e−λ|x1| ψc∗
k1

(x1)〈x1,p1 − p′
1〉l ψc

k′

1

(x1) (9)

which are independent of j. This last fact and the property τ3 = −τ2 leads to the following
expansion for the sum of the CF transformed Coulomb potentials W2 +W3, which contains only
even power terms

W2(P,P
′)+W3(P,P

′) = v̂c
eff(p1,p

′
1)

{

δ(k1 − k′
1) −

τ2

2!
L(2)(P,P′) +

τ4

4!
L(4)(P,P′) − · · ·

}

(10)

where τ = |τ2|. The quantity v̂c
eff(p1,p

′
1) stands for the Coulomb potential corresponding to the

interaction between the electron and effective particle with charge 2e and mass 2mp and has the
form

v̂c
eff(p1,p

′
1) =

1

2π2

neff

|p − p′|2 (11)

with neff = −2e2
√

2me ∼ −2e2
√

2me2mp/(me + 2mp). Inserting (10) into (6) we arrive at the

representation of the CF-transformed Hamiltonian Ĥ which plays a central role in the solution
of the problem

Ĥ = Ĥ0 + V̂s + V̂ c
eff + τ2Ŵ . (12)

The kernels of the operators involved in (12) read

Ĥ0(P,P
′) =

(

k2
1 + p2

1

)

δ(P − P′),

V̂s(P,P
′) = v̂s(k1,k

′
1)δ(p1 − p′

1),

V̂ c
eff(P,P′) = v̂c

eff(p1,p
′
1)δ(k1 − k′

1)

and

Ŵ (P,P′) = Ŵ (0)(P,P′) − τ2Ŵ (2)(P,P′) + τ4Ŵ (4)(P,P′) − · · · , (13)

Ŵ (l)(P,P′) = v̂c
eff(p1,p

′
1)

1

l!
L(l)(P,P′) , (14)

where in the last case we have factored out the small parameter τ2 to show explicitly that the
last term in (12) is as small as τ2.

The structure of the Hamiltonian (12) now suggests the natural perturbative scheme for
solving the Schrödinger equation (3). Let us represent the wave-function Ψ̂ as power series in
τ2, i.e.

Ψ̂ = Ψ̂0 + τ2Ψ̂2 + τ4Ψ̂4 + · · · . (15)

Inserting (15) into (3) one obtains a recursive set of equations for Ψ̂k, namely

(

Ĥ0 + V̂s + V̂ c
eff

)

Ψ̂0 = EΨ̂0 , (16)
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(

Ĥ0 + V̂s + V̂ c
eff

)

Ψ̂2l = EΨ̂2l −
l−1
∑

s=0

(−1)l−s Ŵ (2l−2s) Ψ̂2s l = 1, 2, 3, . . . (17)

The scheme (16) and (17) has the remarkable property that the solution of the three-body
problem, within the framework of this scheme, can be obtained in terms of solutions of two-
body problems. Indeed, Eq. (16) allows the separation of variables, so that its solution is
reduced to the solution of the respective two-body equations, at the same time the solution of
the inhomogeneous equations (17) can be obtained in terms of Green’s function of the operator
Ĥ0 + V̂s + V̂ c

eff which can be constructed from two-body Green’s functions due to separability of
variables.

For the specific case of three particles in the continuum the above scheme yields the following
results. The solution of the first equation (16) reads

Ψ̂0(P,P
in) = ψ̂+

kin

1

(k1) ψ̂
c e
pin

1

(p1), (18)

where the initial state momentums kin
1 and pin

1 are related to the energy E by the formula

Pin2
= kin

1
2
+ pin

1
2

= E. The function ψ̂c e
pin

1

(p1) is the momentum space Coulomb wave function

corresponding to the potential v̂c
eff(p1,p

′
1). The inverse Fourier transform of ψc e

pin

1

(p1) we will

denote by ψc e
pin

1

(y1) whose explicit form can be obtained from (5) when n = neff and by replacing

kin
1 ,x1 by pin

1 ,y1, respectively. The term ψ̂+
kin

1

(k1) is the scattering solution to the two-body

Schrödinger equation with the potential v̂s(k1,k
′
1) and is conventionally represented as the

solution of the Lippmann-Schwinger integral equation

ψ̂+
kin(k) = δ(k − kin) − 1

k2 − kin2 − i0

∫

dq v̂s(k,q) ψ̂+
kin(q). (19)

The solutions of the inhomogeneous equations (17) are given by recursive formulas starting from
Ψ̂0(P,P

in),

Ψ̂2l = −Ĝs,eff (E + i0)
l−1
∑

s=0

(−1)l−s Ŵ (2l−2s) Ψ̂2s. (20)

Here the kernel of the operator Ĝs,eff(z) =
(

Ĥ0 + V̂s + V̂ c
eff − z

)−1
is represented by two-body

Green’s functions ĝs for the potential v̂s and ĝc
eff for the potential v̂c

eff , by the counter integral

Ĝs,eff(P,P′, z) =
1

2iπ

∮

C
d ζ ĝs(k1,k

′
1, ζ)ĝ

c
eff (p1,p

′
1, z − ζ)

with counter C encircling the cut of ĝs in anticlockwise direction.
So far, we have constructed the formal solution to the CF transformed Schrödinger equation

for the system ppe in the continuum. The configuration space wave function which obeys (3)
can be obtained from Ψ̂ by the CF transform

Ψ(X,Pin) =

∫

dPΨc 0(X,P) Ψ̂(P,Pin). (21)

One can see, that the structure of our solution (15) and respective series in τ2 for Ψ(X,Pin)
generated from (21) by (15) and the structure of the representation for the Hamiltonian (12)
outline the framework of our approach as an alternative to the Born-Oppenheimer approach.
It is worth mentioning here, that the formalism given above is rather general. With minor
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self-evident modifications it is applicable to any three charged particle systems with different
masses, as long as the mass of one particle is significantly smaller than the masses of the other
two.

Before proceeding further, let us give some explicit approximate formulas the wave function,
Ψ(X,Pin) generated by our complete formal solution. (We will use these formulas in the next
section where we discuss astrophysical reactions.) Introducing (18) and (20) into (21) we get

Ψ(X,Pin) = ψ+
kin

1

(x1)ψ
c e
pin

1

(y1) + τ2Ψ2(X,P
in) +O(τ4) (22)

where

ψ+
kin

1

(x1) =

∫

dk1ψ
c
k1

(x1) ψ̂
+
kin

1

(k1)

and Ψ2(X,P
in) is given by the transform (21) of Ψ̂2 calculated through Ψ̂0 from (18) using

Ψ̂2 = −Ĝe,eff(E + i0) Ŵ (2) Ψ̂0. (23)

It is possible to show, that Ψ2(X,P
in) has the following asymptotic form

Ψ2(X,P
in) ∼ A(x,kin,pin, ŷ)

exp {ipiny − i
neff

2pin
log 2piny}

4πy

(

1 +O

(

y
kin

pin

))

(24)

where the amplitude A has the explicit form

A(x,kin,pin, ŷ) = −1

2
Neff ψ

c
pin(0)

∂2

∂t2

[

t2L(2)(t, kin)ψc
tk̂in

(x)ψce∗
−
√

E−t2ŷ
(0)

]

∣

∣

∣

∣

t=kin

The order of terms O
(

y kin/pin
)

shows the range of validity of the asymptotics (24), i.e. y kin/pin

has to be small, which in terms of masses, must be equivalent to the fact that yτ2 has to be
small. Let us emphasize that the above treatment is devoted to three charged particles with
kinetic energies comparable to the corresponding potential energy. This means that Coulomb
interactions are essential. In this situation, and for systems consisting of heavy and light parti-
cles, one can develop the adiabatic description, which actually means small ratio of heavy and
light particles momenta kin/pin.

III. ASTROPHYSICAL EXAMPLES AND RESULTS

Let us apply the above analysis to the process of electron capture by 7Be nucleus in the center
of Sun. This process is important since it contributes to the low energy part of the spectrum
of neutrinos radiated by the Sun. Besides, it is obvious that the balance of the disappearance
channels of 7Be in the Sun regulates the amount of the nucleus 8B which is the source of the
high energy solar neutrinos. This is the main reason why this process attracted considerable
attention over many years [7–13].

Practically all the discussion so far, of the electron capture in 7Be, concentrated on the
electron wave function in the vicinity of the nucleus and on the screening effects on it (a study
of this capture in the plasma can be found in Ref. [13]).

In what follows we will estimate the role of the process that is usually not included in the
standard theory of the pp cycle in the Sun. Let us first note that in the standard theory of this
cycle the destruction of the nucleus 7Be takes place in the following binary reactions

p + 7Be → 8B + γ , (25)

e− + 7Be → 7Li + ν . (26)
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Since the nucleus 7Be participates in both processes, instead of the binary reactions (25) and
(26) we consider the contribution to the electron capture rate from the three-particle initial state
p + e− + 7Be. In this case the following reactions can take place

ր 7Li + ν + p , (27)

p + e− + 7Be → 8B + γ + e− , (28)

ց 8B + e− . (29)

As it was shown in Ref. [8] the screening corrections for the electrons in the continuum are rather
small. Therefore, we consider in the initial state the bare Coulomb interaction in all two-body
subsystems e− + p, p + 7Be, and e− + 7Be. In this case one can immediately realize that there
is a qualitative difference between the binary and ternary mechanisms1 of the electron capture.
Indeed, if one starts from the three-body initial state, then the processes (25) and (26) should
be interdependent because the wave function of three charged particles cannot be presented as
a product of pair wave functions, as is required by the binary processes (25) and (26)2.

As shown above, the continuum wave function of three charged particles can be expanded in
terms of a small parameter

ǫ =

[

Mme

(M +mp)(mp +me)

]1/2

≈
[

me

mp

]1/2

, (30)

where in addition to the electron mass, proton mass, and M , the mass of the nucleus 7Be enters.
The expansion of the wave function of the system under consideration is then

Ψ(~r, ~R) ≈ Ψ0(~r, ~R) + ǫΨ1(~r, ~R) + · · · . (31)

Since the parameter ǫ ≈ 0.0233 one expects the effects of the second term on the right hand side
of Eq. (31) to be of the order of 2% in comparison with the first term.

It was found in [15] that, in the limit ǫ → 0, the Jacobi coordinates ~r and ~R (see Fig. 1)
separate. It means that the structure of the wave function Ψ0(~r, ~R) is given by

Ψ0(~r, ~R) = ΨC(~R)ΨC(~r, Z = Z1 + Z2) , (32)

where ΨC(~R) is the Coulomb wave function describing the relative motion of the proton and the
nucleus 7Be and ΨC(~r, Z = Z1 + Z2) is the Coulomb wave function that describes the motion
of the electron in the field of the effective Coulomb potential of the charge Z = Z1 + Z2. The
crucial point is that the wave function ΨC(~r, Z = Z1 +Z2) depends on the distance between the
electron and the center of mass of the subsystem of heavy particles. Thus even if the distance
between the electron and the nucleus 7Be is zero, as is required by the Hamiltonian of the weak
interaction, the wave function ΨC(~r, Z = Z1 + Z2), defining the probability of the electron
capture by the nucleus 7Be, should be taken at a non-zero distance |~r| = β|~R|, where β = 1/7
is the ratio of the proton and 7Be masses.

It is clear that this phenomenon appears due to the electron movement in the Coulomb field
of two charged particles with positive charges. Following the arguments presented above we now
consider two effects which are manifested in opposite directions. On the one hand, increasing

1 We use the terms binary- and ternary- reactions as synonyms for the reactions in the two- and three- qe
component systems.

2 There is only one exception corresponding to the case when all three particles are at very large distances between
themselves [14], which is not applicable to the electron capture.
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FIG. 1: The Jacobi coordinates for the p + e− +7 Be system.

the effective positive charge of the heavy particles system by one unit will enlarge the electron
capture rate. On the other hand, using the Coulomb wave function at finite distances, instead
of the function taken at zero distance, should damp the capture rate.

Taking into account that the nuclear matrix elements of the reactions (26) and (27) are the
same, as a measure of influence of the third particle (the proton in this case) on the capture rate
of electrons by the nuclei 7Be, we introduce the ratio ς(R,T ) which is a function of the distance
R between the particles and the temperature T ,

ς(R,T ) =

∫ ∞

0
|ΨC

E(βR,Z = 5)|2 e−E/kT dE
∫ ∞

0
F (Z = 4, ν) e−E/kT dE

. (33)

The denominator in Eq. (33) contains the quantity that enters the electron capture rate from
the continuum for the reaction (26) [7]. F (Z, ν) is the Fermi function given by

F (Z, ν) =
2πν

e2πν − 1
, (34)

which is obtained from the solution of the Dirac equation with the Coulomb potential [16]. Here
the parameter ν is given by ν = −Zαme/p = −Zα/v, α is the fine structure constant, and
p =

√
2meE is the electron momentum.

Analogously the integral in the numerator should reflect the effect of the Coulomb potential
on the electron in the continuum for the reaction (27). For the wave function ΨC

E(~r, Z), we use
the Coulomb continuum wave function for the state with zero angular momentum

ΨC
E(ρ) =

F0(η, ρ)

ρ
(35)

where the function F0(η, ρ) satisfies the equation

d 2F0

d ρ2
+ [ 1 − 2η

ρ
]F0 = 0 , (36)

with ρ = pβR, and η = −Zα
√

me/E = −Zα
√

2/v is the Sommerfeld parameter. The function
F0(η, ρ) can be expressed in terms of the Kummer function M (see Ref. [17], Ch. 14) as

F0(η, ρ) = C0(η) ρ e−iρ M(1 − iη, 2, 2iρ) , (37)
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where C2
0 (η) = 2πη/(e2πη − 1).

Instead of the quantity ς(R,T ), one can consider

ςC(R,T ) =

∫ ∞

0
|ΨC

E(βR,Z = 5)|2 e−E/kT dE
∫ ∞

0
|ΨC

E(0, Z = 4)|2 e−E/kT dE

. (38)

Using Eq. (36), one obtains

|ΨC
E(0, Z)|2 =

2πη

e2πη − 1
, (39)

which is of the same form as the Fermi function (34) with η =
√

2ν. For the Kummer function
one can use the following integral representation (see Ref. [17], Ch. 13)

M(1 − iη, 2, 2iρ) =
shπη

πη

∫ 1

0
e2iρt

(

1 − t

t

)it

d t . (40)

In the numerical calculations of the integral over energy in Eqs. (33) and (38), we used this
representation of the Kummer function for energies E > 0.1 keV. For energies E < 0.1 keV, the
function under the integral in Eq.(40) strongly oscillates which makes the calculations difficult.
Instead of it we applied the program PFQ developed in Ref. [18]. Let us note that for energies
E > 0.1 keV the program PFQ and Eq. (40) provide the same results to a high degree of accuracy.

We also introduce the mean value 〈ς(R0, T )〉 of the function ς(R,T )

〈ς(R0, T )〉 = N

∫

e−(R−R0)2/2R2

0ς(R,T )d ~R = 4πR3
0N

∫ ∞

0
e−(x−1)2/2 x2 ς(R0x, T )dx (41)

where

N−1 =

∫

e−(R−R0)2/2R2

0d ~R =
4πR3

0√
e

[ 1 +
√

2πe ( 1 − φ(− 1√
2
) ) ] , (42)

is the normalization constant. In Eq. (42), the function φ(y) is the error function (see Ref. [17],
Ch. 7). It is seen from Eq. (41) that the quantity 〈ς(R0, T )〉 depends on the mean distance R0

between the particles defined by the density in the Sun and on the temperature T . The mean
value 〈ςC(R0, T )〉 is defined analogously by using ςC(R,T ).

We checked the precision of numerical calculations of the quantities 〈ς(R0, T )〉 and 〈ςC(R0, T )〉
by using Mathematica and also independent numerical procedures. The results of these two
independent ways of calculations agree within the required accuracy of ∼ 0.1 %.

The results of the calculations are presented in Table I and in Figs. 2–4. In Fig. 2, the
dependence of the mean value 〈ς(R0, T )〉 as given by Eq. (41), on the temperature T and
the mean distance R0 is shown. A weak dependence of 〈ς(R0, T )〉 on T means, according to
Eq. (33), that the temperature dependence of the electron capture by 7Be is almost the same
for the ternary and binary reactions. Such a behavior can be understood from the fact that in
both cases only rarely all the kinetic energy is carried by the electron. On the other hand, the
dependence of 〈ς(R0, T )〉 on the value of R0 shows that the contribution to the capture rate of
the ternary reaction is presumably suppressed in stars, but that it can be at the same level as
the contribution to the capture rate for the binary reaction or even prevail over it at very high
densities. This is natural since at short distances between the particles, the factor of the larger
effective charge acting on the electron will dominate. The same conclusion can be drawn from
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FIG. 2: Dependence of the mean value 〈ς(R0, T )〉 on the temperature T and the mean distance R0. Solid
line: R0 = 0.1 × 104 fm; dashed line: R0 = 0.25 × 104 fm; dotted line: R0 = 0.5 × 104 fm; dashed and
dotted line: R0 = 1.0 × 104 fm; dashed and double dotted line: R0 = 1.5 × 104 fm.

Fig. 3. In this figure the solid and dashed curves practically coincide. This again shows a very
smooth dependence of 〈ς(R0, T )〉 on the temperature.

Let us note that the values of the R0, considered in Fig. 2, correspond to rather dense stars.
For example, the value of R0 = 104 fm corresponds to the proton density ρp = 1673 g/cm3 which
is about 11 times larger than in the center of the Sun. Let us further discuss the electron capture
in the Sun by 7Be alone. In Table I, we show the influence of the protons on the electron capture
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−4
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FIG. 3: The dependence of 〈ς(R0, T )〉 on the mean distance R0; solid curve: kT = 1.161 keV, β = 1/7,
Z = 5; dashed and dotted curve: kT = 1.161 keV, β = 4/7, Z = 6; dashed curve: kT = 1.5 keV, β = 1/7,
Z = 5. The dashed and dotted curve corresponds to analogous calculations for the nuclei 4He.

in the Sun in more detail. For the Standard Solar Model, we choose the model SSMBP2004 [19].
According to Fig. 6.1 of Ref. [20], the maximal intensity of the electron capture by the nuclei
7Be takes place at distances Rs/R⊙ ≈ 0.06, where R⊙ is the radius of the Sun, and it drops to
one half at Rs/R⊙ ≈ 0.03 and Rs/R⊙ ≈ 0.1. Using the data on the temperature, density, and
the fraction of the hydrogen in this area of the Sun, we obtain the mean values 〈ς(R0, T )〉 and
〈ςC(R0, T )〉 presented in Table 1. In the second column, we add the mean value calculated at
Rs/R⊙ = 0.007 which is close to the center of the Sun. It is seen that the change of the average
quantities 〈ς(R0, T )〉 and 〈ςC(R0, T )〉 is very smooth. From the first row of Table I and from
Fig. 4 one can see that the contribution to the capture rate of the ternary reaction at the Sun
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TABLE I: The mean values 〈ς(R0, T )〉 and 〈ςC(R0, T )〉 for the electron capture by nuclei 7Be in the Sun.

〈ς(R0, T )〉 0.0991 0.0991 0.0965 0.0913
〈ςC(R0, T )〉 0.0718 0.0717 0.0696 0.0658
Rs/R⊙ 0.007 0.03 0.06 0.1
kT [keV] 1.353 1.300 1.161 1.088
ρp [g/cm3] 52.1 51.6 48.9 44.9
R0 × 10−4 [fm] 3.179 3.188 3.250 3.340

is about 10 % of the binary one 3. This means that it should increase sensibly the burning out
of the nuclei 7Be in comparison with the binary reaction, thus decreasing the concentration of
the nuclei 8B that appear after the capture of protons by 7Be. As discussed by Gruzinov and
Bahcall [13] (see Eq. (6) and the related discussion) the total electron capture rate should be
calculated using a density enhancement factor wIKSBM with the screening effects included. For
Z = 4, this factor is wIKSBM = 3.85 which is 16%̇ smaller than its unscreened value w = 4.59.
If one takes into account the 10 % enhancement discussed above, one obtains wIKSBM = 4.15
and w = 4.90. Here we suppose that the screening effect is the same as for the binary reaction.
This assumptions needs to be verified. However, such a study goes beyond the scope of this
work.

Comparison of the first and second rows of Table I shows a difference of 3% between the
values of 〈ς(R0, T )〉 and 〈ςC(R0, T )〉. This variation arises from the difference between the
relativistic and non-relativistic estimations of the electron wave function at zero distance for the
binary reaction (26).

In Fig. 4 we show the variation of 〈ς(R0, T )〉 for the reaction (27) for larger intervals of T
and R0. One can consider in analogy the influence of the nuclei 4He on the electron capture
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FIG. 4: The dependence of the mean value 〈ς(R0, T )〉 on the temperature T and the mean distance R0.
Solid line: R0 = 3.25× 104 fm; dashed line: R0 = 2.75× 104 fm; dashed and dotted line: R0 = 3.75× 104

fm.

by 7Be in the Sun. In this case, Z = 6, β = 4/7 and at the radius Rs/R⊙ = 0.06 the mean
distance between the nuclei 4He is R0 = 5.34 × 104 fm. Then one obtains from Eq. (41) that
〈ς(R0, T )〉=0.0036, which is about 27 times smaller that the analogous value of 〈ς(R0, T )〉 for the

3 The next term in the expansion of Eq. (31) is expected to change it only by ≈ 2 %.
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protons given in the fourth column of Table I. Evidently, this influence on the electron capture
is negligible. This conclusion is also inferred from Fig. 3.

The main conclusion following from our calculations is that the three-body process due to
the presence of the proton in the vicinity of the nucleus 7Be will result in increasing the rate
of the electron capture from the continuum by 7Be in the Sun by ≈ 10% and therefore, it will
reduce the concentration of the nuclei 8B that appear after the capture of protons by 7Be.
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Resonant States of the Three-body Systems Λnn and ΛΛn
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The hypernuclear systems Λnn and ΛΛn are studied within the framework of the hyper-
spherical approach with local two-body S-wave potentials describing the nn, Λn, and ΛΛ
interactions. Possible bound and resonant states of these systems are sought as zeros of the
corresponding three-body Jost functions on the complex energy surface. For both systems, it
was found that zeros closest to the origin correspond to very wide near-threshold resonances.
Bound states appear only if the potentials are multiplied by a factor of ∼ 1.5. The positions
of these zeros turned out to be sensitive to the choice of the Λn-potential.

I. INTRODUCTION

The Λ-hyperon belongs to a wide class of particles that are not in abundance in this world and
therefore are not freely available for scattering experiments. The properties of their interaction
with other particles are studied indirectly. For example, the most important and established
way of studying the ΛN interaction consists in measuring and calculating the spectral properties
of the so called Λ-hypernuclei [1–3], which are bound states of Λ-particles inside atomic nuclei.
The most convenient for this purpose are very light nuclei with A <

∼ 10. Firstly, because such
simple systems have simple spectra with only few well separated levels, and secondly, because
they allow a reliable theoretical modeling based on rigorous few-body methods.

So, the ΛN -potentials are usually constructed in such a way that the calculations with these
potentials reproduce experimentally known bound states of the hypernuclei. One may ask:
What about scattering? Unfortunately, it is very difficult to do scattering experiments with
the Λ-particles because of their short lifetime (∼ 10−10 sec) and extremely low intensity of the
beams that can be obtained.

It is well known that even when scattering data are available in full, it is impossible to
construct an interaction potential in a unique way. One can always obtain different but phase-
equivalent (generating the same scattering phase shifts) potentials (see, for example, Ref. [4]).
In this respect the ΛN -case is beyond any hope since only few experimental points for the Λp
scattering are available [5]. During the decades of studying hypernuclei many features of the
ΛN -interaction have been revealed. However the comparison of the theoretical and experimen-
tal spectra remains inconclusive. Different potentials lead to almost the same spectra of the
hypernuclei. So, we need an additional tool for testing the potentials.

In principle, such a tool could be based on studying the Λ-nucleus resonances, if they do
exist [6, 7]. Indeed, while the scattering and bound states mostly reflect the on-shell properties
of the interaction, the resonances strongly depend on its off-shell characteristics, which may be
different for phase-equivalent potentials.

Our present work is an attempt to attract the attention of both theoreticians and experi-
mentalists to the low-energy resonances in the Λ-nuclear systems. As an example, we consider
the three-body systems Λnn and ΛΛn in the minimal approximation, [L] = [Lmin], of the hyper-
spherical harmonic approach. By locating the S-matrix poles on the second (unphysical) sheet
of the complex energy surface, we show that these systems have near-threshold resonant states.
The position of the poles turns out to be strongly dependent on the choice of the ΛN -potential.
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This fact supports the idea that the study of the Λ-nucleus resonances could be very important
in finding an adequate ΛN -potential.

II. QUANTUM RESONANCES

There are several different ways of locating quantum resonances. The most adequate methods
are based on the rigorous definition of resonances as the S-matrix poles at complex energies.
This definition is universal and applicable to the systems involving more than just two colliding
particles. Of course, the problem of locating the S-matrix poles is not an easy task, especially
for few-body systems. There are different approaches to this problem. To the best of our
knowledge, so far only one of them has been applied to study the hyperon-nucleus resonant
states. This was done in Ref. [6] using an analytic continuation of the rigorous three-body
equations proposed by Alt, Grassberger, and Sandhas [8] and known as the AGS-equations. In
this paper, we follow a different approach based on the direct calculation of the Jost function
using the method suggested in Ref. [9].

To begin with, let us consider a simple two-body system with a central short-range potential
U(r). The wave function describing such a system at a collision energy E obeys the Schrödinger
equation, which after the partial wave decomposition reads

[

∂2
r + k2 −

ℓ(ℓ + 1)

r2

]

uℓ(k, r) = V (r)uℓ(k, r) , (1)

where V (r) = 2µU(r), µ is the reduced mass, and

k = ±
√

2µE (2)

is the relative momentum. At large distances the potential vanishes and the right hand side of
Eq. (1) tends to zero. Therefore when r → ∞, the general solution of this equation is a linear

combination of the Riccati-Hankel functions h
(±)
ℓ (kr) that obey the free Schrödinger equation,

[

∂2
r + k2 −

ℓ(ℓ + 1)

r2

]

h
(±)
ℓ (kr) = 0 . (3)

From the asymptotic behavior of the Riccati-Hankel functions,

h
(±)
ℓ (kr) −→

|kr|→∞
∓i exp [±i(kr − ℓπ/2)] , (4)

one can easily see that they describe incoming and outgoing spherical waves. Therefore, far away
from the point r = 0, the general solution of Eq. (1) can be written as a linear combination of
the incoming and outgoing waves,

uℓ(k, r) −→
r→∞

f
(in)
ℓ (E)h

(−)
ℓ (kr) + f

(out)
ℓ (E)h

(+)
ℓ (kr) , (5)

where f
(in/out)
ℓ (E) are the energy-dependent amplitudes of the waves. These amplitudes play

an important role in the scattering theory and have a special name, the Jost functions 1. The
S-matrix is just their ratio,

S(E) = f
(out)
ℓ (E)

[

f
(in)
ℓ (E)

]−1
. (6)

1 It should be mentioned that our notation f
(in/out)
ℓ (E) for the Jost functions (and generally Jost matrices)

is different from the traditional notations. There are two reasons for this. First of all, we do not fix their
normalization which can be chosen arbitrarily since it does not affect any observable quantities. Indeed, when
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Actually, the Jost functions (and therefore the S-matrix) depend on the energy via the momen-
tum (2). As a result there is a square-root branching point for these functions at the threshold
energy E = 0. In simple words, the Jost function has two different values at each point E,
corresponding to the two choices of the sign in front of the square root in Eq. (2). As is usual
in the complex analysis, the Jost function becomes a single-valued function of the energy on the
so-called Riemann surface consisting of two parallel sheets. The first one, where the momentum
(by definition) has a positive imaginary part, is called the physical sheet. And the second sheet
(where Im k < 0) is called unphysical (see Fig. 1). When doing the first circle around the

E-surface k-plane

s s

R
e
E

Im E

r

r

E(+)

E(−)

s

+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +

− − − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −

Re k

Im k

FIG. 1: Correspondence between the complex energy surface and the momentum plane. Any two points
E(+) and E(−) situated one above the other, represent the same value of the energy, but correspond to
different values of k and thus to different values of the Jost function.

branching point, we are moving on the first sheet and then continue on the second one until
coming back to the first sheet after completing the full two circles. Such continuous transition
from one sheet to another is possible if we make a cut from the branching point to infinity, and
connect opposite rims of the cuts on the two sheets (see Fig. 1).

The asymptotic coefficients f
(in/out)
ℓ (E) that determine the long-range behavior (5) of the

wave function uℓ(k, r), are not independent. They are the amplitudes of the incoming and
outgoing waves which swap their roles when the momentum k changes its sign and also under

calculating observables, we either look for zeros of f
(in)
ℓ (E) or use the ratio of f

(out)
ℓ (E) and f

(in)
ℓ (E). The

second reason is that the superscripts (in) and (out) are unambiguous since they clearly indicate which of
these functions are the asymptotic amplitudes of the incoming and outgoing waves. Thus we avoid possible
confusion caused by the existence of notations with opposite signs for the same Jost functions. In addition to
this, the notations used here remain unchanged irrespective of how many channels are involved. In multichannel
problems, where it is impossible to introduce a single momentum k, the energy-dependent functions f (in/out)(E)
simply become matrices.



54 Resonant States of the Three-body Systems Λnn and ΛΛn

the operation of complex conjugation. These amplitudes are therefore related to each other. It
can be easily proved that they are equal to each other at the symmetrical points shown in Fig. 2.

u0

s

s

s

s
f

(in)
ℓ

f
(out)
ℓ

f
(in)∗
ℓ

f
(out)∗
ℓ

E(+)

E(−)

u0

s

s

s

s
f

(out)
ℓ

f
(in)
ℓ

f
(out)∗
ℓ

f
(in)∗
ℓ

E(+)

E(−)

FIG. 2: Symmetry properties of the Jost functions on the E-surface. The dashed lines connect the points
at which the values indicated next to them are identical.

At certain points En the incoming Jost function may have zeros,

f
(in)
ℓ (En) = 0 . (7)

At such values of the energy, we have the S-matrix poles and only the outgoing wave in the
asymptotic behavior of the wave function. If we find such a zero of the Jost function at a real
negative energy on the physical sheet, the corresponding wave function vanishes when r → ∞
and therefore describes a bound state. On the other hand, if such a zero is found at a complex
energy

En = En −
i

2
Γn (8)

on the unphysical sheet, the corresponding wave function describes a resonance. The real part
of En is the energy, around which the resonance is centered, while the imaginary part gives us

its width. It can be proved that the only zeros that f
(in)
ℓ (E) may have are those shown in Fig. 3.

So, in principle, the Jost function offers a very nice way of locating bound and resonance
states: simply as zeros of the Jost function. But how to calculate the Jost function? For this
purpose, we replace the Schrödinger equation with an equivalent system of first order differential
equations that enable us to calculate the Jost functions directly [9–14].

To this end we look for the general solution of the Schrödinger equation (1) in the following
special form

uℓ(k, r) = F
(in)
ℓ (E, r)h

(−)
ℓ (kr) + F

(out)
ℓ (E, r)h

(+)
ℓ (kr) , (9)

where the incoming and outgoing waves are included explicitly. The functions F
(in/out)
ℓ (E, r) are

new unknown functions. Since instead of one unknown functions uℓ we introduce two unknown
functions F

(in/out)
ℓ , they cannot be independent. We therefore can impose an arbitrary condition

that relates them to each other. As such condition, it is convenient to choose the following
equation

h
(−)
ℓ (kr)∂rF

(in)
ℓ (E, r) + h

(+)
ℓ (kr)∂rF

(out)
ℓ (E, r) = 0 , (10)
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FIG. 3: Typical distribution of the Jost function zeros on the two sheets of the complex energy Riemann
surface.

which is standard in the variation parameters method and is called the Lagrange condition.
Substituting the ansatz (9) into the Schrödinger equation (1) and using the condition (10), we
obtain the following system of first order equations for these unknown functions











∂rF
(in)
ℓ = −

1

2ik
h

(+)
ℓ V

[

h
(−)
ℓ F

(in)
ℓ + h

(+)
ℓ F

(out)
ℓ

]

,

∂rF
(out)
ℓ =

1

2ik
h

(−)
ℓ V

[

h
(−)
ℓ F

(in)
ℓ + h

(+)
ℓ F

(out)
ℓ

]

,

(11)

where all the functions are written without their arguments for the sake of clarity. A physical
solution of these equations can be obtained with the boundary conditions

F
(in)
ℓ (E, 0) = F

(out)
ℓ (E, 0) = 1 , (12)

which follow from the requirement of regularity of the physical wave function at r = 0, i.e. from
the condition uℓ(E, 0) = 0.

When the energy is real, the right hand sides of Eqs. (11) vanish at large distances because

the potential vanishes. This means that F
(in/out)
ℓ (E, r) become constants (independent of r), i.e.

converge to the corresponding Jost functions defined by Eq. (5),











F
(in)
ℓ (E, r) −→

r→∞
f

(in)
ℓ (E) ,

F
(out)
ℓ (E, r) −→

r→∞
f

(out)
ℓ (E) .

(13)

With complex energies however, there is a technical complication. The problem is that one of the
Riccati-Hankel functions on the right hand side of Eqs. (11) is always exponentially diverging
when Im k 6= 0. Therefore, if at large distances the potential vanishes not fast enough, the
convergence (13) is not achieved. This problem can be easily circumvented by using different
path to the far-away point (see Fig. 4). This is known as the complex rotation of the coordinate.
Details concerning convergence of the limits (13) and the use of complex rotation for this purpose
can be found in Refs. [9–14].
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FIG. 4: Deformed contour for integrating Eqs. (11) from r = 0 to r = R when the energy is complex.

Therefore, the procedure of calculating the Jost functions is rather simple. Starting from the
origin, we integrate Eqs. (11) outwards until at r = R the solutions converge to constant values.
If the energy is complex, we simply use an appropriate integration path of the type shown in
Fig. 4.

So, this is how we can locate resonances in two-body systems. Can it be generalized for
many-body systems? Yes it can, at least for certain systems, namely, for those that cannot form
clusters. Some authors call them “borromean” systems. The wave functions describing such sys-
tems behave asymptotically as linear combinations of the incoming and outgoing hyperspherical
waves. The systems we consider in the present paper, namely, Λnn and ΛΛn, belong to this
category because there are no bound states in any of the pairs nn, Λn, or ΛΛ.

III. HYPERSPHERICAL APPROACH

Although the two-body potentials and masses for the three-body systems Λnn and ΛΛn
are different, they can be treated using exactly the same equations. Indeed, in both of these
systems we have two identical particles with spin 1/2 and a third particle of the same spin. Let
us therefore consider a general system of this type.

To describe the spatial configuration of the system, we use the so called hyperspherical coor-
dinates, among which only one (the hyperradius) runs from zero to infinity while all the others
(the hyperangles) vary within finite ranges. Within this approach, the wave function is expanded
in an infinite series over the hyperspherical harmonics (similarly to the partial wave decompo-
sition in the two-body problem), and we end up with an infinite system of coupled hyperradial
equations, which is truncated in practical calculations. All the details of the hyperspherical
approach can be found in the review by M. Fabre de la Ripelle [15].

Let m1 be the mass of one of the identical particles, and m2 be the mass of the third particle.
Then the total mass of the system is M = 2m1 + m2 and the reduced masses for the identical
pair and for the third particle are µ1 = m1/2 and µ2 = 2m1m2/M , respectively. With the
Jacobi coordinates shown in Fig. 5, the three-body Schrödinger equation can be written as

(

∂2
r +

5

r
∂r −

1

r2
L2 + k2 − V

)

Ψ
[s]
~k1,~k2

(~r1, ~r2) = 0 , (14)

where

V = 2M(U12 + U13 + U23) (15)
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FIG. 5: Jacobi vectors defining the spatial configuration of a three-body system of two identical (filled
circles) and one different (open circle) particles.

is the sum of the two-body potentials, {~k1, ~k2} are the incident momenta of the three-
body collision along the corresponding configuration vectors {~r1, ~r2}, the superscript [s] =
{(s1s2)s12, s3, σmσ} denotes the spin quantum numbers, r is the hyperradius,

r =
√

r2
1 + r2

2 , (16)

that gives the “collective” size of the system, k is related to the total energy, k2 = 2ME, and
can be called the hypermomentum, and the operator L2 absorbs all the angular variables. It is
defined as

L2 = −
∂2

∂α2
− 4 cot(2α)

∂

∂α
+

1

cos2 α
~ℓ 2
~r1

+
1

sin2 α
~ℓ 2
~r2

(17)

with α = arctan(r2/r1), 0 ≤ α ≤ π/2, and ~ℓ~ri
being the operators of the angular momenta

associated with the corresponding Jacobi coordinates. The solutions of the eigenvalue problem

L2Y[L](ω) = L(L + 4)Y[L](ω) (18)

are well known functions of the hyperangles ω = {Ω~r1
,Ω~r2

, α} including the spherical angles Ω~ri

of the vectors ~ri and the angle α that determines the ratio r2/r1. These functions, Y[L](ω), are
called the hyperspherical harmonics. The subscript [L] is the multi-index [L] = {L, ℓ1, ℓ2, ℓ,m}
that includes the grand orbital quantum number,

L = ℓ1 + ℓ2 + 2n , n = 0, 1, 2, . . . , (19)

as well as the angular momenta associated with the Jacobi vectors and the total angular mo-
mentum ℓ together with its third component m. Combining Y[L](ω) with the spin states χ[s], we
obtain the functions

Φjjz

[L] (ω) =
∑

mσ

〈ℓmsσ|jjz〉Y[L](ω)χ[s] (20)

that constitute a full set of states with a given total angular momentum j in the spin-angular
subspace.

Similarly to the two-body partial wave decomposition, we can expand a solution of Eq. (14)
in the infinite series over the hyperspherical harmonics,

Ψ
[s]
~k1,~k2

(~r1, ~r2) =
1

r5/2

∑

[L][L′]jjz

ujjz

[L][L′](E, r)Φjjz

[L] (ω~r)Φ
jjz∗
[L′] (ω~k

) . (21)
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After substituting this expansion into Eq. (14) and doing the projection onto the functions Φjjz

[L] ,
we end up with the following system of hyperradial equations

[

∂2
r + k2 −

λ(λ + 1)

r2

]

u[L][L′] =
∑

[L′′]

V[L][L′′]u[L′′][L′] , (22)

where for the sake of simplicity we dropped the superscripts jjz (indicating the conserving total
angular momentum). In Eq. (22),

V[L][L′](r) = 2M

∫

Φjjz∗
[L] (ω) (U12 + U13 + U23) Φjjz

[L′](ω)dω , (23)

and λ = L + 3/2. Since we consider a system that cannot form clusters, the asymptotic be-
havior of its wave function may only involve the incoming and outgoing hyperspherical waves
∼ exp(∓ikr), which are the products of the corresponding spherical waves along the Jacobi radii
r1 and r2,

eik1r1eik2r2 = eikr cos2 αeikr sin2 α = eikr .

We therefore look for the solution of matrix equation (22) as

u[L][L′](E, r) = h
(−)
λ (kr)F

(in)
[L][L′](E, r) + h

(+)
λ (kr)F

(out)
[L][L′](E, r) (24)

with the Lagrange condition for the unknown matrices F
(in/out)
[L][L′] ,

h
(−)
λ (kr)∂rF

(in)
[L][L′](E, r) + h

(+)
λ (kr)∂rF

(out)
[L][L′](E, r) = 0 . (25)

Similarly to the two-body case, we end up with the following system of first order equations for
them



























∂rF
(in)
[L][L′] = −

h
(+)
λ

2ik

∑

[L′′]

V[L][L′′]

[

h
(−)
λ′′ F

(in)
[L′′][L′] + h

(+)
λ′′ F

(out)
[L′′][L′]

]

,

∂rF
(out)
[L][L′] = +

h
(−)
λ

2ik

∑

[L′′]

V[L][L′′]

[

h
(−)
λ′′ F

(in)
[L′′][L′] + h

(+)
λ′′ F

(out)
[L′′][L′]

]

,

(26)

which are equivalent to the second order Eq. (22). The regularity of a physical wave function
at r = 0 implies the following boundary conditions

F
(in)
[L][L′](E, 0) = F

(out)
[L][L′](E, 0) = δ[L][L′] . (27)

With these conditions, the columns of matrix u[L][L′](E, r) are not only regular but linearly
independent as well. Therefore any regular column φ[L](E, r) obeying Eq. (22), can be written
as a linear combination of its columns. In other words, the matrix u[L][L′](E, r) is a complete
basis of the regular solutions.

At large hyperradius, the matrices F
(in/out)
[L][L′] (E, r) converge to the energy-dependent constants,

f
(in/out)
[L][L′] (E) = lim

r→∞
F

(in/out)
[L][L′] (E, r), (28)

that by analogy with the two-body case can be called the Jost matrices. The convergence of
these limits depends on how fast the potential matrix V[L][L′](r) vanishes when r → ∞. Due to
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the same reason as for the two-body case, when doing calculations with a complex energy, we
have to deform the integration contour as is shown in Fig. 4.

As was said before, the columns of the matrix function u[L][L′](E, r) constitute the regular
basis using which we can construct a physical solution φ[L](E, r) with given boundary conditions
at infinity,

φ[L](E, r) =
∑

[L′]

u[L][L′](E, r)C[L′] , (29)

where C[L] are the combination coefficients.
The spectral points are those at which the physical solution has only outgoing waves in its

asymptotics, i.e. when

∑

[L′]

f
(in)
[L][L′](En)C[L′] = 0 . (30)

This homogeneous system has a non-trivial solution if and only if

det f
(in)
[L][L′](En) = 0 , (31)

which is a generalization of Eq. (7) for a three-body case.

IV. TWO-BODY POTENTIALS

In our calculations, we used (as input information) certain two-body potentials describing
the interaction between two neutrons, Λ and neutron, and between two Lambdas. For all these
three potentials, we used the same functional form, namely,

U(r) =

[

A1(r) −
1 + P σ

2
A2(r) −

1 − P σ

2
A3(r)

] [

β

2
+

1

2
(2 − β)P r

]

, (32)

Ai(r) = Wi exp(−air
2) , i = 1, 2, 3 , (33)

where P σ and P r are the permutation operators in the spin and configuration spaces, respec-
tively. The form of U(r) as well as the parameters were taken from Ref. [16]. In order to explore
how sensitive the positions of the three-body resonances are to the choice of underlying two-body
potentials, we did the calculations with three different sets of parameters for the Λn-potential.
All the sets of parameters we used, are given in Table I.

V. THE MINIMAL APPROXIMATION

The system (26) consists of infinite number of equations. For any practical calculation, one
has to truncate it somewhere. Before going any further, it is very logical to try the simplest
approximation, namely, when only the first terms of the sums on the right hand sides of Eqs.
(26) are retained. This corresponds to the minimal (n = 0) value of the grand orbital number
(19) and is called the hypercentral approximation, [L] = [Lmin]. We assume that the two-body
subsystems are in the S-wave states (ℓ1 = ℓ2 = 0), which means that

λ = λmin =
3

2
.
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TABLE I: Parameters of the potential (32) for the pairs nn, ΛΛ, and Λn. For the system Λn, three
different sets of parameters (denoted as A, B, and C) are given. All the parameters are taken from Ref.
[16].

Parameter nn ΛΛ Λn (A) Λn (B) Λn (C)
W1 (MeV) 200.0 200.0 200.0 600.0 5000

W2 (MeV) 178.0 0 106.5 52.61 47.87

W3 (MeV) 91.85 130.8 118.65 66.22 61.66

a1 (fm−2) 1.487 2.776 1.638 5.824 18.04

a2 (fm−2) 0.639 0 0.7864 0.6582 0.6399

a3 (fm−2) 0.465 1.062 0.7513 0.6460 0.6325

β 1 1 1 1 1

So, in the minimal approximation, instead of the infinite system (26), we remain with only one
equation,

[

∂2
r + k2 −

λmin(λmin + 1)

r2

]

u(E, r) = 2M〈U〉u(E, r) , (34)

where all unnecessary subscripts are dropped, and the brackets on the right hand side mean
averaging over the minimal hyperharmonics,

〈U〉(r) =

∫

Φjjz∗
[Lmin](ω) (U12 + U13 + U23)Φjjz

[Lmin](ω)dω . (35)

From mathematical point of view, Eq. (34) looks exactly like the two-body radial Schrödinger
equation. The only difference is that the angular momentum is not an integer number.

The hypercentral potentials 〈U〉 for the systems Λnn and ΛΛn are shown in Figs 6 and 7.
With these hyperradial potentials the corresponding differential equations determining the

three-body Jost functions, were numerically solved with complex values of the energy. The
results of these calculations are discussed next.

VI. NUMERICAL RESULTS

When looking for zeros of the three-body Jost functions, we found that there were no such
zeros at real negative energies. In other words, neither the system Λnn nor ΛΛn have bound
states.

The only zeros we found were located on the unphysical sheet of the energy surface, in the
resonance domain. The resonance energies are given in Tables II and III and shown in Fig. 8.
As is seen, the positions of the resonances depend on the choice of the Λn potential. For the
choice “C”, the resonances become even sub-threshold.

TABLE II: Complex resonance energies E0 = Er −
i

2
Γ for the system Λnn with the three choices of

Λn-potential.

Λn-potential A B C

E0, (MeV) 0.551 −
i

2
4.698 0.456 −

i

2
4.885 −0.149−

i

2
5.783
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FIG. 6: The hypercentral potential given by Eq. (35) for the system Λnn with the three choices (A, B,
and C) of the Λn interaction.
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FIG. 7: The hypercentral potential given by Eq. (35) for the system ΛΛn with the three choices (A, B,
and C) of the Λn interaction.

In order to estimate how far our three-body systems are from being bound, we artificially
increased the depths of the potentials by multiplying them by a scaling factor. When this factor
was increased from 1 upwards, the Jost function zeros moved towards the origin of the energy
surface. At the value of approximately 1.5, the zeros crossed the threshold and moved onto
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FIG. 8: Resonance points for the systems Λnn and ΛΛn found with the three sets (A, B, and C) of
parameters of the Λn-potential given in Table I.

TABLE III: Complex resonance energies E0 = Er −
i

2
Γ for the system ΛΛn with the three choices of

Λn-potential.

Λn-potential A B C

E0, (MeV) 0.096 −
i

2
8.392 0.034−

i

2
8.438 −0.552−

i

2
8.681

the real negative axis. In other words, the bound states can appear if the potential strength is
increased by ∼ 50%.

What we found is, of course, an estimate. But it clearly shows that there are near-threshold
resonances of the systems Λnn and ΛΛn. The positions of these resonances depend on the choice
of Λn-potential. If such resonances are observed experimentally, they may serve as an additional
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instrument for constructing an adequate hyperon-nucleon potential.
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Description of 12C Nucleus in the α-cluster Model and the Role

of Effective Interactions
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The properties of the 12C(0+) states in the α-cluster model and the choice of effective
potentials are discussed. The effective α-α potentials are adjusted to fit the experimental
energy and width of the α − α resonance (8Be ground state) and to reproduce the energy
dependence of the α-α s-wave elastic-scattering phase shift up to 12MeV. The effective
three-α potential is introduced to incorporate the effects of the α-particle distortions and
non-α-cluster structure, including those connected with antisymmetrization in the 12-nucleon
wave function, which are not accounted for by the α-α potential. The three-body potentials
are adjusted to fit the experimental energies of the ground and excited 0+ states and the
ground-state root-mean-square radius. Using these potentials, properties of the excited 0+

2

state are considered and the relation between the excited-state width, the excited-state root-
mean-square radius, and the monopole 0+

2 → 0+
1 transition matrix element is determined.

I. INTRODUCTION

As the α-particle is the most tightly bound nucleus, a variety of low-energy nuclear proper-
ties can be successfully described within the framework of the α-cluster model. In this respect,
the famous nuclear reaction for the formation of the 12C nucleus in triple-α low-energy colli-
sions should be mentioned. This reaction is of key importance for stellar nucleosynthesis [1, 2]
providing helium burning and, thereby, further synthesis of heavier elements. Both the α-α
resonance (the ground state of 8Be) and the near-threshold three-body resonance (0+

2 state of
12C) are crucially important for the low-energy triple-α reaction as the helium burning in stars
goes through the sequential reaction

3α → 8Be + α → 12C(0+
2 ) → 12C + γ .

The latter resonance was predicted in Ref. [2] as the only explanation for the observed abundance
of elements in the universe. Following this the 12C(0+

2 ) state [3, 4] was thoroughly studied; in
particular, the decay mechanism was experimentally investigated in Ref. [5]. Most recently
the 12C(0+

2 ) state was discussed as an example of α-particle condensation (see, for example,
Refs. [6, 7]).

From a general point of view, complicated processes with few charged particles (three or more)
in the initial or final state have not so far been understood completely. The main difficulty stems
from the necessity to describe the continuum wave function of few charged particles. Thus even
a qualitative understanding of the reaction mechanism would be highly desirable. Interesting
examples are the double-proton radioactivity which has been a subject of thorough experimental
and theoretical investigations during the last years (more details can be found in the recent
reviews [8, 9]) and the decay of the long-lived 1+ state of 12C nucleus [10, 11]. The Coulomb-
correlated penetration of outgoing particles through a multidimensional potential barrier has
also been considered (Ref. [12]) in order to describe qualitative features of multicluster decay of
atomic nuclei. Besides the resonant triple-α reaction, the study of the non-resonant reaction is of
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principal importance since it is responsible for the helium burning at ultra-low temperatures and
high densities, which takes place in accretion of helium on white dwarfs and neutron stars [13].
Although model calculations are available [14–17], a consistent three-body treatment is needed
because the error in the previously calculated non-resonant reaction rate can reach a few orders
of magnitude.

For reliable description of nuclei within the framework of the α-cluster model, the effective
two-body and (at least) three-body interactions [18–22] must be determined. It is assumed that
all effects connected with both the internal structure of α-particles and the identity of nucleons
are incorporated in the effective potentials. Fitting the main characteristics of the 3α-cluster
12C nucleus to the experimental values allows one to obtain the three-body potential and to
reduce ambiguity in the two-body potential which can not be determined merely from two-body
data.

The present report discusses, using both the results of Ref. [20, 22] and recent calculations,
the description of the lowest 0+ states of 12C within the framework of the α-cluster model.
One of the questions addressed is to what extent the α-cluster model is able to reproduce
the experimental characteristics of a few lowest nuclear states. A more challenging problem is
to describe fine characteristics of the 3α-system, such as the width of the near-threshold 0+

2

state and the monopole (0+
2 → 0+

1 )-transition matrix element (MTME), which are sensitive
to the variation of the potentials. The two- and three-body effective potentials are chosen by
comparing the results of three-body calculations and the experimental data for a given set of
12C characteristics.

II. METHOD

The aim of the present report is to describe both the bound state and the resonance state
of the Lπ = 0+ states of three α-particles. The interaction is described by local two- and three-
body potentials having a simple Gaussian form. Numerical results are obtained by using the
same approach and a similar numerical procedure as in our previous papers [20, 22]. The units
~ = m = e = 1 are used throughout the paper.

A. Hyper-radial equations

The method of calculations is based on the expansion of the total wave function in a set
of eigenfunctions on the hypersphere [23]. Scaled Jacobi coordinates are introduced as xi =
rj − rk, yi = (2ri − rj − rk)/

√
3, where the indexes {ijk} must be chosen as a permutation of

{123} and ri is the position vector of the ith particle. The hyper-spherical variables ρ, αi, and
θi are defined via the Jacobi coordinates by the relations xi = ρ cos(αi/2), yi = ρ sin (αi/2), and
cos θi = (xi · yi)/(xiyi).

The Schrödinger equation for three α-particles is



−∆x − ∆y +
3

∑

j=1

V (xj) + V3(ρ) − E



 Ψ = 0 , (1)

where V (xi) and V3(ρ) are the two-body and three-body potentials, respectively. With the
expansion of the total wave function

Ψ = ρ−5/2
∑

n

fn(ρ)Φn(α, θ, ρ) (2)
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in a set of the normalized eigenfunctions Φn satisfying the equation on the hypersphere,

[

∂2

∂α2
+ 2cot α

∂

∂α
+

1

sin2 α

(

∂2

∂θ2
+ cot θ

∂

∂θ

)

− ρ2

4

3
∑

j=1

V
(

ρ cos
αj

2

)

+ λn(ρ)

]

Φn(α, θ, ρ) = 0 , (3)

Eq. (1) is routinely transformed into a system of hyper-radial equations (HRE)

[

∂2

∂ρ2
− 1

ρ2

(

4λn(ρ) +
15

4

)

− V3(ρ) + E

]

fn(ρ)

+
∑

m

(

Qnm(ρ)
∂

∂ρ
+

∂

∂ρ
Qnm(ρ) − Pnm(ρ)

)

fm(ρ) = 0 , (4)

where

Qnm(ρ) =

〈

Φn

∣

∣

∣

∣

∂Φm

∂ρ

〉

, Pnm(ρ) =

〈

∂Φn

∂ρ

∣

∣

∣

∣

∂Φm

∂ρ

〉

, (5)

and the notation 〈·|·〉 stands for integration on the hypersphere. To get rid of the numerical

calculation of the derivatives
∂Φn

∂ρ
, Qnm(ρ) are calculated by using the exact expression,

Qmn(ρ) =
3

4
(λn − λm)−1

〈

Φm

∣

∣

∣

∣

4

cos α
2

+ 2ρVs(ρ cos
α

2
) + ρ2 ∂Vs(ρ cos α

2 )

∂ρ

∣

∣

∣

∣

Φn

〉

(6)

and Pnm(ρ) are calculated by using the approximation

Pmn(ρ) =

N
∑

l=1

Qml(ρ)Qnl(ρ) (7)

of the exact sum rule P = −Q2 on the limited basis of N trial functions.
Solutions of the eigenvalue problem and the α + 8Be scattering problem for HRE (4) provide

the properties of the ground 0+
1 state and the excited 0+

2 resonance state, respectively. The
resonance position Er and width Γ are determined by fitting the energy dependence of the
phase shift δE for α + 8Be scattering to the Wigner form,

cot(δE − δbg) =
2

Γ
(Er − E) , (8)

where the background phase shift δbg is of no interest in the present calculation. The phase shift
δE is defined by the asymptotic form of the first-channel function

f
(E)
1 (ρ) ∼ F0(η, kρ) + tan(δE)G0(η, kρ) , (9)

where F0(η, kρ) and G0(η, kρ) are the Coulomb functions with the parameter η = 8/(
√

3k)
and the wave number in the first channel k =

√
E − E2α. Eq. (9) follows from the two-cluster

asymptotic form of the first-channel potential

U1(ρ) =
1

ρ2

(

4λ1(ρ) +
15

4

)

+ V3(ρ) + P11(ρ) → E2α +
q̃

ρ
(10)
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near the turning point ρt defined as U1(ρt) = E, E2α is the energy of the 8Be and the Coulomb
parameter q̃ = 16/

√
3. In fact, the right hand side of Eq. (10) is the energy of the two-cluster

system α + 8Be for large distance between α and 8Be.
It is suitable to treat the ultra-narrow 0+

2 resonance state on equal footing with the ground
state. Therefore, its wave function is defined as the scattering solution at the resonance energy
Er normalized on the finite interval 0 ≤ ρ ≤ ρt. Thus, the r.m.s. radii R(i) of the ground (i = 1)
and excited (i = 2) states and the MTME M12 are defined by the expressions

R(i) =

√

R2
α +

1

6
ρ̄2

i , ρ̄2
i =

∑

n

∫ ρt

0

∣

∣

∣f (i)
n (ρ)

∣

∣

∣

2
ρ2dρ , (11)

where Rα = 1.47 fm is the r.m.s. radius of the α-particle, and

M12 =
∑

n

ρt
∫

0

f (2)
n (ρ)f (1)

n (ρ)ρ2dρ . (12)

B. Variational method for solution of the equation on the hypersphere

The coefficients λn(ρ), Qnm(ρ), and Pnm(ρ) of the HRE (4) are calculated using the varia-
tional method for the solution of the eigenvalue problem (3). The variational basis consists of
N trial functions χi with the same symmetry under permutations of particles as the eigenfunc-
tions Φn(α, θ, ρ). In view of an essentially different structure of the eigenfunctions Φn(α, θ, ρ) at
different values of ρ, it is necessary to use a flexible basis of trial functions which allows one to
describe the two-cluster (α + 8Be) and three-cluster (3α) structure of the wave function in the
asymptotic region.

The variational basis contains a set of the symmetric hyperspherical harmonics (SHH) Hnm

which are the eigenfunctions of the equation

[∆∗ + K(K + 2)] Hnm = 0 , (13)

where ∆∗ is the differential operator in Eq. (3), K = 2n + 3m, the non-negative numbers n and
m enumerate SHH, and 2K is the order of SHH. For explicit construction of SHH it is convenient

to use another set of the hyperspherical variables 0 ≤ ξ ≤ π

2
, −π ≤ ϕi ≤ π [24, 25] defined by

sin ξ = sin αi sin θi ,

cos ξ cos ϕi = cos αi , (14)

cos ξ sin ϕi = sin αi cos θi .

In the variables ξ and ϕ

Hnm(ξ, ϕ) ∼ cos3m ξP (0,3m)
n (cos 2ξ)T3m(cos ϕ) ∼ d

n+3m/2
3m/2,3m/2(2ξ) cos 3mϕ , (15)

where P
(α,β)
n (x) and Tn(x) are the Jacobi and Chebyshev polynomials and dj

mk(β) is the Wigner
function. The variable ξ is invariant under permutations of particles, i.e., independent of the
index i enumerating the Jacobi variables. On the other hand, ϕi changes to ϕi ± 2π/3 under
the cyclic permutations as | ϕi − ϕj |= 2π/3 and ϕi → −ϕi under the permutation of particles
j and k. As follows from Eq. (15) and the above properties of the variables ξ and ϕi, the SHH
are completely symmetric under any permutation.
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In the numerical calculations, the basis of trial functions contains a set of all SHH Hnimi
(ξ, ϕ)

with those indices ni and mi for which K does not exceed the maximum value Kmax, i. e., Ki =
2ni + 3mi ≤ Kmax. One can count that the total number of such SHH for which 2ni + 3mi ≤ K
equals K(K + 6)/12 + 1 for K being a multiple of 6 and ([K/6] + 1)(K − 3[K/6]) otherwise.
Here [x] stands for the entire part of x. Usage of SHH in the basis of trial functions provides an
excellent description of the eigenfunctions at small ρ, where the kinetic energy term dominates,
and quite a good description up to large ρ, where the cluster effects essentially come into play.

The two-cluster configuration α + 8Be of the wave function can be hardly described by a
set of SHH due to rather slow convergence that hinders the calculation at sufficiently large ρ.
Therefore, the basis contains also a ρ-dependent trial functions

χi =
3

∑

j=1

φi(ρ cos
αj

2
) , (16)

which are the symmetrized combinations of the two-body functions φi(x). Explicitly, a set of
φi(x) includes a few Gaussians, which provides a description of the 8Be wave function within the
range of the nuclear potential Vs(r), and the function φ(x) = x1/4 exp (−4

√
x(1 + ax)), which is

used for a better description in the sub-barrier region.

III. RESULTS

A. Two-body effective potentials

A set of local two-body potentials is taken in a simple form V (x) = Vs(x) + Vc(x), where the
nuclear potential, as proposed in [26], is a sum of two Gaussians

Vs(x) = Vr e−µ2
r
x2 − Va e−µ2

a
x2

(17)

and Vc(x) = 4/x is the Coulomb potential. Bearing in mind the complicated task of reliable
calculation of the 12C(0+

2 ) width and the MTME, it is ultimately necessary to chose those
two-body effective potentials, which provide the energy and width of 8Be coinciding with the
experimental values E2α = 92.04±0.05 keV and γ = 5.57±0.25 eV [27, 28]. Taking into account
these considerations, a number of the two-body potentials are constructed and listed in Table I.

The set of potentials 1–11 with parameters µ−1
r = 1.53 fm and µ−1

a = 2.85 fm [26] is con-
structed to study the dependence on the 8Be width γ, which vary within the interval from 5.1 eV
to 8.53 eV (this interval corresponds to earlier experimental measurements of γ = 6.8 ± 1.7
eV [27]). The potential 12 with parameters µr = 0.7 fm−1 and µa = 0.475 fm−1 [26] with 8Be
is used to illustrate the dependence on the potential range. The parameters of the potentials
1–12 were obtained not attempting to describe experimental α-α s-wave elastic-scattering phase
shift. Therefore, the reasonable agreement with the experimental phase shift only up to en-
ergy 1-2 MeV were found. The calculated s-wave phase shifts are presented in Fig. 1. Among
these potentials, the best agreement of the calculated phase shifts with the experimental data
at higher energies, as shown in Fig. 1 (right panel), is obtained for the potentials 9 and 10, for
which γ = 6.8 and 7.51 eV, respectively. Note a similar dependence of the phase shifts on energy,
namely, the phase shifts multiplied by a proper factor coincide for different potentials 1–11.

All four parameters of the two-body potentials 13–15 were adjusted to provide the 8Be width,
which falls within the narrow interval of the experimental uncertainty γ = 5.57 ± 0.25 eV, and
to obtain the α-α scattering phase shift which is an agreement ones up to center-of-mass energy
12 MeV. As shown in Fig. 1, adjustment of the parameters µr and µa allows one to reach a
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FIG. 1: The experimental and calculated α-α s-wave elastic-scattering phase shift δ versus the center-of
mass energy E (MeV) for the two-body potentials 2, 13, 14, and 15 providing the 8Be width within the
range of the experimental uncertainty 5.57 eV ≤ γ ≤ 5.82 eV (left panel) and for the two-body potentials
1, 2, 6, 9, 10, and 11 (top to bottom, right panel).

TABLE I: Parameters of the α-α potential Vs (17) providing the α-α resonance widths γ.

Potential γ(eV) Vr(MeV) µ−1
r

(fm) Va(MeV) µ−1
a

(fm)
1 5.11 20.012 1.53 16.5 2.85
2 5.69 35.024 1.53 19.492 2.85
3 6.20 52.772 1.53 22.344 2.85
4 6.31 57.187 1.53 22.969 2.85
5 6.37 60.051 1.53 23.359 2.85
6 6.40 61.220 1.53 23.516 2.85
7 6.50 66.028 1.53 24.141 2.85
8 6.60 71.057 1.53 24.766 2.85
9 6.80 82.563 1.53 26.1 2.85
10 7.51 136.406 1.53 31.133 2.85
11 8.53 279.206 1.53 40.0 2.85
12 5.10 197.680 1.42857 50.0 2.10526
13 5.57 284.413 1.5000 121.875 2.05500
14 5.57 295.160 1.4213 99.141 2.09455
15 5.82 283.811 1.5330 120.0 2.10021

good agreement with experiment, whereas for the potential 2 providing γ = 5.7 eV the phase
shift deviates significantly from the experimental dependence. It is worth mentioning that the
present result reveals a better description of the α−α scattering data by the harder potentials.

B. Three-body effective potentials

The three-body potentials are assumed to have a simple and convenient functional form
depending only on the collective variable - the hyper-radius ρ

V3(ρ) = V0 e−(ρ/b0)2 + V1 e−(ρ/b1)2 . (18)
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The parameters of the three-body potentials are chosen to obtain the experimental energies
of the ground and excited states, Egs = −7.2747 MeV and Er = 0.3795 MeV [29], and r.m.s.

radius of the ground state, R
(1)
exp = 2.48 ± 0.22 fm [30, 31], of the 12C nucleus. (Note that in

the calculations with the two-body potentials 1-12 of Table I, the ground-state r.m.s. radius
R(1) is fixed at the experimental value 2.47 fm [32] that does not reflect on the conclusions). As
described in Section II, Egs, Er, and R(1) are calculated by solving a system of HRE, Eq. (4),
and accurate results are obtained in the three-channel approximation.

Let us consider first the description of 12C by using the one-term three-body potential
(putting V1 = 0). This will provide a better insight into the dependence on the three-body
potential V3(ρ). For the two-parameter potentials, only the parameters V0 and b0 are deter-
mined by fixing Egs and Er at the experimental values. Two types of solutions are found and
the corresponding parameters for the one-term three-body potentials V0 and b0 are presented in
Table II.

For the first type of solutions, three-body potentials are rather extended with the range within
the interval 4.4 fm≤ b0 ≤5.4 fm and strength |V0| < 40 MeV. The ground-state r.m.s. radius
is in the range 2.2 fm < R(1) < 2.8 fm, which includes the experimental value for potential
5–6, nevertheless, the two-body width γ for these potentials turns out to be 6.4 eV, being well
separated from the most accurate experimental value of 5.57 eV. For the second type of solutions,
b0 is about twice as small and |V0| exceeds 80 MeV. The calculated ground-state r.m.s. radius

R
(1)
exp underestimate the experimental value. The results for the one-term three-body potential

TABLE II: Two families of solutions with the one-term three-body potential (V1 = 0) for a number of
two-body potentials marked by the widths γ (eV) of the α-α resonance. Shown are the parameters b0

(fm) and V0 (MeV), r.m.s. radii R(i) (fm), width of the excited state Γ (eV), and monopole transition
matrix element M12 (fm2).

α-α Pot. γ b0 V0 Γ R(1) R(2) M12 b0 V0 Γ R(1) R(2) M12

1 5.11 4.3942 -16.067 10.3 2.24 3.5 8.14 1.9851 -81.092 6.7 1.92 3.3 5.75
2 5.69 4.5001 -18.600 13.0 2.35 3.7 8.59 2.2310 -89.941 8.2 2.02 3.4 6.46
3 6.20 4.6006 -20.824 15.9 2.45 3.8 8.87 2.3314 -113.28 9.7 2.09 3.5 6.90
4 6.31 4.6162 -21.325 16.5 2.46 3.9 8.91 2.3420 -120.30 10.1 2.11 3.5 6.97
5 6.37 4.6247 -21.643 16.9 2.48 3.9 8.93 2.3472 -125.05 10.2 2.12 3.5 7.01
6 6.40 4.6455 -21.640 17.2 2.48 3.9 8.97 2.3464 -127.48 10.4 2.12 3.5 7.03
7 6.50 4.6379 -22.297 17.6 2.50 3.9 8.97 2.3547 -135.38 10.7 2.13 3.5 7.09
8 6.60 4.6455 -22.838 18.1 2.51 3.9 8.99 2.3584 -144.47 11.0 2.14 3.6 7.13
9 6.80 4.6531 -24.047 19.3 2.55 4.0 9.03 2.3611 -166.39 11.7 2.17 3.6 7.22
10 7.51 4.6111 -29.285 22.7 2.65 4.1 9.03 2.3415 -281.63 14.4 2.25 3.7 7.37
11 8.53 4.4858 -39.948 26.1 2.77 4.3 8.85 2.2980 -621.03 18.0 2.35 4.0 7.36
12 5.10 5.3767 -15.411 13.9 2.49 3.9 8.22 1.8225 -424.426 4.6 2.04 3.2 7.04
13 5.57 5.2905 -17.409 18.5 2.56 4.0 8.39 1.8858 -562.38 6.7 2.11 3.2 7.44
14 5.57 5.2852 -17.463 18.5 2.56 4.0 8.37 1.8443 -664.91 6.7 2.10 3.2 7.38
15 5.82 5.2051 -18.724 18.8 2.58 4.0 8.47 1.9386 -559.04 7.3 2.13 3.3 7.53

(V1 = 0) clearly show a lack of simultaneous description for the 8Be width and the ground-
state size R(1), and thus the one-term potential is too simple to describe real nuclei. One can
readily propose to use simultaneously both the short- and the long-range term in the three-body
potential to obtain a compromising description of the two- and three-body characteristics.

From the above it is clear that one should perform more elaborate calculations, in which four
parameters of the three-body potential in the form of Eq. (18) are used to fix the ground- and
excited-state energies and the ground-state r.m.s. radius at the experimental values. Varying one
remaining degree of freedom in the four-dimensional space of parameters V0,1, b0,1, one obtains
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one-parameter sets of three-body potentials for a given two-body potential. In particular, the
dependence of the three-body potential parameters corresponding to two-body potentials 13–15
of Table I, which provides a γ of about 5.57 eV, are shown in Fig. 2. A noticeable feature of

4.5 5.0 5.5 6.0 6.5

1

2

3

4

 

 

 

b0(fm)

 -V1 / 250

b1

 -V0 / 7

FIG. 2: Relation between the parameters of the three-body effective potentials corresponding to the
two-body potentials 13, 14 and 15 plotted by solid, dashed, dotted lines, respectively.

these dependencies is that by decreasing the total range b0 of the effective potential, a deep
attractive well at short distances is obtained.

C. Properties of the 0+
2 state

As discussed above the position of the 0+
2 state is fixed at the experimental value. However,

one should also require a description of its fine characteristics, viz., the width Γ, r.m.s. radius
R(2) and the 0+

2 → 0+
1 monopole transition matrix element. Note that R(2) is not experimen-

tally available, instead, M12 can be used to characterize the extension of the resonance state.
Generally, a reliable calculation of the extremely small (in nuclear scale) Γ and MTME is a
rather complicated task. To overcome these difficulties, it was necessary to use up to 400 trial
functions in variational calculations; the solution of the four-channel system of the HRE shows
that the resonance width is determined with an accuracy much better than 1 eV.

For the simple calculations with the one-term three-body potentials, Γ and M12 are presented
in Table II. In this case, the ground-state size R(1) cannot be fixed at the experimental value
and therefore it is not surprising that Γ and M12 vary in a wide range with variations of the
two-body potential.

For the elaborate calculations with the three-body potentials in the form of Eq. (18), one
obtains one-parameter dependence, which is suitably represented for each two-body potential
by a line in the Γ–M12 plane. The calculated dependencies are illustrated in Fig. 3 for the
comparatively soft two-body potentials 6, 7, 9 (with 6.4 < γ < 6.8 eV) and for harder two-body
potentials 13, 14, 15 (with 5.57 < γ < 5.82 eV). The dependence of R(2) on γ is illustrated
in the inset in Fig. 3, where it is seen that the lines lie within a narrow band in the Γ – R(2)

plane. Recall that each line in the M12–Γ plane represents the dependence on the parameter
of the three-body potential, e.g., on b0. As a matter of fact, Γ monotonically increases with
increasing b0, e. g., for the two-body potential 13 the width runs the interval 4 eV ≤ Γ ≤ 17
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FIG. 3: Calculated M12–Γ relations for the two-body potentials 6, 7, 9, 13, 14, and 15. The point
with errorbars shows the experimental data Γ = 8.5 ± 1.0 eV and M12 = 5.48 ± 0.22 fm2 [29]. The
corresponding R(2)–Γ relations are shown in the inset.

eV if the potential parameter runs the interval 4.5 fm ≤ b0 ≤ 5.5 fm. Similarly, as shown in
Fig. 2, there is the dependence on the three-body-potential shape. In particular, a decrease in
Γ, M12, and R(2) corresponds to an increase in |V0,1| and decrease in b1. In other words, the
smaller Γ, M12, and R(2) corresponds to three-body potentials with the stronger short-range
attractive well, which give rise to a drastic modification of the excited-state wave function at
short distances. In fact, if Γ decreases from 18 eV to 5 eV, R(2) decreases from 3.9 fm to 2.5 fm,
the latter value almost coincides with the experimental ground-state r.m.s. radius R(1) = 2.48
fm. Diminishing of R(2) to these small values means a comparatively compact structure of the
excited state for the effective potentials with a strong short-range attraction.

IV. CONCLUSION

The method discussed in the present report provides an accurate calculation of fine charac-
teristics of 12C, viz., the extremely narrow width of the 0+

2 state and the 0+
2 → 0+

1 MTME within
the framework of the α-cluster model. A number of the effective potentials are found, which
could be used in the calculations of α-cluster nuclei [21, 33]. One uses local α-α potentials,
which reproduce the 8Be energy and width and the α-α s-wave elastic-scattering phase shift
and three-α potentials depending on the hyperradious, which reproduce the ground-state and
excited-state energies and the ground-state r.m.s. radius of 12C.

One of the qualitative conclusions made is that, if Egs, Er, and R(1) are fixed at the experi-
mental values, a considerable short-range component of the wave function is needed to improve
agreement with experiment for Γ and M12. Certainly, the problem of reliable description of Γ
and M12 in the α-cluster model deserves a thorough investigation, for example, by using the
non-local three-body potential describing coupling with a twelve-nucleon channel at short dis-
tances. One of the next steps in improving the results is to start calculations with more realistic
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two-body potentials, which take into account the angular-momentum dependence.
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Antisymmetrized Molecular Dynamics Applied to Light Nuclear

System

G.J. Rampho∗

Physics Department, University of South Africa, Pretoria 0003, South Africa

The Antisymmetrized Molecular Dynamics (AMD) method has been used to study various
nuclear systems. Properties such as binding energies, root-mean-square radii, clustering, etc.
can be obtained with accuracies comparable to most conventional methods. In contrast to
other competing methods, however, with the AMD there is a possibility of tracing the posi-
tions and momenta of individual nucleons within the nucleus and thus clustering phenomena
can be easily visualized. The basic ideas behind this powerful approach are discussed and
some results for selected light nuclei are presented.

I. INTRODUCTION

Based on the Time-Dependent Cluster Model [1, 2], a special case of the time-dependent
variational theory [3] that is applicable to fermionic systems has been proposed. This special
case, called Antisymmetrized Molecular Dynamics, has two main features. One is that the
spatial component of the wave function describing individual constituent particles of a system is
represented by a gaussian wave packet, and the other is that the total wave function of the system
is constructed as a Slater determinant of single-particle wave functions. The width parameter
of the gaussian packets is treated as a real constant. AMD was used to study various nuclear
systems (see Ref. [3] and references theirin) and was shown to reproduce experimental binding
energies of light nuclei with reasonable accuracy. These studies, however, also highlighted the
need for improvement of the AMD wave function, especially in the case of few-nucleon systems.
AMD is an ab initio theory able to describe the dynamics of heavy ion reactions and structure
attributes of many-body systems without model assumptions. The Coulomb and three-body
potentials can easily be treated with AMD, and hence, properties of stable and unstable nuclear
systems can be studied.

The basic notions of the AMD formulations were suggested in Ref. [4] and further elaborated
in Ref. [5]. These include the construction of the wave function for many-body systems and
the evaluation of the expectation values of one- and two-body operators. Incorporation of two-
particle collision attributes was done in Ref. [3]. In this work the AMD method is applied
to light nuclei and the corresponding binding energies and root mean square radii (rms) are
calculated and cluster aspects of the nuclei considered are investigated.

In Sec. II the basic formalism of the AMD is discussed. The types of hamiltonians that
can be treated, the construction of the wave function, the equations of motion of the variable
parameters and the variational technique used are briefly outlined. Results and illustrations
of the application of AMD to some light nuclear systems are presented in Sec III. Conclusions
drawn are given in Sec IV.

∗
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II. FORMALISM

Consider the time-dependent Schrödinger equation
(

i ~
∂

∂ t
−H

)

Ψ = 0 (1)

for light nuclear systems described by a general, non-relativistic, Hamiltonian of the form

H = −
∑

i

~
2

2Mi
∇2

i +
1

2!

∑

i6=j

Vij +
1

3!

∑

i6=j 6=k

Vijk (2)

where Mi is the mass of nucleon i and Vij and Vijk are the two- and three-body potentials
respectively. The solution Ψ is approximated by a Slater determinant of gaussian wave packets
that depend on complex dynamical variables. The approximate solution is then obtained by
minimizing the expectation value of the hamiltonian with respect to the dynamical variables,
using a time-dependent variational method. The energy so obtained is just an upper-bound to
the true energy of the system. The resulting solution Ψ can also be used to determine other
properties of the system.

A. The Wave Function

The single–particle states φ(υ) are assumed to be of the form [3]

φ(υ) = ψ(r)χ(σ) ξ(τ ) (3)

where ψ(r), χ(σ), and ξ(τ ) are the spatial, spin, and isospin wave functions, respectively. The
spins of the nucleons are treated as fixed and only the case of parallel spins is considered. Hence
χ = | ↑ 〉 or χ = | ↓ 〉 and ξ = | proton 〉 or ξ = |neutron 〉. The spatial component, ψ(r), is
parametrized as a normalized gaussian wave packet

φ(r) =

(

2α

π

)3/4

exp

[

−α

(

r − s√
α

)2

+
1

2
s2

]

≡ | s 〉 (4)

where the centroid of the wave packet, s, is a complex time–dependent parameter. The ’phase’
s2/2 is included mainly to simplify the structure of elements of the resulting overlap matrix,
〈φi |φj 〉. When the momentum operator of a nucleon is denoted by, say, p, then the real and
imaginary components of the parameter s are given by [3]

Re(s) =
√
α
〈 s | r | s 〉
〈 s | s 〉 , Im(s) =

1

2 ~
√
α

〈 s |p | s 〉
〈 s | s 〉 (5)

The width parameter a is treated as a real constant and taken as common for all nucleons.

The total wave function Ψ(υ) of the system depends on the position ri, spin σi, and isospin
τ i, (1, 2, 3, . . . , N) variables of the nucleons. Here the collective variable υi is used to represent
the set { ri σi τ i }. For the fermionic systems treated in this work, the total wave function of the
system is required to be antisymmetric with respect to the interchange of particles. One way of
constructing an antisymmetric wave function, is by using Slater determinants of single-particle
states φi(υj)

ΨA(υ1,υ2, . . . ,υN ) =
1√
N !

det[φi(υj) ] . (6)
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where φi(υj) depends on the degrees of freedom of the i–th particle only. The wave function
is represented by Ψ(v,β) where β is a set of variational parameters. The excited states are
constructed so that they are automatically orthogonal to the lower states. This is achieved
by the use of the Gram-Schmidt orthogonalization procedure. The n-th excited trial state is
therefore constructed as

|Ψn(β) 〉 =

[

1 −
n−1
∑

i=0

|Ψi(β
′) 〉〈Ψi(β

′) |
]

|Ψt(β) 〉 (7)

where v is ommited for convenience, Ψi are the already computed normalized lower states and
Ψt is a trial function formulated as in the case of the ground state.

B. Binding Energies

The energy expectation value of the system is calculated using the wave function constructed
as in the previous subsection. The structure of such a wave function makes it possible for the
integrals involved to be evaluated analytically.

In calculating the kinetic energy of a nuclear system, the difference in mass between proton
and neutron should be incorporated. Since we are interested in bound nucleons, the most realistic
approach in distinguishing between the proton and the neutron mass is to separate the kinetic
energy operator into a charge-independent (CI) term tCI

i and a charge-symmetry-breaking (CSB)
term tCSB

i [6]

ti = tCI
i + ti

CSB = − ~
2

2µ∗i
∇2

i (8)

where

1

µ∗i
=

1

2

(

1

µi
+

τzi

∆µi

)

, (9)

with

1

∆µ
=

1

mp
− 1

mn
. (10)

where τzi is the isospin and µi the reduced mass of nucleon i. However, the term ti
CSB usually

is neglected in the primary AMD. The expectation value of the kinetic energy operator of the
system T is computed as

T =
〈Ψ | ∑

j tj |Ψ 〉
〈Ψ |Ψ 〉 (11)

=
∑

ij

〈φi | tj |φj 〉Bji
−1 . (12)

where Bij
−1 are the elements of the inverse of the overlap matrix B. The expectation values

〈φi | tj |φj 〉 can be analytically evaluated.
The nucleon-nucleon potentials can be expressed in the general form

V (rij) =
∑

p

u(rij)Op
ij (13)



G.J. Rampho 77

where Op
ij is a given two-body operator and u(rij) a function depending on the relative positions

of the interacting nucleons. The expectation value of spin-independent two-body potentials of
the system, V2, is computed as

V2 =
〈Ψ | ∑

ij Vij |Ψ 〉
〈Ψ |Ψ 〉 (14)

=
1

2

∑

ijkl

〈φk φl |V (rij) |φi φj 〉
[

Bik
−1Bjl

−1 −Bil
−1Bjk

−1
]

. (15)

In the case of spin-dependent potentials minor modifications are introduced in this matrix ele-
ments. There are not so many forms of the potential functions u(rij) for which the expectation
value 〈φk φl |u(rij) |φi φj 〉 can be analytically evaluated. One of such forms is the gaussian
form which is used in a number of nucleon-nucleon potentials. Other forms of u(rij) can also be
used for analytical evaluations of the integrals involved. However, this could lead to numerical
instabilities (one such case is the Coulombic form). For the latter cases u(rij) is expanded as

u(r) =
∑

n

vn e−bn r2

(16)

to fit the potential with the parameters vn and bn. The three-body potential is treated in the
same way as the two-body potentials.

The total energy of the system is obtained as the expectation value of the Hamiltonian 〈H 〉
whence the internal energy of the system EI can be obtained by subtracting the contribution of
the center of mass motion Tcm.

EI = 〈H 〉 − Tcm . (17)

When there are internal clusters formed in the system, then EI can be calculated from the
number of fragments NF , the internal energy of the fragments EF and the inter-fragment relative
energies ER as

EI =

NF
∑

i=1

Ei + γ ER (18)

where γ is either a constant or a linear function of NF , depending on the form of clusterization
considered. In AMD formalism γ = NF and ER = T0. Only NF and Ei are actually calculated.
The parameters T0 is a constant chosen to shift binding energies of the nuclear system.

C. Equations of Motion

If the total wave function of the system is parametrized by N complex time-dependent
parameters s, Ψ (s1, s2, . . . , sN ), then the time-dependent variational principle Ref. [3]

δ

∫ t2

t1

〈Ψ | i~ ∂
∂ t −H |Ψ 〉

〈Ψ |Ψ 〉 dt = 0 (19)

with the constraints

δΨ(t1) = δΨ(t2) = δΨ∗(t1) = δΨ∗(t2) = 0 (20)
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can be cast in the form

δ

∫ t2

t1





i ~

2

∑

j

(

d sj

dt

∂

∂ sj
− d sj

∗

dt

∂

∂ sj
∗

)

ln N − E



 dt = 0 (21)

with the corresponding constraints

δs(t1) = δs(t2) = δs∗(t1) = δs∗(t2) = 0 (22)

where

N = 〈Ψ |Ψ 〉 (23)

is the norm of the wave function and

E =
〈Ψ |H |Ψ 〉
〈Ψ |Ψ 〉 (24)

the energy functional of the system. Note that s and s∗ are treated as independent variables.
The time evolution of the state Ψ is derived from the minimization of the time-dependent

variational principle which leads to the coupled equations of motion of the parameters s and s∗,
compactly expressed in the form [7]

i ~

2









0 C

−C∗ 0

















d s ∗

d t

d s

d t









=









∂ E

∂ s ∗

∂ E

∂ s









(25)

where C is a hermitian matrix with elements

Cij (s, s∗) =
∂2

∂ si
∗ ∂ sj

ln N (26)

The upper-bound to the energy of the system is obtained by solving these equations. Since the
parameters s and s∗ are not truly independent solving only one set of equations, say,

i~
∑

j

Ciσ,jτ
d sjτ

d t
=

∂ E

∂ s∗iσ
(27)

should suffice.

An interesting minimization technique, is the use of the so-called frictional cooling [3] to
determine the variational parameters. The technique involves introducing a “friction” coefficient
to the equation of motion for the variational parameters, Eq. (27). It can be shown that
multiplying the equations of motion by a complex constant, say a + i b, where a and b are
arbitrary real numbers, then the variation of the energy functional with time

d E

d t
< 0 (28)

when b < 0, decreases with time. Therefore, the solution of the modified equation of motion
results in a minimization of the energy functional, Eq. (24).
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III. RESULTS AND DISCUSSIONS

To determine the variational parameters, the equations of motion, Eq. (27), are modified by
replacing the matrix C with a unit matrix and multiplying the right-hand-side with a complex
constant

d siσ

d t
=

( a− ı b )

ı~

∂ E

∂ s∗iσ
. (29)

These modifications are introduced only to set up and simplify the cooling process. The above
equations are solved with the constraint

∑

i si = 0 so that only the zero-point oscillation of the
center-of-mass need be subtracted from the expectation value of the hamiltonian of the system.
Corrections for the center-of-mass and relative motion of fragments to the binding energy of the
system lead to the expression [3]

Eb = 〈H 〉 − 3 ~
2 ν

2M
A+ T0 (A−NF ) (30)

where ν and T0 a free parameters chosen to fit the experimental binding energies of the 4He and
12C nuclei. The values ν = 0.16 and T0 = 7.7 MeV are used with ν taken to be the same for all
nucleons.

As an illustration of the AMD method, the binding energies and root-mean-square radii of
selected few-nucleon systems are computed with the Volkov No. 1 potential [8],

V (rij) =

[

144.86 e− ( rij/0.82 )2

− 83.34 e− ( rij/1.60 )2
]

(w −mPσ Pτ ) (31)

where w = 1 − m and m = 0.576. Pσ and Pτ are the spin and isospin projection operators,
respectively. The Coulomb potential,

VC(rij) =
e2

| ri − rj |

(

1

2
+ τi

)(

1

2
+ τj

)

(32)

where τ is the isospin of the nucleon, is approximated by seven gaussians. The accuracy of such
an approximation is discussed in Ref. [9]. The matrix elements of the expectation value of these
potentials are

V =
1

2

∑

ijkl,n

vn ( 1 − ρn )3/2 exp
[

− ρn

4
C2

]

RkiRlj

[

S+Rik
−1Rjl

−1 − S−Ril
−1Rjk

−1
]

(33)

where C = s∗l − s∗k + sj − si and ρn = bn/(bn + α).
The summation over spins are given by S± = (w ±m )

(

1 ∓ δηiηj

)

in the case of the
Volkov potential and S± = 1 for the Coulomb potential; η is the spin-isospin component of the
nucleon wave function. The calculated binding energies are compared with those presented in
Ref. [10], which are obtained via the stochastic variational method (SVM) for the same potential.

The preliminary binding energy results obtained with the AMD method are presented in
Table I with the negative sign suppressed. As can be noticed from this table the experimental
binding energy of the 4N system is well reproduced as expected. However, the calculated binding
energy of the 2N system is a little less than twice the value obtained via other methods. The 3N
system on the other hand is off by about 2 MeV. Considering that the AMD wave function has
only one free parameter ν and that it does not have definite parity or total angular momentum,
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TABLE I: The binding energies of few-nucleon systems with the Volkov No. 1 potential.

Binding Energy (MeV) 2N 3N 4N
EAMD 0.969 9.984 28.290
ESVM [11] 0.545 8.468 30.420
EEXP 2.225 8.481 28.295

this results are reasonable.
The same wave functions are used to calculate the root-mean-square radii of the 2N , 3N and

4N nuclear systems with expression

〈

r2
〉

=
〈Ψ | 1

A

∑

i ( ri −R ) |Ψ 〉
〈Ψ |Ψ 〉 (34)

where R is the center-of-mass of the system. The integrals involved are evaluated analytically.
For this quantity no fitting is done and the results are shown in Table. II. As can be observed
from this table the AMD theory reproduces the experimental values of the root-mean-square
radii of the 2N and 3N systems. The calculated value for the 4N system is less than the SVM
and experimental values by about 0.15 fm.

TABLE II: The root-mean-square radii of few-nucleon systems with the Volkov No. 1 potential.

r.m.s (fm) 2N 3N 4N
〈

r2
〉1/2

AMD
1.91 1.56 1.35

〈

r2
〉1/2

SVM
[11] 3.44 1.73 1.49

〈

r2
〉1/2

EXP
1.96 1.57 1.47

(a) (b)
FIG. 1: The density of the 4N system: (a) the initial random distribution and (b) the final configuration
after the variation of parameters.

In solving the cooling equations a random number generator is used to set up the initial
values of the variational parameters. The initial probability density of the system is computed
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(a) (b)
FIG. 2: The density of the 6Li system: (a) the initial random distribution and (b) the final configuration
after the variation of parameters.

using such values of the parameters. The initial densities for the 4N and 6N systems are shown
in Fig. III(a) and Fig. III(a), respectively. The densities obtained after the cooling process are
shown in Fig. III(b) for the 4N system and Fig. III(b) for the 6N system. The final densities for
the 2N and 3N systems are similar to that of the 4N system, which appear to be, as expected,
spherical. The final density for the 6N system, on the other hand, seem to reflect some degree
of deformation as compared to that of the 4N system. This apparent deformation and the
computed value of NF , which is greater than one but less than two, suggest an underlying
clustering structure in the 6N nuclear system.

IV. CONCLUDING REMARKS

It is demonstarted that the AMD method can be used to evaluate observables of light– to
medium-light– nuclear systems. To obtain the binding energies of these systems, the clustering
structures are considered which introduce an additional free parameter related to the energy
of the relative motion of the clusters. The binding energies thus obtained, reflect to a certain
extend the quality of the wave function generated by the primary AMD theory. Concerning
the root-mean-square radii, they are reasonably reproduced the values being comparable to the
experimental ones.

Some remarks could be passed here concerning the open questions on the AMD method.
Even though the experimental values of the root-mean-square radii of few-nucleon systems can
be reproduced and also the experimental binding energies with realistic nucleon-nucleon poten-
tials [10], the generated AMD wave function of the system may not have such desired qualities
as the appropriate asymptotic behavior in the case of bound states, the correct parity or being
an eigenstate of the total angular momentum of the system. As a result numerous efforts for
improvements have been introduced in the AMD formalism. These include representing single-
particle wave functions with either deformed gaussians [12] or linear combinations of gaussians
[13], or superposing several Slater determinants [14] to represent the total wave function of the
system. Also, in addition to projecting the AMD wave function on to the eigenstates of parity
and total angular momentum of the system [15], AMD was coupled with other methods like the
generator coordinate method [16], the Hartree-Fock [13], and the incorporation of Vlasov equa-
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tion [17], to study various aspects of numerous nuclear systems. These modifications generated
the so-called advanced or extended versions of AMD. Further investigations and improvements
along these lines are under consideration.
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The Integrodifferential Equation Approach (IDEA) to many-body quantum mechanical
systems involves projecting the Hilbert space onto a basis set of hyperspherical harmonic
functions and is exact if higher than two-body correlations are excluded from the dynamics.
In the current work the IDEA is extended to systems of unequal masses and this generalized
formalism is applied to some hypernuclear systems, in particular to both single and double
Λ hypernuclei. The binding energies are in good agreement with those obtained with other
methods. Ultimately the interesting question to be investigated theoretically is whether any
stable double Λ hypernuclei are predicted to exist.

I. INTRODUCTION

A large number of short-lived hypernuclei have been detected over the past 50 years and
numerous theoretical and experimental investigations were carried out concerning these systems
(see, for example, Refs. [1–3] and references therein). Such hypernuclei generally contain a single
“light” baryon such as Λ or Σ, e.g. 5

ΛHe, 6
ΛH, 7

ΣLi, 209
ΛPb etc. Hypernuclei with strangeness

S = 2 hypernuclei also exist, e.g. 6
ΛΛHe. However the lifetime of most of these hypernuclei is

about 10−10 sec. To date no stable hypernucleus has been detected. This is because the decay
of the Λ and Σ particles is not kinematically suppressed in the nuclear environment, unlike the
decay of the neutron. The decay energy of the Λ particle is quite large,

Λ → p+ π− , ∼ 40MeV ,

whereas no binding energy of a single Λ particle to a nucleus has been found to exceed 27 MeV.
This is unlike the case of the neutron the decay of which yields about 0.8 MeV,

n→ p+ e+ νe , 0.8MeV ,

whereas the average binding energy per nucleon is about 8 MeV.
The binding energy per nucleon as a function of baryon number A peaks at A = 56. However,

in the case of the Λ-nucleus separation energy, the peak is at A = 209. The reason for this
difference is that the Λ particle is not affected by Pauli Principle restrictions in the nuclear
medium.

It has also been found that the separation energy in double Λ hypernuclei is significantly
higher than in single Λ hypernuclei. For example the Λ separation in 5

ΛHe is 3.1 MeV, whereas
the ΛΛ separation energy in 6

ΛΛHe is 10.8 ± 0.6 MeV. This difference is attributed to (i) ΛΛ
attraction and (ii) the polarization of the 4He nucleus by the Λ’s. It is likely that this effect will
be accentuated in higher A hypernuclei until it finally saturates at a particular value of A.

Ultimately the aim of this work is to investigate the trend of ΛΛ separation energies in
hypernuclei of different masses, and to examine clustering via resonances in relevant channels.
This can be achieved by using the the Integrodifferential Equation Approach (IDEA) developed

∗
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by Fabre de la Ripelle and co-workers [4–10]. The method is based on a hyperspherical harmonics
expansion method and takes into account the two-body correlations into account exactly. Details
of the formalism can be found in the aforementioned references while an extension of the method
to bound systems with unequal mass particles appears in Ref. [11].

In Sec. II the IDEA formalism is presented and the most important features of it are outlined
with more emphasis given to unequal mass systems. The method has been applied to the 6

ΛΛHe
system and Λ and ΛΛ results for separation energies in a range of hypernuclei in an α-cluster
nuclear model are given. Calculations were also performed for the full NΛ and NΛΛ models of
hypernuclei. The conclusions are summarized in Sec. IV, while some technical details concerning
the projection function are given in the Appendix.

II. THE INTEGRODIFFERENTIAL EQUATION APPROACH

We shall outline here the derivation of the IDEA by defining first the following chain of Jacobi
coordinates for a system of A = N + 1 particles with masses mi.

~ξN =

[

2Am1m2

M(m1 +m2)

]1/2

(x2 − x1)

~ξN−1 =

[

2A(m1 +m2)m3

M(m1 +m2 +m3)

]1/2(

x3 −
m1x1 +m2x2

m1 +m2

)

...

~ξN−i+1 =















2A(
i
∑

j=1

mj)mj+1

M
∑i

j=1mj















1/2













xi+1 −

i
∑

j=1

mjxj

∑i
j=1mj















...

~ξ1 =

[

2A(M −mA)mA

M2

]1/2















xA −

A−1
∑

j=1

mjxj

M −mA















X =
1

M

A
∑

j=1

mjxj

(1)

where X is the center of mass , mi the mass of the particle i, and M =
∑A

j=1mj is the total
mass of the system under consideration. The hyperradius r, which is a collective variable, is
defined via

r =

[

N
∑

i=1

ξ2i

]1/2

=





2A

M2

∑

i<j≤A

mimjr
2
ij





1/2

(2)

where rij = xi − xj . For equal masses we have

r =

[

2

A
∑

i=1

(xi − X)2

]1/2

=





2

A

∑

i<j≤A

r2
ij





1/2

(3)



R.M. Adam 85

The angular coordinates over the hypersphere are defined by the the spherical coordinates ωi of
each vector ξi and by the [φ] coordinates, the latter being defined by

ξN = r cos φN

ξN−1 = r sinφN cos φN−1
...
ξi = r sinφN · · · sinφi+1 cos φi
...
ξ1 = r sinφN · · · sinφ2

(4)

where we choose φ1 = 0. This is known as the standard choice of angular coordinates of Zernike
and Brinkman [12].

The volume element dτ is given by the product

dτ =
N
∏

j=1

d3ξj =
N
∏

j=1

ξ2j dξj dωj (5)

where dωj = cosφj dφj. Using Eq. (4) we get

dτ = dω1

N
∏

j=2

cos2 φj(sinφj)
3j−4 dφjdωjr

3N−1 dr, (6)

or using the variable zj = cos 2φj ,

dτ = dω1

N
∏

j=2

2−3j/2(1 − zj)
(3j−5)/2(1 + zj)

1/2dzj dωjr
3N−1 dr (7)

The surface element is

dΩ = dω1

N
∏

j=2

2−3j/2Wj(zj) dzj dωj (8)

where the function Wj is given by

Wj(zj) = (1 − zj)
(3j−5)/2(1 + zj)

1/2 (9)

and is known as weight function.
In general the surface element dΩi is defined to be the part of the surface dΩ which contains

the coordinates ωj and zj for j ≤ i i.e

dΩi = dω1

i
∏

j=2

2−3j/2Wj(zj) dzj dωj (10)

Knowing the element dΩj we may construct the element of dΩj+1 via

dΩj+1 = dΩj(sinφj+1)
D−4 cos φ2

j+1 dφj+1 dωj+1 (11)

where D = 3(j + 1). Thus, for the surface element dΩN we have

dΩN = dΩN−1 sinφD−4
N cos φ2

N dφN dωN . (12)
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Since

cos φN =

(

1 + zN
2

)1/2

and sinφN =

(

1 − zN
2

)1/2

the relation (12) can be written as

dΩN = 2−D/2 dΩN−1(1 − zN )(D−5)/2(1 + zN )1/2 dzNdωN . (13)

Finally, we recall that the total kinetic energy operator T is given by

T = −
~

2

2

A
∑

i=1

1

mi
∇2

i = −
~

2

M

[

A
N
∑

i=1

∇2
ξi

+
1

2
∇2

X

]

. (14)

It is noted that the latter relations are invariant under any exchange of particles.
Its basic assumption in deriving the IDEA formalism is that the particle interact via pairwise

forces (for the inclusion of three-body forces see Ref. [6]) i.e, one starts from the Faddeev
decomposition

Ψ = ψ12 + ψ23 + ψ31 (15)

such that

(T − E)ψ12 = −V12Ψ (16)

For more than three particles, we assume a similar the decomposition

Ψ =
∑

i<j

ψij (17)

such that Eq. (16) is still valid. In the general case where one deals with non-identical particle
(which is the case under consideration) one has instead of (16) coupled Faddeev-type equations
of the form

(T − E)ψ
(c)
12 = −V

(c)
12 Ψ (18)

where the subscript α denotes a give type of pair (e.g., ΛΛ, ΛN etc.) We shall restrict ourselves
here to the case where the forces are of Wigner type. Then the amplitude ψij can be written as
[6, 13]

ψij(x) = H[Lm](x)F (ri j, r) (19)

whereH[Lm](x) is a polynomial of minimal degree Lm characterized by a set of quantum numbers
[Lm]. For systems such as 5

ΛHe and 6
ΛΛHe the Pauli principle allows the different fermions to

occupy single particle S-states and one has the simplification

H
(c)
[Lm](x) = H[0](x) = constant (20)

for all pairs involved. Then one has

(T − E)F (c)((ξij
N )2, r) = −V (c)(ri j)

∑

k<l

F (c)((ξk l
N )2, r) (21)
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To proceed we project Eq. (21) onto the two-dimensional space r ⊕ ξij
N by integrating over all

coordinates except r and ξij
N and setting

z = 2(ξij
N )2/r2 − 1

and

P (c)(z, r) = r(D−1)/2F (c)(ξij
N , r)

we obtain
{

~
2A

M

[

−
∂2

∂r2
+

L(L + 1)

r2
−

4

r2
1

W (z)

∂

∂z
(1 − z2)W (z)

∂

∂z

]

− E

}

P (c)(z, r)

= −V (c)

(

r

µc

√

(1 + z)/2

)

Π(c)(r, z) (22)

where

Π(c)(r, z) = P (c)(r, z) +

Np
∑

c′=1

∫ +1

−1
f (c, c′)(z, z′)P (c′)(r, z′) dz′, (23)

where f (c, c′)(z, z′) is a projection function arising from projecting the amplitude F (c)(ξk l
N , r)

onto the ξij
N space (see Appendix A), Np is the number of coupled equations, L = (D − 3)/2,

and W (z), known as weight function,

W (z) = (1 − z)α(1 + z)β , α = (D − 5)/2, β = 1/2 (24)

The parameter µc is the reduced mass for the channel c

µc =

[

2Amimj

M(mi +mj)

]1/2

The reduced equation, Eq. (22) is S- projected and thus it excludes the effects of higher par-
tial waves. These effects can be included, albeit approximately and in an average way, using
hypercentral potentials defined by

V
(c)
0 (r) =

1

h
(α,β)
0

∫ +1

−1
W (z)V (c)

(

r

µc

√

1 + z

2

)

dz (25)

where h
(α,β)
0 is given by (A5) for K = 0. Then adding V

(c)
0 (r) to both sides of (22) we obtain

the IDEA equation

{

~
2A

M

[

−
∂2

∂r2
+
∑

c′

νc′V
(c′)
0 (r) +

L(L + 1)

r2
−

4

r2
1

W (z)

∂

∂z
(1 − z2)W (z)

∂

∂z

]

− E

}

P (c)(z, r)

= −

[

V (c)

(

r

µc

√

(1 + z)/2

)

− V
(c)
0 (r)

]

Π(c)(r, z) (26)

where νc is the number of pairs of a given type c. Note that
∑

c νc = A(A − 1)/2, the total

number of pairs. We emphasize here the inclusion of V
(c)
0 compensates for considering only

harmonic polynomials of the form (20) associated with S-states only.
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From the above it is clear that the extension of the IDEA to unequal mass particles results
in no major complication and that the equations to be solved are still quite simple and easy
to apply to hypernuclear systems. The number of channels in the coupled system (excluding,
for the moment, the matter of coupled angular momentum states), is equal to the number of
different types of particles pairs, e.g. NN , NΛ and ΛΛ.

The solution of Eq. (26) can be achieved either by solving it as a two-dimensional in-
tegrodifferential equation, or via adiabatic approximations [6, 8]. In the extreme adiabatic
approximation (EAA) we assume that the amplitude can be written as a product

P (c)(z, r) = P
(c)
λ (z, r)uλ(r) (27)

which means that we assume that the orbital motion is very rapid as compared to the radial
motion and contains most of the energy, as for electrons in atoms. Then Eq. (26) can be split
into two equations, namely,

~
2A

M

4

r2
1

W (z)

∂

∂z
(1 − z2)W (z)

∂

∂z
P

(c)
λ (z, r) + Uλ(r)P

(c)
λ (z, r)

=

[

V (c)

(

r

µc

√

(1 + z)/2

)

− V
(c)
0 (r)

]

Π
(c)
λ (r, z) (28)

from which we determine, for each r, the eigenpotential Uλ(r) which is used to evaluate the
binding energy EEAA

λ from the second equation,

~
2A

M

[

−
d2

dr2
+

L(L + 1)

r2
+
∑

c′

νc′V
(c′)
0 (r) + Uλ(r)

]

uλ(r) = EEAA
λ uλ(r) . (29)

The EAA provides a lower bound and the accuracy achieved for nuclear systems depends of
the short range characteristics of the underlying nucleon-nucleon forces. For soft potentials the
accuracy is of the order of ∼ 1% and it can be further improved by using the uncoupled adiabatic
approximation (UAA) [6].

III. RESULTS

We present below some results obtained via the exact solution of Eq. (26) to demonstrate
the suitability of the method. In Table I the results obtained for the αΛΛ model of 6

ΛΛHe system
are given. The IDEA results are very close to the equivalent Harmonic Oscillator results.

TABLE I: Three-body dissociation energies for the αΛΛ model of 6
ΛΛ

He for Dalitz ΛΛ potential [16]

αΛ Potential IDEA Harmonic Oscillator
Bassichis-Gal[17] 11.08 11.012
Isle [18] 9.25 9.04
Bando [19] 11.29 11.207

IV. CONCLUSIONS

It has been demonstrated, over the past two decades, that the IDEA has a wide range
of applications in bound state problems, from atomic and molecular to nuclear systems as
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TABLE II: Three-body dissociation energies for the αΛΛ model of 6
ΛΛ

He for Dalitz ΛΛ potential and
convoluted MT (I+ III)/2 NN potential

NΛ Potential MT(I + III)/2 potential
Gibson 9.23
Bassichis-Gal 10.20
Dalitz-Downs 11.21

TABLE III: Dissociation energies for the 4NΛΛ model of 6
ΛΛ
He for Dalitz ΛΛ potential and MT (I +

III)/2NN potential

NΛ Potential MT(I + III)/2 potential NΛ Overlap prob - %
Gibson 7.88 0.15
Bassichis-Gal 13.55 0.17
Dalitz-Downs 27.85 2.77

well as in three-quarks within the quark-antiquark potential model. In the present paper we
demonstrated that this is the case for hypernuclear systems as well. The method is simple enough
for straightforward calculations, the accuracy being comparable to other competing methods and
thus it can be reliably used to extract characteristics of the system under consideration. In the
present work, for example, the IDEA reveals a high degree of polarization of the nuclear core by
Λ hyperons which is not revealed in the “rigid core” approximation. Furthermore, it has been
shown that adiabatic approximations can also be employed in hypernuclear systems. These
approximations should be accurate enough as most of the potentials involved are rather soft and
thus reliable results and wave functions can be readily obtained and used in reaction processes.

In short, the IDEA is a powerful method in the context of hypernuclear problems, given that
it is able to reveal the effect of interparticle correlations and clusterings for systems consisting
of arbitrarily large numbers of particles. It is simple and reliable and can be used not only in
bound state studies but also in locating resonances, in photoprocesses etc.

APPENDIX A: PROJECTION FUNCTION

Following the procedure of Ref. [14] we expand the pairwise amplitudes in hyperspherical

harmonics functions which, for S-states are reduce to the Jacobi polynomial P
(α, β)
K (z)

F (ξk l
N , r) =

∞
∑

K=0

P
(α, β)
K (cos 2φk l

N )Φ(r) (A1)

where φk l
N = ξk l

N /r. Projecting onto the ξi j
N space we obtain

〈ξi j
N |F (ξk l

N )〉 =
∑

K

〈P
(α, β)
K (cos 2φi j

N )|P
(α, β)
K (cos φk l

N )〉P
(α, β)
K (cos 2φi j

N )ΦK(r) (A2)

We recall here that z = cos 2φi j
N . The matrix elements are given in [14, 15]

〈P
(α, β)
K (cos 2φi j

N )|P
(α, β)
K (cos φk l

N )〉 =
P

(α, β)
K (cos 2ϕi j

k, l)

P
(α, β)
K (1)

(A3)
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The angle ϕi j
k, l is evaluated from the kinematical rotation vector [14],

V (ϕ) = ξi j
N cosϕN + ξi j

N−1 sinϕN cosϕN−1 + · · ·

+ ξi j
N−i+1 sinϕN sinϕN−1 · · · sinϕN−i+2 cosϕN−i+1 + · · · + ξi j

1 sinϕN · · · sinϕ2

For V (ϕ) ≡ ξk l
N we obtain

cos 2ϕN =







































+1 if (kl) = (ij)
−1 if (kl) and (ij) are disjoint
mimk −mj(mi +mj +mk)

mimk +mj(mi +mj +mk)
if one member (j, in this case)

of the pair (ij) coincides with
one member (l, in this case) of
the pair (kl).

Setting ϕi j
k l = ϕN [14] in Eq. (A3) and defining

f(z, z′, cos 2ϕi j
k l) = W (z′)

∞
∑

K=0

P
(α, β)
K (z′)P

(α, β)
K (z)P

(α, β)
K (cos 2ϕi j

k l)

P
(α, β)
K (1)h

(α,β)
K

, (A4)

where

h
(α,β)
K =

∫ +1

−1
W (z)[P

(α, β)
K (z)]2 dz , (A5)

we obtain the projection f (c, c′)

f (c, c′)(z, z′) =
∑

k l≡c′

f(z, z′, cosϕi j
k l) . (A6)

The summation is over all pairs (k l) which are of type c′. The pair (i j) is of type c. Two more
points should be clarified here. If c = c′ and the particles comprising the pair c are identical,
(e.g. ΛΛ, NN etc), the projection function reads

f (c, c)(z, z′) = (nj − 2)[2f(z, z′,−1/2) +
1

2
f(z, z′,−1)] (A7)

where nj is the total number of particles of the type comprising the pair c. If c and c′ are
disconnected (i.e when they have no common particles) then

f (c, c′)(z, z′) = ncnc′f(z, z′,−1) (A8)

where nc and nc′ are the number of pairs of types c and c′ respectively.
Other expressions concerning the projection function for equal mass particles and A-fermions

can be found in Refs. [6, 10, 11] and will not be repeated here.
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Analyses of Low and Intermediate Energy Nucleon Scattering

Data from Exotic Nuclei

S. Karataglidis∗
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Rhodes University, Grahamstown, 6140, South Africa

Most data from reactions involving exotic nuclei have been analysed successfully within a
cluster-model framework. This is due to such reactions, for example breakup in heavy-ion
collisions, probing exclusively the long-range behaviour of the wave functions in question.
However, scattering of light ions from hydrogen, which equates to proton scattering in the
inverse kinematics, probes the whole of the nucleus, and so one requires a microscopic ap-
proach to analyse such data. Current models for both low and intermediate energy scattering
will be presented which are able to predict scattering observables. These models may be used
to sensitively test details of nuclear structure, and may elicit details of the cores of exotic
nuclei. Examples will be presented for both stable and exotic nuclei. Consequences for future
experiments and analyses will be discussed.

I. INTRODUCTION

That cluster models are able to explain much data involving exotic nuclei, particularly from
breakup in heavy-ion collisions, may be a consequence of the property that cluster models
are designed to explain the long range behaviour of nuclei by taking into account long-range
correlations missing in the shell model [1]. However, internal dynamics at the nucleon level,
for light nuclei at least, may now be adequately explained using no-core shell models [2], for
which long-range correlations are introduced into the Hamiltonian by higher-order ~ω excitations
beyond the 0~ω model space [3].

The study of exotic nuclei by standard techniques concentrating on the asymptotic region has
always had one additional problem. In heavy ion collisions leading to breakup, the part of the
wave function relating to the core is inaccessible and remains hidden [4, 5]. The success of cluster
models in analyses of data from those reactions is due to the fact that a detailed description
of the structure of the core is not required. It has also been established that the breakup of
6He is a two-step process [6], with the intermediate 5He surviving before the emission of the
second neutron. Therefore, final state interactions play a significant role in breakup reactions.
To obtain information on the ground state wave function, of the core itself, and how the neutron
skin or halo may affect it, one requires reactions which probe the entire nuclear wave function.

One such reaction is the charged photopion reaction which allows for the investigation of
exotic nuclei as final states after the emission of a charged pion from a stable nucleus [7]. In the
case of 17O(γ, π−)17F∗ it was shown that the proton halo in the excited state of 17F manifested
itself as a depletion of the proton density in the core. While some experiments have been done
(see [8] for a discussion) the range of experiments is limited to those exotic nuclei next to the
valley of stability. One requires an alternative to study nuclei out to the drip lines.

Scattering of light ions from hydrogen, which equates to proton scattering in the inverse
kinematics, is the best available means by which the whole of the wave functions of exotic
nuclei may be investigated. Nucleon scattering probes the matter densities of the nucleus.
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At intermediate energies, as the Vpn component of the nucleon-nucleon (NN) interaction is
strongest, proton scattering primarily probes the neutron density and vice-versa. For neutron-
rich nuclei, especially, scattering from hydrogen is a useful tool by which one may study the
neutron density, particular in the interior of the nucleus.

At low energies, nucleon scattering involves the formation of compound A + 1 nuclear states
and so, for light nuclei, one may probe the structures of nuclei outside the drip lines.

In both cases, one requires a model of scattering which is predictive in order for that model
to be useful as a tool for structure. Herein, models for low and intermediate energy scattering
are presented which satisfy this criterion. First, the Melbourne g-folding model for intermediate
energy scattering [9] is discussed. That model folds the effective NN interaction in-medium,
as obtained from the relevant NN g matrices for infinite matter, with the density profile of
the target ground state. Second, a new method for solving the coupled-channel Lippmann-
Schwinger equations for low-energy scattering, known as MCAS [10], is presented. Therein, the
coupled-channel equations are solved algebraically. Central both models is the requirement that
the Pauli Principle be satisfied.

The first half of the paper will discuss the Melbourne g-folding model and present various
results for angular and spin observables for scattering from both stable and exotic nuclei. The
second half will discuss the MCAS model for low energy scattering and illustrate the importance
of the Pauli Principle in descriptions of scattering. Results for stable nuclei and to nuclei beyond
the drip line will be presented.

II. FORMAL THEORY OF THE OPTICAL POTENTIAL

The optical potential for nucleon-nucleus (NA) scattering is associated with the elastic scat-
tering channel only. Following Feshbach [11], the Hilbert space for scattering is split into the
elastic scattering channel (denoted the P space) and the non-elastic channels (the Q space).
The Schrödinger equation for scattering then becomes, with P and Q = 1 − P projectors onto
the respective spaces,

(E − HPP )P
∣

∣

∣
Ψ(+)

〉

= HPQQ
∣

∣

∣
Ψ(+)

〉

(E − HQQ) Q
∣

∣

∣
Ψ(+)

〉

= HQP P
∣

∣

∣
Ψ(+)

〉

, (1)

where HXY = XHY , PQ = QP = 0, and Q |Ψgs〉 = 0. Recoupling, and taking the one-body
approximation gives the appropriate Schrödinger equation for the projectile wave function, viz.

{

E − H0 − 〈Φgs |V |Φgs〉 −
〈

Φgs

∣

∣

∣
V G

(+)
QQV

∣

∣

∣
Φgs

〉}

∣

∣χ+
〉

= 0 , (2)

where G
(+)
QQ = [E − HQQ + iε]−1, and from which the optical potential (OMP) is defined as

U = 〈Φgs |V |Φgs〉 +
〈

Φgs

∣

∣

∣
V G

(+)
QQV

∣

∣

∣
Φgs

〉

. (3)

Specification of the OMP is a many-body problem with explicit dependence on the target
ground state wave function. It is complex, nonlocal, and energy dependent, through the NN

interaction V , through ensuring that the Pauli Principle is not violated, and also through G
(+)
QQ.

The second term in Eq. (3) is termed the Dynamic Polarising Potential (DPP), and defines how
coupling to nonelastic channels varies with energy. Specifically, such coupling may be cast into
three broad energy regimes:
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Low Energy For E < 10 MeV, explicit coupling to specified, discrete, low-lying excited states
of the target is necessary, leading to the formation of compound states in the A+1 nucleus.

Giant Resonances Between 10 and 25 MeV, coupling to the giant resonances becomes impor-
tant [12]. One important exception is the set of He isotopes, for which there are no giant
resonances.

Intermediate and High energies At higher energies, as the level density becomes high, cou-
pling to nonelastic channels may be handled implicitly by using folding models based on
the NN g matrices for nuclear matter.

Note that these energy limits serve only as a rough guide.
The OMP of Eq. (3) may not be solved directly as, while the P space is finite, the Q space is

infinite in principle, and the coupling to the Q space may not be specified exactly. Models are
required to specify the optical potential.

III. INTERMEDIATE ENERGY SCATTERING, MELBOURNE g-FOLDING MODEL

The review article [9] describes the model for intermediate energy NA scattering in detail.
Herein, only the main ingredients are described.

The Melbourne g-folding model for intermediate energy NA scattering takes as its basis an
effective NN interaction from the g matrices of the bare NN interaction. Those g matrices are
the solutions of the Brueckner-Bethe-Goldstone equation, in momentum space,

g
(

q,q′;K
)

= V
(

q,q′
)

+

∫

V
(

q′,k′
) Q (k′,K; kf )

[E (k,K) − E (k′,K)]
g

(

k′,q;K
)

dk′ , (4)

where k = (p0−p1) is the relative momentum and K is the centre-of-mass momentum of the two
particles. Primes denote the equivalent set of momenta after scattering. Q is a Pauli-blocking
operator and the energies in the propagator contain auxiliary potentials which model the effect of
the nuclear medium [13]. Those auxiliary potentials are sometimes modelled by effective mass
operators. The Pauli operator Q and the energies E may be replaced by the angle-averaged
values which has been shown to be a good approximation for nuclear densities above ∼ 15%
[14, 15]. This is an important consideration for scattering from exotic nuclei where scattering is
observed from the core in the case of halo nuclei [8].

The g matrices so obtained are then mapped to those for finite nuclei in coordinate space
[9] by folding in the specified (model) density of the target ground state. That mapping to a
coordinate space representation is achieved by means of a double Bessel transform and allows
for the explicit specification of central, tensor, and two-body spin-orbit terms as sums of Yukawa
functions. This is also a practical consideration: the DWBA suite of programs [16] which are
used to calculate the scattering observables require a coordinate-space representation of the
potential. Once those effective g matrices (geff) have been obtained, the nonlocal, complex,
OMP for scattering is defined as

U(r, r′;E) = δ(r − r′)
∑

i

ni

∫

ϕ∗
i (s)gD(r, s;E)ϕi(s) ds

+
∑

i

niϕi(r
′)gE(r, r′;E)ϕi

= UD(r, E)δ(r − r′) + UE(r, r′;E) , (5)
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where D and E denote the direct and exchange terms of the effective interaction, respectively.
Nuclear structure information enters via the occupation numbers ni for each orbit and the
single-particle (SP) wave functions ϕi. The direct term is the well-known gρ form of the optical
potential and is local by construction. The nonlocality arises from the explicit exchange terms;
neglecting such terms can lead to serious problems [17]. A credible model of structure is necessary
in the specification of the OMP.

The SP wave functions entering Eq. (5) are usually assumed to be of harmonic oscillator (HO)
form. For most nuclei this is a reasonable assumption and is consistent with the underlying shell
model. However, for exotic nuclei, halos in particular, it is more appropriate to use Woods-
Saxon (WS) wave functions [8] with binding energies of the orbits occupied by the halo nucleons
set to the separation energy of the single nucleon in the halo. This allows for the extension
of the nuclear density for loosely bound systems beyond the simple oscillator result. Such a
specification was necessary to describe the anomalously large B(E1) value in 11Be [18].

Inelastic scattering may be calculated in a distorted-wave-approximation (DWA) with the
geff as the operators effecting the transition. The transition amplitude may be written, with ’0’
and ’1’ denoting the projectile and bound-state nucleon, respectively, as

T
Mf Miν′ν
Jf Ji

(θ) =
〈

χ
(−)
ν′ (0)

∣

∣

∣

〈

ΨJfMf
|Ageff (0, 1)A01 {|ΨJiMi

〉
∣

∣

∣
χ(+)

ν (0)
〉}

, (6)

where χ is the distorted wave function for the projectile and A01 is the antisymmetrisation op-
erator for the projectile and bound-state nucleon. In this approach, the distorted wave functions
are generated from folding of the same geff with the structure of the nuclear states.

A. Nuclear structure considerations

The OMP in the g-folding model is a one-body operator with respect to the target (bound)
nucleons and so one requires specification of the one-body density matrix elements (OBDME),
viz.

Sα1α2J =

〈

Jf

∥

∥

∥

∥

[

a†α2
× ãα1

]J
∥

∥

∥

∥

Ji

〉

, (7)

where α = {l, s, j,mτ}, with mτ denoting either a proton or neutron. Various models have been
utilised but, for the most part, the shell model has been used to specify the OBDME. Others
include the Skyrme-Hartree-Fock (SHF) and the RPA.

Note that in specifying the OMP one must keep to the level of the density matrix elements
to preserve the nonlocality. Use of the density itself requires gross approximations to be made in
the handling of the nonlocal exchange terms within a local potential. That may be problematic
[17]. Note also that the specification of the structure is central to success in analyses of data.
A poor structure results in poor agreement with data [19].

IV. RESULTS FROM THE MELBOURNE g-FOLDING MODEL

For the results presented herein, the BonnB NN interaction [20] was used to obtain the
geff. All NA scattering results were obtained using DWBA98 [16] from single-shot calculations:
there was no fitting to any data. The review [9] presents most results obtained to that time,
and includes a discussion on the connection between electron and proton scattering. Some of
those results are presented here, as well as some that have been obtained since.
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FIG. 1: Differential cross sections (left) and analysing powers (right) for the elastic scattering of 65 MeV
protons from various nuclei to mass 64.
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FIG. 2: Differential cross sections for 121 MeV elastic (left) and 135 MeV inelastic (right) proton scat-
tering from 208Pb.

Fig. 1 shows the differential cross sections and analysing powers for the elastic scattering of
65 MeV protons from nuclei in the mass range 7 ≤ A ≤ 64. The structure models used varied
from the shell model for nuclei up to 40Ca, and a simple packed model for nuclei above that.
Clearly, both the differential cross sections and analysing powers are well reproduced. Note the
excellent reproduction of the observables’ dependence with momentum transfer as one increases
the mass.

Fig. 2 displays the results for the elastic [21] and inelastic [22] proton scattering from 208Pb
at 121 and 135 MeV, respectively. The RPA model was used with the Gongy D1S density-
dependent effective interaction to obtain the ground state and transition densities as required.
The elastic scattering cross section data at 121 MeV [23] are also compared to the results of an
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FIG. 3: Differential cross sections for the elastic (a) and inelastic (b) scattering of 41A MeV 6He from
hydrogen.

SHF calculation using the SkM* force [24]. The agreement between the results obtained from
the RPA and SHF calculations and data for the elastic scattering illustrates that both models
specify a reasonable density for the ground state of 208Pb. But only the RPA gives information
on the transitions to excited states, and transition densities obtained therefrom were used to
obtain the results for the inelastic scattering to the 2+

1 and 3−1 states in 208Pb. The data [25]
and results are compared in the right panel of Fig. 2. There is excellent agreement between the
data and results of the RPA calculations for both the E2 and E3 cross sections, and the results
clearly illustrate the phase rule of Blair [26].

These results, and similar obtained for different mass ranges and energies [9], give encour-
agement for the use of the model in analyses of scattering data involving exotic nuclei. Fig. 3
displays the differential cross section for the elastic scattering of 6He from hydrogen at 41A MeV,
as well as the inelastic scattering to the 2+

1 state at 1.8 MeV [27]. The model used to specify the
OBDME is a complete (0 + 2 + 4)~ω shell model using the G matrix interaction of Zheng et al.

[28]. Two sets of results are presented: those designated “halo” used WS SP wave functions with
the binding energy for the valence neutron orbits set to the single neutron separation energy of
2 MeV, while those designated “nonhalo” are those using HO SP wave functions with an oscil-
lator parameter b = 1.8 fm, consistent with the shell model used. The halo results gives better
agreement with the elastic scattering data, including at large angles beyond the first diffraction
minimum. There the halo result is below that of the naive oscillator, and is the only region in
which the two results differ. The extension of the neutron density comes at a price: in order to
conserve particle number the density must be depleted in the core [7, 8]. That is manifest at
these energies as a decrease in the cross section at large momentum transfer. This is confirmed
by the limited amount of data beyond the first minimum. The halo is better illustrated in the
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FIG. 4: Differential cross section for the elastic (top) and inelastic (bottom) scattering of 24.5A (full
circles [30]) and 41A (open circles [27]) MeV 6He ions from hydrogen.

inelastic scattering to the 2+ state. As E2 transitions are surface-peaked, the extension of the
neutron density leads to the enhancement of the cross section at ∼ 30◦, in agreement with the
data. Complementary to the scattering data is the reaction cross section for proton scattering
from 6He [27]. The predictions for the reaction cross section are 353 mb and 406 mb for the
nonhalo and halo specifications of the density, respectively. The measured value is 409 ± 22 mb
[29].

Fig. 4 shows the differential cross sections for the elastic and inelastic scattering of 6He from
hydrogen at 41A and 24.5A MeV [30], as a function of momentum transfer. Therein, only the
halo results of the analyses are displayed. Not only is the dependence on momentum transfer
well reproduced, but also the dependence on energy.

V. SCATTERING AT LOW ENERGY: MCAS

Low-energy facilities such as ISAC, ISOLDE, and proposed facilities such as RIA, perform
experiments for nuclear structure and nuclear astrophysics with hadronic probes involving exotic
nuclei. Hence, a predictive model of low-energy scattering is required, particularly with a view
to obtaining reliable OMPs for use in other hadron-induced reactions.

A different formulation is required to that of the intermediate-energy folding-model approach
as

• Low-energy scattering involves the formation of compound A + 1 nuclei;

• There are few nonelastic channels open so the mean-field approximation is not valid and
the nonelastic channels must be handled explicitly;

• Knowledge of the low-energy OMP is critical to obtain reliable distorted waves for use in
analyses of capture and transfer reactions;
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• The structures of both the target and compound nuclei are important.

These points are addressed by the Multi-Channel Algebraic Scattering (MCAS) theory [10] used
to solve the coupled Lippmann-Schwinger equations for the coupled-channels problem. Ref. [10]
contains the full development of the MCAS; herein, only a brief summary is presented.

MCAS takes as its starting point the coupled Lippmann-Schwinger (LS) equations in mo-
mentum space for channels c and c′, where, for scattering from a spin-zero target, c = 1 defines
the elastic scattering channel

Tcc′ (p, q;E) = Vcc′ (p, q)

+ µ

[

open
∑

c′′=1

∫ ∞

0
Vcc′′(p, x)

1

k2
c′′ − x2 + iε

Tc′′c′(x, q;E)x2dx

−

closed
∑

c′′=1

∫ ∞

0
Vcc′′(p, x)

1

h2
c′′ + x2

Tc′′c′(x, q;E)x2dx

]

(8)

for potential matrices Vcc′(p, q), and µ = 2mred/~
2 with mred being the reduced mass. Therein

the open and closed channels have been separated with the channel wave numbers being

kc =
√

µ(E − ǫc) and hc =
√

µ(ǫc − E) (9)

for E > ǫc and E < ǫc respectively, with ǫc being the threshold energy of channel c.
One may obtain algebraic solutions of the coupled LS equations by separable expansion of

the potential matrix Vcc′(p, q), viz.

Vcc′(p, q) ∼ V
(N)
cc′ (p, q) =

N
∑

n=1

χ̂cnη−1
n χ̂c′n(q) , (10)

where

χ̂cn(p) =

[

2

π

]1/2 1

p

∫ ∞

0
Fl(pr)χcn(r) dr . (11)

A most useful choice of the radial factors is that linked to Sturmian functions of the chosen
potential matrix, i.e.

χcn(r) =

C
∑

c′=1

Vcc′Φc′n(r), (12)

where Φc′n are the Sturmian functions [31], generated from the chosen potential matrix.
The optical potential for elastic scattering now contains explicit channel coupling and is

defined as

V opt(r, r′;E) = V11(r) + ∆U(r, r′;E) (13)

where the nonlocal DPP can be shown to be [10]

∆U(r, r′;E) =
N

∑

n,n′=1

χ1n(r)
1

ηn
G

(Q)
nn′ (E)

1

n′
χn′1(r

′) . (14)
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FIG. 5: Mass-13 sub-threshold spectra from the coupling of a nucleon to 12C in the collective model.

The energy factor is the propagator for all excluded channels

G
(Q)
nn′ (E) =

C
∑

c,c′=2

∫ ∫

χcn(r)G
(Q)
cc′ (r, r′)χc′n′(r′) dr dr′, (15)

and are defined by the linear algebraic equations

G
(Q)
nn′ (E) = µ

[

open
∑

c=2

∫ ∞

0

χ̂cn(x)χ̂cn′(x)

k2
c − x2 + iε

x2dx −

closed
∑

c=2

χ̂cn(x)χ̂cn′(x)

h2
c + x2

x2dx

]

. (16)

There is also a new method by which the resonances in the A + 1 compound nucleus may be
found from the poles in the S matrix, once the T matrix is obtained [10]. The solution of these
equations for positive E gives the resonances in the A + 1 compound nucleus. Of note, that
as the solutions are obtained in momentum space, one may also find poles in the S matrix
corresponding to negative E, in which case the poles correspond to sub-threshold bound states.

VI. RESULTS FROM MCAS

Presently, the collective model is used to specify the structure by using the spectrum of the
target nucleus to define the relevant open and closed channels. For 12C+n, the assumed target
spectrum is 0+

1 (ground state), 2+
1 (4.44 MeV), and 0+

2 (7.65 MeV). The potential matrix is
specified allowing for quadrupole deformation. States in the compound 13C nucleus are formed
by the coupling of the incident neutron to the assumed target spectrum. For negative energy,
the spectrum found is shown in Fig. 5. Also shown in Fig. 5 is the subthreshold spectrum of
13N found by adding the Coulomb potential to the potential matrix to account for an incident
proton.

Note that in both cases, there are far more predicted states than are otherwise known. The
problem is the neglect of the Pauli-blocking in forming the compound states. There is nothing
in the collective model preventing the incident nucleon from coupling into an already filled orbit
in the target nucleus, thus leading to many spurious states. One can account for the Pauli
Principle in the collective model by adding an Orthogonalising Pseudo-Potential (OPP) [10] to
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the potential matrix at the outset, which ensures that all Sturmian functions used are orthogonal
to every function describing an occupied state in the target. Thereby all MCAS solutions of
ths LS equations are orthogonal to all forbidden states in all channels. Making this correction,
one obtains the mass-13 spectra shown in Fig. 6. Therein, there is one-to-one correspondence
between the predicted subthreshold spectrum and data, with only a small inversion of the 5

2

+

and 3
2

−
states in 13C.

Neglect of the Pauli Principle in coupled-channels calculations can be severe [32]. However,
the severity of having spurious states is not restricted to finding the correct subthreshold spectra.
While the correct scattering resonances may be found in a standard collective model coupled-
channels calculation by a judicious use of parameters, the presence of spurious subthreshold
states necessarily means that the underlying wave functions corresponding to those resonances
are not correct [33].

The cross sections for low-energy nucleon-12C elastic scattering are shown in Fig. 7. In
both cases the resonances and widths are reasonably well reproduced, although the agreement
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FIG. 8: Mass-15 spectra from the coupling of n+14C and p+14O.

weakens as one increases the energy. In that case, the influence of states in the target spectrum
higher than those assumed increases and more states of the target spectrum must be taken into
account.

An application of the MCAS approach to states beyond the drip line is that of 15F [34],
which is formed in the collective model by p+14O. The mirror system is that of n+14C forming
15C, and the potentials are set by the mirror system before application to 15F. Fig. 8 shows
the mass-15 spectra formed by adding a nucleon to the mass-14 nucleus, assuming a target
spectrum of 0+

1 , 0+
2 , and 2+

1 . An additional feature is needed to explain these spectra: that
of Pauli-hindrance. This is an acknowledgement of partially-filled orbits in the target nucleus,
and is formed by a much weaker energy for the OPP than that for Pauli-blocking. When one
takes both Pauli-hindrance and Pauli-blocking into account, one obtains the spectrum of 15C as
shown in Fig. 8. Adding the Coulomb potential to the potential matrix found for 15C gives the
spectrum for 15F as shown. Note that while the two bound 15C states are found, the MCAS
correctly predicts no bound states for 15F and places the resonances in the region indicated by
the measured spectrum.

The cross sections for both p+14O and n+14C are shown in Fig. 9. The data for the scattering
of 14O from hydrogen shows two resonances corresponding to the 5

2

+
and 1

2

+
resonances in 15F.

The MCAS result reasonably predicts both the energies and the widths of those states, and the
level of agreement is as good as with other analyses [35, 36].

VII. CONCLUSIONS

Predictive models for both low- and intermediate-energy nucleon-nucleus scattering have
been presented. These allow for facets of nuclear structure to be studied for both the target and
compound nuclear states.

For intermediate energy scattering, a g-folding model approach, based on the effective NN
g matrices, together with credible models of nuclear structure, is suitable to study details of the
target density. Excellent agreement is achieved between data and predictions for both differential
cross sections and spin observables, when reasonable descriptions of the target densities are
available. For 208Pb, an RPA specification of the density not only gave an excellent prediction
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of the elastic scattering, but also for the inelastic scattering to the 2+
1 and 3−1 states as well.

The model has also been applied to scattering of exotic nuclei from hydrogen. In the case of
6He, the neutron halo has been identified unambiguously, with a self-consistent analysis of the
data from elastic scattering, inelastic scattering and the reaction cross section.

At low energies, the MCAS approach has been applied to nucleon scattering from 12C in
the first instance. Using a collective model prescription of the target spectrum, bound and
resonance states in the mass-13 nuclei are found in good agreement with the known spectra.
Central to this approach is the requirement that the Pauli Principle be satisfied. Violation of
the Pauli Principle in coupled-channels calculations leads to spurious states in the compound
nucleus spectrum, and such causes severe problems both in the specification of the sub-threshold
bound states and in the descriptions of the scattering.

The MCAS approach also allows for the study of nuclei beyond the drip lines. To account
for partially-filled valence orbits which may appear in configurations of such nuclei, one requires
also Pauli hindrance in the collective model, which acknowledges the shell effects arising from
partially-filled orbits. The spectrum of 15F and the p+14O cross section were explained using
both Pauli hindrance and Pauli blocking.

The consequences of the violation of the Pauli Principle in coupled-channels calculations are
serious. Not only are spurious sub-threshold states introduced but the structures of the observed
resonance states in scattering are not correct. That has implications for any parametrized local
interaction for scattering abd wave functions found from them in analyses of related reactions.
If the underlying wave functions are not reliable, observables obtained for reactions requiring
the use of distorted wave functions from the optical potentials would also be problematic. De-
velopment of MCAS is continuing to address these problems.

With these tools, nuclear structure may be studied with nucleon probes to the same level
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as that accorded to electron scattering. As electron scattering facilities to measure the form
factors of exotic nuclei are not yet available, the use of nucleon probes presents the best means
of studying exotic nuclei. It is hoped that experiments and theory will continue tapping into
this rich vein of study.
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Nuclear Structure Calculations with Skyrme Interactions
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Starting from an effective Skyrme interaction we present a method that takes into account
the coupling between one- and two-phonon terms in the wave functions of excited states.
The approach is a development of a finite rank separable approximation for the quasiparticle
RPA calculations proposed in our previous work. Some examples of such calculations for low-
lying states and giant resonances are given. The influence of the phonon-phonon coupling
on energies and transition probabilities for the low-lying quadrupole and octupole states in
the neutron-rich Sn isotopes is studied.

I. INTRODUCTION

Experimental and theoretical studies of properties of the excited states in nuclei far from the
β-stability line are presently the object of very intensive activity. The random phase approxi-
mation (RPA) [1–4] is a well-known and successful way to treat nuclear vibrational excitations.
Using the Gogny’s [5] or Skyrme-type [6] effective nucleon-nucleon interactions the most con-
sistent models can describe the ground states in the framework of the Hartree-Fock (HF) and
Hartree-Fock-Bogoliubov (HFB) approximations and the excited states within the RPA and
quasiparticle RPA (QRPA). Such models are quite successful not only to reproduce the nuclear
ground state properties [7, 8], but also to describe the main features of nuclear excitations in
closed-shell [9, 10] and open-shell nuclei [11–14]. In the latter case the pairing correlations are
very important.

Due to the anharmonicity of vibrations there is a coupling between one-phonon and more
complex states [2, 4] and the complexity of calculations beyond standard RPA or QRPA increases
rapidly with the size of the configuration space, so one has to work within limited spaces.
Making use of separable forces one can perform calculations of nuclear characteristics in very
large configuration spaces since there is no need to diagonalize matrices whose dimensions grow
with the size of configuration space. For example, the well-known quasiparticle-phonon model
(QPM) [4] can do very detailed predictions for nuclei away from closed shells [15], but it is
very difficult to extrapolate the phenomenological parameters of the nuclear hamiltonian to new
regions of nuclei.

That is why a finite rank approximation for the particle–hole (p-h) interaction resulting from
the Skyrme forces has been suggested in our previous work [16]. Thus, the self-consistent mean
field can be calculated with the original Skyrme interaction whereas the RPA solutions would
be obtained with the finite rank approximation to the p-h matrix elements. It was found that
the finite rank approximation can reproduce reasonably well the dipole and quadrupole strength
distributions in Ar isotopes. Alternative schemes to factorize the p-h interaction were considered
in [17–19].

Recently, the finite rank approximation for p-h interactions of Skyrme type has been gen-
eralized to take into account the pairing correlations [20]. The QRPA was used to describe
characteristics of the low-lying 2+ and 3− states and giant resonances in nuclei with very dif-

∗
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ferent mass numbers [20, 21]. It was found that there is room for the phonon-phonon coupling
effects in many cases. The first calculation to estimate this effect has been done for 112Sn in
[22].

In Ref. [23], we extended our approach to take into account the coupling between the one-
and two-phonon terms in the wave functions of excited states. As an application of the method
we present results for low-lying 2+ and 3− states in neutron-rich Sn isotopes and compare them
with recent experimental data [24] and other calculations [25–27].

This paper is organized as follows: in Sec. II a sketch of our method allowing to consider
effects of the phonon-phonon coupling is presented. In Sec. III details of calculations and some
examples of the RPA calculations for low-lying states and giant resonances are given. It is shown
in Sec. IV how the phonon-phonon coupling can influence the properties of the quadrupole and
octupole states in 124−134Sn isotopes. Conclusions are drawn in Sec. V.

II. METHOD OF CALCULATIONS

A. The model hamiltonian and QRPA

We start from the effective Skyrme interaction [6] and use the notation of Ref. [28] containing
explicit density dependence and all spin-exchange terms. The single-particle spectrum is calcu-
lated within the HF method. The continuous part of the single-particle spectrum is discredited
by diagonalizing the HF hamiltonian on a harmonic oscillator basis [29]. The p-h residual inter-
action Ṽres corresponding to the Skyrme force that includes both direct and exchange terms can
be obtained as a second derivative of the energy density functional with respect to the density
[30]. Following our previous papers [16] we simplify Ṽres by approximating it by its Landau-
Migdal form. For Skyrme interactions all Landau parameters Fl, Gl, F

′

l , and G
′

l with l > 1 are
zero. Here, we keep only the l = 0 terms in Vres and in the coordinate representation one can
write it in the following form:

Vres(r1, r2) = N−1
0 [F0(r1) + G0(r1)(σ1 · σ2)

+(F
′

0(r1) + G
′

0(r1)(σ1 · σ2))(τ1 · τ2)]δ(r1 − r2) (1)

where σi and τi are the spin and isospin operators, and N0 = 2kF m∗/π2
~

2 with kF and m∗

standing for the Fermi momentum and nucleon effective mass. The expressions for F0, G0, F
′

0,
and G

′

0 in terms of the Skyrme force parameters can be found in Ref. [28]. Because of the
density dependence of the interaction the Landau parameters of Eq. (1) are functions of the
coordinate r.

In what follows we use the second quantized representation and Vres can be written as:

V̂res =
1

2

∑

1234

V1234 : a+
1 a+

2 a4a3 : (2)

where a+
1 (a1) is the particle creation (annihilation) operator, 1 denotes the quantum numbers

(n1 l1 j1 m1), and

V1234 =

∫

φ∗
1(r1)φ

∗
2(r2)Vres(r1, r2)φ3(r1)φ4(r2)dr1dr2. (3)

After integrating over the angular variables one needs to calculate the radial integrals. It is
shown in [16, 20] that the radial integrals can be accurately calculated by choosing a large
enough cut-off radius R and using a N -point integration Gauss formula with abscissas rk and
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weights wk. Thus, the two-body matrix element is a sum of N separable terms, i.e., the residual
interaction takes the form of a rank N separable interaction.

We employ a hamiltonian which includes an average HF field, pairing interactions, the
isoscalar, and isovector particle–hole (p–h) residual forces in a finite rank separable form [20]:

H =
∑

τ





τ
∑

jm

(Ej − λτ )a
†
jmajm −

1

4
V (0)

τ : P †
0 (τ)P0 (τ) :



+ V̂res , (4)

where

P+
0 (τ) =

τ
∑

jm

(−1)j−ma+
jma+

j−m . (5)

We sum over the proton(p) and neutron(n) indexes and the notation {τ = (n, p)} is used. The
change τ ↔ −τ implies that p ↔ n. The single-particle states are specified by the quantum

numbers (jm), Ej are the single-particle energies, λτ the chemical potentials, and V
(0)
τ is the

interaction strength in the particle-particle channel. The hamiltonian (4) has the same form
as the QPM hamiltonian with N separable terms [4, 31], but the single-particle spectrum and
parameters of the p-h residual interaction are calculated making use of the Skyrme forces.

In what follows we work in the quasiparticle representation defined by the canonical Bogoli-
ubov transformation:

a+
jm = ujα

+
jm + (−1)j−mvjαj−m . (6)

The hamiltonian (4) can be represented in terms of bifermion quasiparticle operators and their
conjugates [4]:

B(jj
′

;λµ) =
∑

mm′

(−1)j
′

+m′

〈jmj
′

m
′

| λµ〉α+
jmαj

′
−m

′ , (7)

A+(jj
′

;λµ) =
∑

mm
′

〈jmj
′

m
′

| λµ〉α+
jmα+

j′m′ . (8)

We introduce the phonon creation operators

Q+
λµi =

1

2

∑

jj′

(

Xλi
jj′

A+(jj
′

;λµ) − (−1)λ−µY λi
jj′

A(jj
′

;λ − µ)
)

. (9)

where the index λ denotes total angular momentum and µ is its z-projection in the laboratory
system. One assumes that the ground state is the QRPA phonon vacuum | 0〉, i.e. Qλµi | 0〉 = 0.
We define the excited states for this approximation by Q+

λµi | 0〉. The quasiparticle energies (εj),
the chemical potentials (λτ ), the energy gap, and the coefficients u and v of the Bogoliubov
transformations (6) are determined from the BCS equations with the single-particle spectrum
that is calculated within the HF method with the effective Skyrme interaction. Making use of
the linearized equation-of-motion approach [1],

〈0|
[

δQλµi,
[

H,Q+
λµi

]]

| 0〉 = ω
λi
〈0|
[

δQλµi, Q
+
λµi

]

| 0〉 , (10)

with the normalization condition

〈0 | [Qλµi, Q
+
λµi

′ ] | 0〉 = δii′ , (11)
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one can get the QRPA equations [3, 4]
(

A B
−B −A

)(

X
Y

)

= w

(

X
Y

)

. (12)

In QRPA problems there appear two types of interaction matrix elements, the A
(λ)
(j1j′

1
)(j2j′

2
)
matrix

related to forward-going graphs and the B
(λ)
(j1j′

1
)τ (j2j′

2
)qτ

matrix related to backward-going graphs.

Solutions of this set of linear equations yield the eigen-energies and the amplitudes X and Y of
the excited states. The dimension of the matrices A,B is the space size of the two-quasiparticle
configurations. For our case expressions for A,B and X,Y are given in [20]. Using the finite
rank approximation we need to invert a matrix of dimension 4N × 4N independently of the
configuration space size [16, 20]. Therefore, this approach enables one to reduce remarkably the
dimensions of the matrices that must be inverted to perform structure calculations in very large
configuration spaces.

B. Phonon-phonon coupling

Our calculations [20] show that, for the normal parity states one can neglect the spin-
multipole terms of the p-h residual interaction (1). Using the completeness and orthogonal-
ity conditions for the phonon operators one can express bifermion operators A+(jj

′

;λµ) and
A(jj

′

;λµ) through the phonon ones and the initial hamiltonian (4) can be rewritten in terms of
quasiparticle and phonon operators in the following form:

H = h0 + hQQ + hQB (13)

h0 =
∑

jm

εj α+
jm αjm (14)

hQQ = −
1

4

∑

λµii′τ

W λii′ (τ) Q+
λµiQλµi′ (15)

hQB = −
1

2

∑

λµiτ

∑

jj
′

τ
Γλi

jj′ (τ)
(

(−)λ−µQ+
λµi + Qλ−µi

)

B(jj
′

;λ − µ) + h.c. (16)

The coefficients W and Γ of the hamiltonian (13) are sums of N combinations of phonon am-
plitudes, the Landau parameters, the reduced matrix elements of the spherical harmonics and
radial parts of the HF single-particle wave function (see Appendix A). It is worth to point out
that the term hQB is responsible for the mixing of the configurations and, therefore, for the
description of many characteristics of the excited states of even–even nuclei [4].

To take into account the mixing of the configurations in the simplest case one can write the
wave functions of excited states as

Ψν(λµ) = {
∑

i

Ri(λν)Q+
λµi +

∑

λ1i1λ2i2

P λ1i1
λ2i2

(λν)
[

Q+
λ1µ1i1

Q+
λ2µ2i2

]

λµ
}|0〉 (17)

with the normalization condition
∑

i

R2
i (Jν) + 2

∑

λ1i1λ2i2

(P λ1i1
λ2i2

(Jν))2 = 1 . (18)
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Using the variational principle in the form

δ (〈Ψν(λµ) |H | Ψν(λµ)〉 − Eν (〈Ψν(λµ) |Ψν(λµ)〉 − 1)) = 0, (19)

one obtains a set of linear equations for the unknown amplitudes Ri(Jν) and P λ1i1
λ2i2

(Jν),

(ωJi − Eν)Ri(Jν) +
∑

λ1i1λ2i2

Uλ1i1
λ2i2

(Jν)P λ1i1
λ2i2

(Jν) = 0 , (20)

∑

i

Uλ1i1
λ2i2

(Ji)Ri(Jν) + 2(ωλ1i1 + ωλ2i2 − Eν)P
λ1i1
λ2i2

(Jν) = 0 , (21)

where Uλ1i1
λ2i2

(Ji) is the matrix element coupling one- and two-phonon configurations [4, 32],

Uλ1i1
λ2i2

(Ji) = 〈0|QJihQB

[

Q+
λ1i1

Q+
λ2i2

]

J
|0〉 . (22)

The expression of Uλ1i1
λ2i2

(Ji) is given in Appendix B. The number of linear equations (20), (21)
equals the number of one- and two-phonon configurations included in the wave function (17).

The energies of excited states Eν are solutions of the secular equation

F (Eν) ≡ det

∣

∣

∣

∣

∣

∣

(ωλi − Eν)δii′ −
1

2

∑

λ1i1,λ2i2

Uλ1i1
λ2i2

(λi)Uλ1i1
λ2i2

(λi′)

ωλ1i1 + ωλ2i2 − Eν

∣

∣

∣

∣

∣

∣

= 0, (23)

where the rank of the determinant equals the number of the one-phonon configurations. Using
Eqs. (20) and (21) and the normalization condition (18), one can find the amplitudes Ri(Jν)
and P λ1i1

λ2i2
(Jν).

It is necessary to point out that the equations derived above have the same form as the basic
QPM equations [4, 32], but the single-particle spectrum and the p-h residual interaction are
determined making use of the Skyrme interactions.

III. DETAILS OF CALCULATIONS

We apply the present approach to study characteristics of the low-lying vibrational states in
the neutron-rich Sn isotopes. In this paper we use the parametrization SLy4 [33] of the Skyrme
interaction. This parametrization was proposed to describe isotopic properties of nuclei from
the β-stability line to the drip lines. Spherical symmetry is assumed for the HF ground states.

The pairing constants V 0
τ are fixed to reproduce the odd-even mass difference of neighboring

nuclei. It is well known [11, 12] that the constant gap approximation leads to an overestimate
of occupation probabilities for subshells that are far from the Fermi level and it is necessary to
introduce a cut-off in the single-particle space. Above this cut-off subshells do not participate
in the pairing effect. In our calculations we choose the BCS subspace to include all subshells
lying below 5 MeV.

In order to perform QRPA calculations, the single-particle continuum is discretized [29] by
diagonalizing the HF hamiltonian on a basis of twelve harmonic oscillator shells and cutting off
the single-particle spectra at the energy of 100 MeV. This is sufficient to exhaust practically all
the energy-weighted sum rule.

The Landau parameters F0, G0, F
′

0, and G
′

0 expressed in terms of the Skyrme force parameters
[28] depend on kF . As it is pointed out in our previous works [16, 20] one needs to adopt some
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effective value for kF to give an accurate representation of the original p-h Skyrme interaction.
For the present calculations we use the nuclear matter value for kF .

Our previous investigations [20] enable us to conclude that N=45 for the rank of our separable
approximation is enough for multipolarities λ ≤ 3 in nuclei with A ≤ 208. Increasing N , for
example, up to N=60 in 208Pb changes results for energies and transition probabilities not more
than 1%. Our calculations show that, for the natural parity states one can neglect the spin-
multipole interactions and this reduces by a factor 2 the total matrix dimension, i.e., the matrix
dimensions never exceed 2N × 2N independently of the configuration space size [16, 20].

The two-phonon configurations of the wave function (17) are constructed from natural parity
phonons with multipolarities λ = 2, 3, 4, 5. All one-phonon configurations with energies below 8
MeV for 124−130,134Sn and 10 MeV for 132Sn are included in the wave function (17). The cut-off
in the space of the two-phonon configurations is 21 MeV. An extension of the space for one-
and two-phonon configurations does not change results for energies and transition probabilities
practically.

IV. RESULTS OF CALCULATIONS

A. Harmonic approximation

Of great importance for us is how well the ground state properties of the stable nuclei are
reproduced Therefore we pay a special attention on nuclear radii. In Fig. 1 the dependence
of the difference between neutron and proton radii on the mass number is shown [34]. The
difference becomes larger when the number of the neutrons is increased. The calculated charge
radii are in reasonable agreement with the known experimental data [35, 36]. The radii decrease
about 10% around the double magic nucleus 132Sn. This is due to the vanishing of a pairing gap
in this nucleus. As a first example we examine the 2+

1 state energies and B(E2)-values in some
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FIG. 1: The dependence of the difference between neutron and proton radii on the mass number of Sn
isotopes.

Ar, Sn, and Pb isotopes [20]. The results of our QRPA calculations and the experimental data



V.V. Voronov 111

[37] are shown in Table I. One can see that there is a satisfactory agreement with experimental
data. Results of our calculations for Ar isotopes are close to those of QRPA with Skyrme forces
[43]. The evolution of the B(E2)-values in the Ar isotopes demonstrates clearly the pairing
effects. The experimental and calculated B(E2)-values in 38Ar are three times less than those in
36,40Ar. The neutron shell closure leads to the vanishing of the neutron pairing and a reduction
of the proton gap. As a result there is a remarkable reduction of the E2 transition probability in
38Ar. Some overestimate of the energies indicates that there is room for two-phonon effects. As

TABLE I: Energies and B(E2)-values for up-transitions to the first 2+ states.

Nucleus Energy B(E2↑)
(MeV) (e2fm4)

Exp. Theory Exp. Theory
36Ar 1.97 1.91 300±30 310
38Ar 2.17 2.51 130±10 110
40Ar 1.46 2.17 330±40 290
112Sn 1.26 1.49 2400±140 2600
114Sn 1.30 1.51 2400±500 2100
206Pb 0.80 0.96 1000±20 1700
208Pb 4.09 5.36 3000±300 2000

an another example of the pairing effect we examine the 2+
1 and 3−1 state energies and transition

probabilities in some S isotopes. The results of our QRPA calculations for the energies and
B(E2)-values and the experimental data [37] are shown in Table II.

TABLE II: Energies, B(E2)-values, and (Mn/Mp)/(N/Z) ratios for up-transitions to the first 2+ states.

Nucleus Energy B(E2↑) (Mn/Mp)/(N/Z)
(MeV) (e2fm4)

Exp. Theory Exp. Theory Exp. Theory
32S 2.23 3.34 300±13 340 0.94±0.16 0.92
34S 2.13 2.48 212±12 290 0.85±0.23 0.87
36S 3.29 2.33 104±28 130 0.65±0.18 0.40
38S 1.29 1.55 235±30 300 1.09±0.29 0.73

One can see that there is a rather good agreement with experimental data. Results of our
calculations for S isotopes are close to those of QRPA with Skyrme forces [43]. The evolution
of the B(E2)-values in the S isotopes clearly demonstrates the pairing effects. The experimental
and calculated B(E2)-values in 36S are two times less than those in 34,38S. The neutron shell
closure leads to the vanishing of the neutron pairing and a reduction of the proton gap. As a
result there is a remarkable reduction of the E2 transition probability in 36S. Some overestimate
of the energies in 34,38S indicates that there is room for two-phonon effects.

Results of our calculations for the 3−1 energies and the transition probabilities B(E3) are
compared with experimental data [38] in Table III. Generally there is a good agreement between
theory and experiment.

An additional information about the structure of the first 2+ and 3− states can be extracted
by looking at the ratio of the multipole transition matrix elements Mn/Mp that depend on
the relative contributions of the proton and neutron configurations. In the framework of the
collective model for isoscalar excitations this ratio is equal to Mn/Mp = N/Z and any deviation
from this value can indicate an isovector character of the state. The Mn/Mp ratio can be
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TABLE III: Energies, B(E3)-values, and (Mn/Mp)/(N/Z) ratios for up-transitions to the first 3− states.

Nucleus Energy B(E3↑) (Mn/Mp)/(N/Z)
(MeV) (e2fm6)

Exp. Theory Exp. Theory Theory
32S 5.01 7.37 12700±2000 8900 0.89
34S 4.62 5.66 8000±2000 8500 1.06
36S 4.19 3.86 8000±3000 7200 1.15
38S – 5.68 – 6200 1.01

determined experimentally by using different external probes [40–42]. Recently [43], QRPA
calculations of the Mn/Mp ratios for the 2+

1 states in some S isotopes have been done. The
predicted results are in good agreement with experimental data [43]. Our calculated values of
the Mn/Mp ratios for the 2+

1 and 3−1 states are shown in Tables II and III, respectively. Our
results support the conclusions of Ref. [43] about the isovector character of the 2+

1 states in 36S.
As one can see from Table III our calculations predict that the Mn/Mp ratios for the 3−1 states
are rather close to N/Z, thus indicating their isoscalar character.

FIG. 2: The dipole strength distributions in 36Ar, 112Sn, and 208Pb.

To test our approach for high lying states we examine the dipole strength distributions
(GDR) in 36Ar, 112Sn, and 208Pb [21] (see Fig. II). For the energy centroids (m1/m0) we get
19.9 MeV, 15.8 MeV, and 12.7 MeV in 36Ar, 112Sn, and 208Pb respectively. The calculated energy
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FIG. 3: The quadrupole strength distribution in 36Ar.

FIG. 4: The octupole strength distribution in 208Pb.

centroid for 208Pb is in a satisfactory agreement with the experimental value of 13.4 MeV [44].
The values of energy centroids for 36Ar and 112Sn are rather close to the empirical systematic
Ec = 31.2A−1/3 + 20.6A−1/6 MeV. As one can see from Fig. III, the calculated values for the
GQR for 36Ar are closed to the empirical systematic too. The octupole strength distribution
in 208Pb is rather well studied in many experiments [46, 48].

The calculated octupole strength distribution up to the excitation energy 35 MeV is shown
in Fig. IV. According to experimental data [46] for the 3−1 state, in 208Pb the excitation en-
ergy equals to Ex = 2.62 MeV and the energy-weighted sum rule (EWSR) is exhausted by
20.4% that can be compared with the calculated values Ex = 2.66 MeV and EWSR=21%.
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TABLE IV: Energies and B(E2)-values for up-transitions to the first 2+ states.

Nucleus Energy B(E2↑)
(MeV) (e2b2)

Exp. Theory Exp. Theory
QRPA 2PH QRPA 2PH

124Sn 1.13 1.92 1.03 0.1660±0.0040 0.177 0.151
126Sn 1.14 1.96 1.30 0.10±0.03 0.149 0.133
128Sn 1.17 2.08 1.48 0.073±0.006 0.111 0.100
130Sn 1.22 2.37 1.73 0.023±0.005 0.064 0.058
132Sn 4.04 4.47 4.03 0.14±0.06 0.136 0.129
134Sn 0.73 1.65 1.34 0.029±0.006 0.016 0.015

For the low-energy octupole resonance below 7.5 MeV our calculation gives the centroid en-
ergy Ec = 5.96 MeV and EWSR=12% as compared to the experimental values of 5.4 MeV and
15.2% respectively. For the high-energy octupole resonance we get values Ec = 20.9 MeV and
EWSR=61% that are in a good agreement with experimental findings Ec = 20.5 ± 1 MeV and
EWSR=75± 15% [48]. One can conclude that present calculations reproduce correctly not only
the 3−1 characteristics, but the whole octupole strength distribution in 208Pb.

B. Effect of phonon-phonon coupling

As an application of the method we investigate effects of the phonon-phonon coupling on
energies and transition probabilities to 2+

1 and 3−1 states in 124−134Sn.
Results of our calculations for the 2+

1 energies and transition probabilities B(E2) are com-
pared with experimental data [24, 37] in Table IV. Columns ”QRPA” and ”2PH” give values
calculated within the QRPA and taking into account the phonon-phonon coupling, respectively.

It is seen in Table IV that there is a remarkable increase of the 2+
1 energy and B(E2 ↑)

in 132Sn in comparison with those in 130,134Sn. Such a behavior of B(E2 ↑) is related with
the proportion between the QRPA amplitudes for neutrons and protons in Sn isotopes. The
neutron amplitudes are dominant in all Sn isotopes and the contribution of the main neutron
configuration {1h11/2, 1h11/2} increases from 81.2% in 124Sn to 92.8% in 130Sn when neutrons
fill the subshell 1h11/2. At the same time the contribution of the main proton configuration
{2d5/2, 1g9/2} is decreasing from 9.3% in 124Sn to 3.9% in 130Sn. The closure of the neutron
subshell 1h11/2 in 132Sn leads to the vanishing of the neutron paring. The energy of the first
neutron two-quasiparticle pole {2f7/2, 1h11/2} in 132Sn is greater than energies of the first poles
in 130,134Sn and the contribution of the {2f7/2, 1h11/2} configuration in the doubly magic 132Sn
is about 61%. Furthermore, the first pole in 132Sn is closer to the proton poles. This means
that the contribution of the proton two-quasiparticle configurations is greater than those in
the neighboring isotopes and as a result the main proton configuration {2d5/2, 1g9/2} in 132Sn
exhausts about 33%. In 134Sn the leading contribution (about 99%) comes from the neutron
configuration {2f7/2, 2f7/2} and as a result the B(E2) value is reduced. Such a behavior of

the 2+
1 energies and B(E2) values in the neutron-rich Sn isotopes reflects the shell structure

in this region . It is worth to mention that the first prediction of the anomalous behavior of
2+ excitations around 132Sn based on the QRPA calculations with a separable quadrupole-plus-
pairing hamiltonian has been done in [25].

In comparison with other QRPA calculations of Sn isotopes done with the Gogny force
[27] and, especially, with Skyrme forces [26], the present QRPA results for 2+

1 energies are in
agreement but our B(E2) values are somewhat larger. One possible cause for this discrepancy
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TABLE V: Energies and B(E3)-values for up-transitions to the first 3− states.

Nucleus Energy B(E3↑)
(MeV) (e2b3)

Exp. Theory Exp. Theory
QRPA 2PH QRPA 2PH

124Sn 2.60 3.64 3.25 0.073±0.010 0.208 0.196
126Sn 2.72 4.16 3.76 0.191 0.176
128Sn 4.66 4.22 0.181 0.161
130Sn 5.17 4.75 0.183 0.159
132Sn 4.35 5.66 5.36 0.202 0.191
134Sn 5.01 4.51 0.128 0.111

TABLE VI: (Mn/Mp)/(N/Z) ratios for the first 2+ and 3− states.

State 124Sn 126Sn 128Sn 130Sn 132Sn 134Sn

2+

1 0.99 0.99 0.98 0.97 0.81 1.44
3−1 0.94 0.92 0.89 0.86 0.83 0.91

may lie in the fact that different prescriptions for the residual interaction in the p-p channel are
adopted in Ref. [26] and in the present work.

One can see from Table IV that the inclusion of the two-phonon terms results in a decrease of
the energies and a reduction of transition probabilities. Note that the effect of the two-phonon
configurations is important for the energies and this effect becomes weak in 132Sn. There is some
overestimate of the energies for the QRPA calculations and taking into account the two-phonon
terms improves the description of the 2+

1 energies. The reduction of the B(E2) values is small in
most cases due to the crucial contribution of the one-phonon configuration in the wave function
structure.

Results of our calculations for the 3−1 energies and the transition probabilities B(E3) com-
pared to experimental data [38] are shown in Table V. As for the quadrupole excitations the
influence of coupling between one- and two-phonon terms in the wave functions of the 3−1 states
leads to the decrease of the energies and the reduction of transition probabilities. In spite of
the fact that the 3−1 states have strong collectivity and many two-quasiparticle configurations
give a contribution in the QRPA wave functions in Sn isotopes the phonon-phonon coupling is
not very strong in this case. Our calculation shows that the main reason is the smallness of the
matrix elements coupling the one-phonon configuration {3−1 } and the two-phonon configuration

{2+
1 ; 3−1 } (U

2+

1

3−
1

(3−1 )). As a result the decrease of the 3−1 energies is about 10%. In the present

paper we neglect the p-p channel that can be important for collective phonons and can reduce
the collectivity of states [4, 39]. This can give an additional lowering of energies and transition
probabilities , but this is not the case for 132Sn. Comparing with the QRPA results of Ref. [26]
for 3−1 energies and transition probabilities we find that the energies are in general agreement
whereas our calculated B(E3) are larger than those of Ref. [26]. Again, the reason may be in
the different treatments of the residual interaction in the p-p channel. It is worth to mention
that experimental data for 3−1 states in the neutron-rich Sn isotopes are very scarce.

Our calculated values for the Mn/Mp ratios for the 2+
1 and 3−1 states are shown in Table VI.

The calculated Mn/Mp ratios are rather close to N/Z except 2+
1 in 134Sn. It is worth noting that

the deviation of the ratio for 2+
1 state in 132Sn correlates with the increase of the contribution

of the proton two-quasiparticle configurations.
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V. CONCLUSIONS

A finite rank separable approximation for the QRPA calculations with Skyrme interactions,
proposed in a previous work of ours, is extended to take into account the coupling between one-
and two-phonon terms in the wave functions of excited states. The suggested approach enables
one to reduce considerably the dimensions of the matrices that must be diagonalized to perform
structure calculations in very large configuration spaces. As an application of the method we
have studied the behavior of the energies and transition probabilities to 2+

1 and 3−1 states in
124−134Sn. The inclusion of the two-phonon configurations results in a decrease of the energies
and a reduction of transition probabilities.

It is shown that for the 2+
1 states, there is some overestimate of the calculated excitation

energies in the QRPA calculations and the effects of the two-phonon configurations can decrease
substantially these energies. These effects are weaker for 3−1 states where the one-phonon con-
tributions represent about 90% of the total results. In this case, the main discrepancies between
measured and calculated energies are too large to be overcome by the inclusion of the two-phonon
configurations and one should seek for improvements in the effective interaction used.

The inclusion of the two-phonon terms does not change the effect of a remarkable increase
of the QRPA value of B(E2; 0+ → 2+

1 ) for the doubly-closed shell nucleus 132Sn in comparison
with its neighbors. A systematical study of the influence of the two-phonon terms taking into
account the p-p channel on properties of the low-lying states is now in progress.

APPENDIX A

The coefficients of the hamiltonian (13) are given by the following expressions:

W λii′ (τ) =

N
∑

k=1

(

Dλik
M (τ)

√

2Yλki′
τ

+
Dλi′k

M (τ)
√

2Yλki
τ

)

, (A1)

Γλi
jj′ (τ) =

N
∑

k=1

f
(λk)

jj′
v
(−)

jj′
√

2Yλki
τ

, (A2)

where

Dλik
M (τ) =

∑

jj
′

τ
f

(λk)

jj′
u

(+)

jj′

(

Xλi
jj

′ + Y λi
jj

′

)

,

Yλki
τ =

2 (2λ + 1)2

(

Dλik
M (τ)

(

κ
(M,k)
0 + κ

(M,k)
1

)

+ Dλik
M (−τ)

(

κ
(M,k)
0 − κ

(M,k)
1

))2 ,

v
(−)

jj′
= ujuj′ − vjvj′ u

(+)

jj′
= ujvj′ + vjuj′ .

In the above expressions, f
(λk)

jj
′ denotes the single-particle radial matrix elements [20]:

f
(λk)
j1j2

= uj1(rk)uj2(rk)i
λ〈j1||Yλ||j2〉,
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where uj1(rk) is the radial part of the HF single-particle wave function at the abscissas of the

N -point integration Gauss formula rk. κ
(M,k)
0 and κ

(M,k)
1 are defined by the Landau parameters

as
(

κ
(M,k)
0

κ
(M,k)
1

)

= −N−1
0

Rwk

2r2
k

(

F0(rk)
F ′

0(rk)

)

.

APPENDIX B

The matrix elements Uλ1i1
λ2i2

(Ji) have the following form:

Uλ1i1
λ2i2

(λi) = (−1)λ1+λ2+λ
√

(2λ1 + 1)(2λ2 + 1)
∑

τ

τ
∑

j1j2j3

(B1)

×

(

Γλi
j1j2 (τ)

{

λ1 λ2 λ
j2 j1 j3

}

(

Xλ2i2
j2j3

Y λ1i1
j3j1

+ Xλ1i1
j3j1

Y λ2i2
j2j3

)

+ Γλ1i1
j1j2

(τ)

{

λ1 λ2 λ
j3 j2 j1

}

(

Y λ2i2
j3j1

Y λi
j2j3 + Xλi

j2j3X
λ2i2
j3j1

)

+ Γλ2i2
j1j2

(τ)

{

λ1 λ2 λ
j1 j3 j2

}

(

Y λ1i1
j2j3

Y λi
j3j1 + Xλi

j3j1X
λ1i1
j2j3

)

)

.
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Fragment Correlations in Breakup Reactions of Two-neutron

Halo Nuclei
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One of the most interesting questions in the physics of radioactive beams is that of the
structure of halo nuclei at the limits of nuclear existence. In Borromean two-neutron halo nu-
clei the nature of the three-body continuum is currently most intriguing. The concentration
of transition strength, experimentally observed in these nuclei at low excitation energy, may
contain three-body resonances or new kinds of collective motion, such as a soft dipole mode
corresponding to oscillations of the core against the halo neutrons. The continuum is usually
explored via responses induced by transitions from the ground state to the continuum. A
viable way to study the continuum properties is to explore nuclear reactions under conditions
where one-step transitions dominate. This is still a rather comprehensive task, because of
the intertwining of the ground state and continuum structures, influenced by reaction mecha-
nisms. In kinematically complete experiments, in parallel to the excitation spectrum, we can
study many different angular and energy correlations between fragments. Thus continuum
spectroscopy implies a consistent analysis of a variety of exclusive and inclusive cross sections
accessible in kinematically complete experiments. Fragment correlations of two-neutron halo
nuclei in breakup reactions induced by collisions with electrons and heavy ions are discussed
and compared with experimental data where it is possible.

I. INTRODUCTION

One of the most interesting questions in the physics of radioactive beams is that of the
structure of nuclei at the limits of nuclear existence, where a new type of nuclear structure, halo,
has been found in some light nuclei [1]. Peculiarities of halos are revealed in the specific structure
of the ground state (loosely bound, abnormal spatial extension with extreme clusterization) as
well as in low-energy excitations above the breakup threshold where concentration of transition
strength is observed. The nature and properties of the three-body continuum for two-neutron
halo nuclei is currently a most intriguing question.

The breakup into three fragments is richer and also more complicated compared with the
breakup into two fragments. The nuclear excitation energy fixes only the total phase volume
accessible for the fragments. Kinetic energies for fragments have continuous distributions within
this volume. In addition, two (Jacobi) relative orbital angular momenta characterize their
motion. The specific structure of the continuum defines the accessible excitation modes. Finally,
continuum excitations and the structure of the ground state are tightly interwined by reaction
mechanisms.

The experimental study of three-body correlations of halo fragments in breakup reactions
demands kinematically complete measurements when three particles, halo neutrons and core,
are detected in coincidence [2]. Then it is possible to reconstruct the spectrum of the halo
nucleus and select events that correspond to low-energy excitations. For fixed excitation en-
ergy, the three fragments can still move relative to each other in a variety of ways. Thus in
parallel to the excitation spectrum we can study many different angular and energy correlations
between fragments. They are sensitive to different aspects of reaction dynamics. Thus con-

∗
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tinuum spectroscopy implies a consistent analysis of a variety of exclusive and inclusive cross
sections accessible in kinematically complete experiments. The theoretical analysis of such reac-
tions involves the strong nucleon-nucleon interactions. The strength and complicated character
of strong interactions bring ambiguities in disentangling the reaction mechanism and nuclear
structure. In spite of a considerable amount of nuclear structure information on halo nuclei
extracted from collisions with other nuclei, cleaner ways for a study of their structures, like
electron scattering, are greatly needed. Electron scattering is one of the most powerful and
proven methods for nuclear structure investigations. At the present moment there is no ready
installation for performing electron scattering experiments on unstable nuclei. Electron-nucleus
collider experiments are however planned for the future installations at RIKEN and GSI.

In this work we present a theoretical analysis concerning energy and angular correlations
between fragments of 6He obtained from breakup reactions induced by collisions with electrons
and heavy ions. The structure of the ground state and continuum excitations of 6He is calculated
in a three-body model [3–6] using the method of hyperspherical harmonics. The reaction mech-
anisms are described within the microscopic four-body distorted wave theory [7–14] which has
been successfully developed and used for the description of different reactions with two-neutron
halo nuclei.

II. BREAKUP REACTIONS OF HALO NUCLEI

A. Breakup reaction mechanism

Fragmentation reactions have complicated dynamics where nuclear structure and reaction
mechanism are tightly intertwined. Our discussion will be confined by dissociation reactions
with undestroyed core leading to the low-energy halo excitations. The cross section of the
elastic breakup a + A → 1 + 2 + C + A, involving collision of projectile a (two-neutron halo
nucleus breaking into three fragments 1, 2 and C) with target A, is given by [15]

σ =
(2π)4

~vi

∑

α

∫

dk1 dk2 dkC dkA δ(Ei − Ef ) δ(Pi − Pf ) |Tfi|2 (1)

where vi is the relative velocity of the colliding systems in the initial channel, ki, i = 1, 2, C, are
the wave numbers of the neutrons and the core, and kA is the target wave number in the final
channel. The sum over α is over all quantum numbers which are necessary to characterize the
reaction and includes, if particles have spin, the averaging of the initial spin projections and the
sum over the final spin projections. The exact transition matrix Tfi can be written as

Tfi = 〈Ψ(−)
α (kx,ky,kf ) |

∑

p,t

Vpt − UaA| Ψ0, ΦA, χ
(+)
i (ki)〉 (2)

where Ψ
(−)
α is the full scattering solution with ingoing wave boundary condition and Ψ0 and

ΦA are ground state wave functions of the halo and the target, respectively. The distorted

wave χ
(+)
i describing the relative motion of nuclei in the initial channel is a solution of the

Schrödinger equation with optical potential UaA. Vpt is NN interaction between the projectile and
target nucleons. Due to the translational invariance only relative wave numbers can characterize
reaction dynamics; kx, ky, and ki,f are the relative wave numbers between a pair of fragments,
between the center of mass of a pair and the third fragment, and between the center of masses
of halo and target nuclei in the initial and final channels, respectively. In the halo rest frame,
~ky corresponds to the momentum of the third fragment.
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The exact T-matrix (2) can not be calculated without approximations. Since our main goal
is the study of the halo structure, the reaction is considered at conditions that allow a simplified
treatment of the reaction mechanism making it both tractable and transparent. Hence, we study
the collisions at high enough energies (large momenta ~ki and ~kf ) leading to low-energy halo
excitations where one-step processes are dominant. The low-energy halo excitations correspond
to small values of the relative momenta ~kx and ~ky. Therefore the halo fragments spend some
time together and interact between themselves. There is no spectators and all fragments are
participants. At such conditions a distorted wave treatment of reaction dynamics can be used

and the exact scattering wave function Ψ
(−)
α (kx,ky,kf ) can be written as a product of the wave

function of the projectile, target, and of their relative motion. Then the reaction amplitude (2)
reduces to

Tfi = 〈χ(−)
f (kf ), ΦA, Ψ(−)(kx,ky) |

∑

p,t

Vpt| Ψ0, ΦA, χ
(+)
i (ki)〉 (3)

where χ
(−)
f (kf ) is the distorted wave describing the relative motion of nuclei in the final channel,

Ψ(−)(kx,ky) is the halo three-body continuum wave function. In calculating Ψ(−)(kx,ky) all
fragment pairwise interactions should be taken into account, i.e. final state interactions should
be fully included. The term with optical potential UaA does not contribute to the T-matrix
(3) due to the orthogonality between the halo bound state Ψ0 and the continuum Ψ(−)(kx,ky)
wave functions. This low-energy region of nuclear excitations is the most sensitive to the three-
body correlations and consequently it is the most interesting in halo structure studies. Such
investigations, however, require a special selection of experimental data. This can be achieved
by performing kinematically complete experiments in which the energies and momenta of all
halo fragments are measured in coincidence. Then it is possible to describe the energy spectrum
of the halo nucleus and select only events which correspond to low-energy excitations. At the
same time, a variety of different energy and angular correlations become available and thus the
possibility to describe them within the same model is a thorough test to our understanding of
nuclear structure and reaction dynamics. The reaction model based on approximation (3) was
successfully applied for the description of many reactions with halo nuclei [7–14].

B. Electron scattering

Electron scattering is one of the most powerful methods for nuclear structure investigations.
The electromagnetic interactions of electron with nuclear charges and currents, unlike the strong
interaction between nucleons, are well known and weak. Thus the reaction mechanism can be
disentangled, in principle, from the nuclear structure effects. The ultrarelativistic electrons are
used in the study of nuclear structure. Since the charge of halo nuclei is small, multiple scattering
effects can safely be neglected and the interactions can be well described by one-photon exchange
terms [16]. Then the initial and final electron states are known and described by the plane wave
Dirac spinors. For small energy and momentum transfers, considered here, the contributions
from convection and magnetization currents can be neglected in comparison with the Coulomb
interaction. If εi,f and ~ki,f denote an electron energy and momentum, the exclusive cross
section of electron scattering, leading to the low-energy halo excitations, can be written [13] as

d8σ

dk̂f dk̂x dk̂y dεx dεy
= fR σM 2

(µxµy

~4

)3/2 √
εxεy

Q4

|q|4 W0 0 (4)

where fR is a recoil factor, σM is the Mott cross section which describe the electron scattering
on a point-like nucleus, q = ki − kf is the three-dimensional momentum transfer, and Q =
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((εi − εf )/(~c),q) is the Lorentz-invariant four-momentum transfer. The factor
√
εxεy is the

phase space accessible to decay into fragments. The nuclear structure function W00 is given by

W00 =
∑

|〈Ψ(−)(kx,ky) | ρ̂(q) | Ψ0〉|2 (5)

where ρ̂(q) is the charge operator. The sum in hadron tensor (5) assume the averaging on spin
projections of the halo nucleus and the summing over spin projections of halo fragments. The
explicit expression of the nuclear structure function can be found in [13]. The function W00

contains all information about the nuclear structure, energy, and angular correlations of the
fragments.

At the present moment there is no ready installations for performing the electron scatter-
ing experiments with unstable nuclei. But due to the new developments for intense beams of
radioactive isotopes, electron-nucleus collider experiments become feasible in future on the new
installations in RIKEN and GSI. The first measurements will be done for the processes with
the largest cross sections: elastic and inclusive inelastic electron scattering. Detecting electrons
means that we know the momentum q transferred to the halo nucleus and the excitation energy.
If, in addition, the core momentum kC is measured, we also know the relative momentum ky

and the absolute value |kx|. The corresponding cross section is obtained by integration (4) over
the unobserved direction k̂x. This integration destroys the angular correlation of the kx-motion.
The obtained cross section depends on the angle between the transferred momentum q̂ and the
direction k̂y of the core fragment decay.

C. Basic dynamics of halo nuclei

The basic dynamics of halo nuclei can be characterized [3] as a coexistence of two subsystems:
one which consists of core nucleons and the other of halo neutrons moving relative the core center
of mass. Some arguments [17] support such a decoupling of core and halo degrees of freedom: i)
Wave function components that correspond to partition into breakup fragments must dominate
in the ground state of a weakly bound system. ii) The interaction cross section of high-energy
halo nuclei on light targets, which is approximately equal to the sum of interaction cross section of
core nucleus and two-neutron removal cross section, indicates that the reaction process take place
separately on the core and halo subsystems. iii) The core nucleus and halo nucleus both have
similar magnetic dipole and quadrupole moments. These arguments back up the assumption
that the core is not significantly perturbed by the valence neutrons located far away from it.
Thus with good accuracy the wave functions Ψ of the two-neutron halo nucleus can be written
as a product of two functions

Ψ(r1, . . . , rA) = ϕc(ξ1, . . . , ξAc) ψ(x, y) (6)

The function ϕc(ξ1, . . . , ξAc) describes the internal structure of the core while ψ(x, y) describe
the relative motion of halo neutrons around the core c.m. In (6) the coordinate ξj denotes the
position of a core nucleon relative the core c.m., x is the relative distance between halo neutrons
and y is the distance between the core and the center of mass of the two halo neutrons. Neglect
of explicit considerations for internal core degrees of freedom is the main approximation in (6).
These effects are treated approximately through the effective nucleon-core interaction. Such
factorization is a starting point for application of three-body models to the description of the
halo structure [3–5]. Few-body models avoid the complicated and still partly open questions
concerning the development of nuclear clustering, and instead calculate halo wave functions
ψ(x, y) directly. Within such models extended for an approximate treatment of the Pauli
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FIG. 1: The T and Y Jacobi coordinate systems for two-neutron halo nucleus.

principle, it is possible to give a consistent description of the main properties of both the ground
state and the low-energy continuum wave functions of halo nuclei.

To characterize the relative motion of the three fragments we need two relative Jacobi momenta:
~kx between two constituents and ~ky between the third constituent and the center of mass of
the first pair. Since two of the three (constituents) are identical neutrons, there exists only two
different Jacobi coordinate systems, shown in Fig. 1. One, labeled T (’cluster’ representation),
corresponds to the case when 1 and 2 are neutrons with relative momentum ~kx, while particle 3
is the core C. In the second case called Y (’shell-model’ representation), the relative momentum
~kx is defined by the core C with index 1 and a neutron with index 2, while the other neutron
has index 3. The excitation energy Eκ of the halo nucleus above threshold is equal to the sum
of kinetic energies for the fragments’ relative motion, Eκ = εx + εy = (~2/2)(k2

x/µx + k2
y/µy).

The energy Eκ and the three-body phase space
√
εxεy dεx dεy are invariant, i.e. independent of

Jacobi system. For future reference we also introduce the variable ǫ = εx/Eκ (εy/Eκ = 1 - ǫ)
which describes the share of the relative kinetic energy residing within a pair of particles (or the
third particle and the center mass of the pair), at energy Eκ.

Relative momenta of fragments and neutron spin projections ν1,2 on a quantization axis (we
assume for simplicity that the spin of the core is zero) are used to characterize uniquely the final

continuum state Ψ ≡ Ψ
(±)
ν1,ν2

(kx,ky; r1, . . . rA), while the initial nuclear total angular momentum
Ji and its projection Mi are sufficient for the ground state identification, Ψ ≡ ΨJiMi

(r1, . . . rA).

A three-body continuum wave function Ψ
(+)
ν1ν2

(kx,ky) has the following decomposition within
the method of hyperspherical harmonics [11]

Ψ(+)
ν1ν2

=
∑

αµνM

(
1

2
ν1

1

2
ν2 | Sν) (Lµ Sν | JM) ıK ψ

lxly
K (ǫ) [Ylx(kx) ⊗ Yly(ky)]

∗
Lµ ΨβLS

JM (Eκ, ri)

(7)

In the decomposition (7) α = {J,L, S and β}, β = {lx, ly,K} are abbreviations for sets of
quantum numbers. Here, J , L, and S describe the total angular momentum, the total orbital
angular momentum, and total spin in the final continuum state of the halo nucleus, respectively,
while lx and ly denote the orbital angular momenta corresponding to the kx and ky linear
momenta, and K is the hypermoment, K = lx + ly + 2n, (n = 0, 1, . . .). The quantum numbers
(J, S, L, lx, ly,K) describe all possible elementary modes of the relative motion in the three-body

continuum state of the halo nucleus. ψ
lxly
K (ǫ) is the hyperangular part of the hyperharmonic

[3, 5, 14],

ψ
lxly
K (ǫ) =

√

ǫlx(1 − ǫ)ly M
lxly
n (ǫ), M

lxly
n (ǫ) = N

lxly
n P

(lx+1/2,ly+1/2)
n (1 − 2ǫ) (8)
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where M
lxly
n (ǫ) is simply the product of the normalization coefficient N

lxly
n of a hyperharmonic

(8) and the Jacobi polynomial P
(σ,τ)
n of order n. Sometimes we will use n = (K − lx − ly)/2

as summation index instead of K. The function ΨβLS
JM (Eκ, ri) is the coordinate part of wave

function Ψ
(+)
ν1ν2

at continuum energy Eκ, and depends on the quantum numbers (β, L, S, J),
projection M of the total angular momentum, and the translation invariant space coordinates
ri of the nucleons in halo nucleus a,

ΨβLS
JM (Eκ, ri) =

1

(κρ)5/2

∑

γ′

χJ
γ,γ′(κ, ρ) ψ

l′x,l′y
K ′ (sin2 θρ) [Yl′x(x̂) ⊗ Yl′y(ŷ)]L′ML′

× (L′ML′S′MS′ |JM) |χS′MS′
〉 ϕc(ξ1, . . . , ξAc) (9)

where

tan θρ =

√
µx |x|√
µy |y|

, and ρ =

√

µx|x|2 + µy|y|2
mn

and where |χS′MS′
〉 is a coupled spin function for the two halo neutrons. The hyperradial wave

function χJ
γ,γ′(κ, ρ) is a solution of a set of the coupled K-harmonic equations. The ground state

wave function ψJiMi
(x,y) has a similar decomposition (9) to ψγ,JM(κ,x,y) but now with κ =

√

2mn|EB |/~2, with separation energy |EB |. The necessary details on how to solve a system of
K-harmonic equations and on how to choose the nucleon-nucleon and nucleon-core potentials of
the three-body bound and continuum wave functions of the 6He can be found in [5].

III. RESULTS

A. Breakup of halo nuclei in collisions with electrons

As an example of electron scattering, we consider the collision with 6He at an initial energy
εi = 500 MeV which will become available at GSI. Fig. 2 shows the calculated inclusive spec-
tra of low-energy excitations for a few electron scattering angles θ corresponding to transferred
momenta |q| < 80 (MeV/c). The absolute cross sections depend strongly on the momentum
transfer |q| and decrease rapidly with increasing electron scattering angle θ. The multipole
composition of the excitation spectra depends on the properties of the Coulomb interaction
and the nuclear structure. In the multipole decomposition of the Coulomb interaction the
monopole term decreases most slowly with the distance between electron and the nuclear center
of mass, then follow terms with higher angular momenta, dipole, quadrupole and so on. At
small momentum transfer the reaction amplitude obtains its main contribution from large dis-
tances where, however, the monopole excitations are strongly suppressed by the orthogonality
of the ground and continuum halo states. As a result the dipole excitations dominate at low
excitation energies for small |q| (see Fig. 2a). The modes which give the main contributions
to excitations, with hypermoments K = 1 and 3, are shown by the dashed and dot-dashed
lines in Fig. 2a. In Fig. 2(b,c) the solid, dashed, dot-dashed, and thin solid lines are the total,
dipole, quadrupole, and monopole excitations of 6He, respectively. With increasing momentum
transfer the well-known three-body 2+ resonance at E∗ = 1.8 MeV appears (Fig. 2b) and soon
becomes a pronounced feature (Fig. 2c) in the low-energy spectrum. The concentration of the
dipole transition strength near threshold does not mean that dipole excitations have a collective
nature and represent a resonance. As seen from Figs. 2a-c, the energy position and the shape of
the dipole excitations show a strong dependence on transferred momentum while for a genuine
three-body resonance, like the 2+ at E∗ = 1.8 MeV, the peak position is fixed. To further clarify
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FIG. 2: Inclusive inelastic electron scattering on 6He for εi = 500 MeV and various scattering angles.
(a): The solid line is the total (dipole) cross section. The dashed and dot-dashed lines are contributions
to the dipole excitation from modes with orbital momenta lx = 0, ly = 1, spin S =0, and hypermoments
K = 1 and 3, respectively. (b) and (c): The solid, dashed, dot-dashed and thin solid lines are the total,
dipole, quadrupole, and monopole cross sections, respectively.

the true nature of the observed 1− peak, more complicated energy correlations of the fragments
must be studied. We now turn to breakup cross sections where the α-particle is detected in
coincidence with the scattered electron. Then the energy and angle of the α-particle character-
ize the cross section in addition to the electron degrees of freedom. Since we consider processes
with small momentum and energy transfers for which the Coulomb interaction dominates, the
coincidence cross section does not depend on the orientation of the ejectile plane relative to the
scattering plane. The reaction dynamics, in addition to the electron variables, depends on the
relative angle between the momenta ~ky and ~q, and the α-particle energy. To further reduce
the number of independent variables, we consider distributions over the relative energy Eα−(nn)
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FIG. 3: Contour plots of electron cross sections for separate multipole excitations for scattering angle θ
= 20◦ as function of the relative energy between the two halo neutrons Enn and their energy relative the
α-particle Eα−(nn).

(= εy) between the α-particle and the c.m. of the halo neutron pair, d3σ/dΩf dEα−(nn), which

is obtained by integrating the exclusive cross sections over the α-particle direction k̂y and over
the total nuclear excitation energy E∗ from the breakup threshold up to 6 MeV. To better
demonstrate the decay properties of multipole excitations, we show in Fig. 3 contour plots of
cross sections for separate multipolarities as a function of the relative energies Enn (= εx) and
Eα−(nn). The decay patterns of the energy correlations are distinctly different for the different
multipole excitations. For the quadrupole case the decays are stretched along a straight line
which is a clear signal of resonance behavior (see [12] and relevant discussions there). Monopole
correlations reveal two peaks: One where the α particle is at rest and the two neutrons carry all
excitation energy, and the other where the two neutrons have small relative energy and the exci-
tation energy is defined by the relative motion between the α and the neutron pair. This picture
keeps an imprint of the ”cigar” and ”dineutron” configurations in the ground state structure of
6He [3].

Next we consider the angular correlations in coincidence cross sections d5σ/dΩf dΩydE
∗ as

function of the angle θαq between the α-particle and the transferred momentum q. Fig. 4 shows
examples of the θαq angular correlations for two different excitation energies in 6He: The 2+

resonance is largest in part (a) and the dipole excitation dominates in (b). The shapes of the
distributions are different for different multipolarities, and symmetric relative 90◦. The monopole
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FIG. 4: Cross sections d5σ/ dΩf dΩy dE∗ for electrons with energy εi = 500MeV and scattering angle θ
= 10◦ as function of the relative angle θαq between α-particle and transferred momentum q. Parts (a)
and (b) correspond to 1.8MeV and 3.5MeV excitation energies in 6He, respectively. The solid, dashed,
dot-dashed, and thin solid lines are the total, dipole, quadrupole, and monopole contributions.

has an isotropic distribution. The dipole has a pronounced minimum at 90◦ while the quadrupole
has two minima near 60◦ and 120◦ and maximum at 90◦ with height a few times less then at 0◦ or
180◦. The total distribution includes contributions not only from separate multipole excitations
but also their interference. As a result, the total distribution is not symmetrical relative 90◦ and
can have a rather complicated shape as, for example, in Fig. 4(a) where dipole and quadrupole
are excited with comparable strength. In cases when one multipole excitation dominates as,
for example, in Fig. 4(b), the total distribution keeps a shape which is specific for the single
multipole and only slightly distorted. Thus it can give a clear signal on the multipole nature of
dominant nuclear excitations.

B. Breakup of halo nuclei in collisions with heavy ions

The exclusive breakup cross section (i.e. when energies and momenta of all fragments are
observed), averaged over initial and summed over final spin projections, depends on eight inde-
pendent variables and can be calculated within the four-body microscopic distorted wave model
[11]. This cross section contains the most complete information that can be extracted from a
reaction between unpolarized nuclei. At present time there are no experimental data to compare
with. Also, this cross section depends on too many variables to offer a meaningful analysis of the
important correlations. More instructive is to integrate out most of the independent variables
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and analyze various semi-inclusive cross sections that can be compared with experiment, and
thus clarify the underlying dynamics.

Recently, experimental data on different angular and energy correlations of the three frag-
ments from breakup of 6He on lead target at collision energy 240 MeV/nucleon, obtained at
GSI, have been published [18]. They reveal a very interesting picture. The low-energy spectrum

of 6He shows a smooth behavior [19], while with increasing excitation energy, the shape of some
correlations changes dramatically along the spectrum. To be in compliance with the published
experimental data, we will consider at most triple differential cross sections and will keep kx

and ky as independent variables. The vectors kx and ky, describing the relative motion of halo

fragments, lie in a plane. Only the angle between kx and ky, (cos θ = (k̂x · k̂y)), has a physical
meaning. The orientation of the plane does not play any role and can be integrated out. Thus
we can write the triple cross section in the following way [11]

d3σ

d cos θ dǫ dEκ
=

√

ǫ (1 − ǫ)
∑

λ

Pλ(cos θ)
1

2

∑

Lββ′

ψ
lxly
K (ǫ) ψ

l′xl′y
K ′ (ǫ)

× ı(K
′
−K) C

lxlyλ
l′xl′yL

∑

δ

A
lxlyL
δ n (Eκ) A

l′xl′yL

δ n′ (Eκ)∗ (10)

where the coefficients C
lxlyλ
l′xl′yL are defined by

C
lxlyλ
l′xl′yL = (−1)λ+L l̂x l̂y l̂

′

x l̂
′

y

{

lx l′x λ
l′y ly L

}

(lx0 l′x0 | λ0) (ly0 l
′

y0 | λ0) (11)

and l̂i =
√

2li + 1. In (10) δ = {J, S, γ} is a shorthand notation for a set of quantum numbers,
while γ denotes some additional quantum numbers defined by the reaction mechanism [11].

The reaction amplitude A
lxlyL
δ n (Eκ) which contains all reaction dynamics, depends only on the

continuum energy Eκ and is proportional to the matrix element that includes integration over
all space coordinates. The function ΨβLS

JM (Eκ, ri) in expression (7) enters this matrix element

for the reaction amplitude. The magnitude of A
lxlyL
δ n (Eκ), describing the strength of different

elementary modes for fragment motions, is defined by the reaction mechanism that couples the
wave functions of the ground and excited states of the halo nucleus. Only elementary modes
defined by quantum numbers lx, ly and K give coherent contributions to the cross section (10),
while all other are added independently. The derivation of cross section (10) and the explicit
expressions for the nuclear amplitude can be found in [11, 14].

The cross section that includes only energy correlations in the relative motion of fragments
can be obtained by integration over angle θ

d2σ

dǫ dEκ
=

√

ǫ (1 − ǫ)
∑

lxlyL

∑

KK ′

ψ
lxly
K (ǫ) ψ

lxly
K ′ (ǫ) (−1)(n

′−n)
∑

δ

A
lxlyL
δ n (Eκ) A

lxlyL
δ n′ (Eκ)∗ (12)

Angular averaging destroys correlations in lx and ly motions and keeps coherent contributions
only in the hypermoment K. Note that, as a rule, at low excitation energy the largest com-
ponents of the halo continuum wave function have n = 0. Only for monopole excitations the
component with the lowest possible value K = lx = ly = 0 is suppressed due to the Pauli princi-

ple, and K = 2 with n = 1 dominates. Since the function M
lxly
n (ǫ) (i.e. the Jacobi polynomial)

for n = 0 is a constant, we may expect that the dominant energy dependence near threshold is
defined by the mixture of factors ǫlx (1− ǫ)ly weighted with the probability of these excitations.
The factor

√

ǫ (1 − ǫ) describes the phase space accessible for fragment relative motion at fixed
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FIG. 5: Comparison of the theoretical 6He excitation spectrum (thick solid line) for 6He + 208Pb breakup
at 240 MeV/nucleon with experimental data [19]. The thin solid, dashed and dotted lines show the dipole
1−, quadrupole 2+, and monopole 0+ contributions.

excitation energy, and is a common factor for all nuclear excitations. The deviation from phase
space distributions is defined by the partial content of continuum excitations, namely what com-
binations of the lx and ly orbital angular momenta dominate. In order to reveal the spectroscopic
content more clearly, we remove the important but trivial phase space energy dependence from
the energy correlations (12), and rather discuss the double cross section: d2σ/

√

ǫ(1 − ǫ) dǫ dEκ.
This modified cross section, as distinct from (12), is not necessarily equal to zero at ǫ = 0 or 1
and has finite values at these points if the modes with lx or ly = 0 are excited. If we integrate
the triple differential cross section (10) over the energy distribution ǫ, we obtain the fragment
angular correlations.

The formulas given above apply to cross section calculations in both coordinate systems, T

and Y. Since the transformation of hyperspherical harmonics in transition from one Jacobi sys-

tem to another is a simple rotation, the connection between the reaction amplitudes A
lxlyL
δ K (Eκ)

in the two systems is unitary and provided by the Raynal-Revai coefficients 〈lTx lTy | lYx lYy 〉K L

[20, 21],

A
lYx lYy L

δ K =
∑

lTx lTy

〈lTx lTy | lYx lYy 〉K L A
lTx lTy L

δ K (13)

where the T or Y indices on orbital angular momenta denote the coordinate system where these
momenta are defined. Since in the T system the permutation of the two halo neutrons only
results in reversing the direction of their relative Jacobian x coordinate, the three-body wave
function has a particular simple symmetry property for this operation. Due to this symmetry
the number of allowed wave function components is reduced. Hence amplitudes are initially
calculated in the T system. For calculations in the Y system the amplitudes are obtained
using Eq. (13). This means that the angular and energy distributions in one Jacobi system are
connected unambiguously to the other and their simultaneous description in both systems is a
thorough check on correct knowledge about the partial content, absolute values, and relative
phases of amplitudes in continuum excitations.

The experimental excitation spectrum for 6He inelastic scattering in collision with 208Pb at
240 MeV/nucleon has been published in [19]. Our theoretical analysis of these data within the
four-body microscopic distorted wave theory was reported in [11]. The reaction amplitude in
this model has three ingredients: i) The structure of the target nucleus (matter density) and
of the halo system (transition densities). ii) The nucleon-nucleon effective interactions between
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FIG. 6: Energy ((a) and (b)) and angular ((c) and (d)) fragment correlations (solid line) in the 6He+208Pb
breakup at 240MeV/nucleon for excitation energy region 0 < Eκ < 1 MeV. (a) and (c) are shown in Jacobi
configuration T, (b) and (d) in configuration Y. The dashed, dotted, and dash-dotted lines show the
dipole 1−, monopole 0+, and quadrupole 2+ contributions, respectively.

projectile and target nucleons. iii) The optical potentials for relative motion of projectile and
target nuclei. In the calculations presented below we have used the same parameters as in the
Ref. [11].

In Fig. 5 another comparison of the calculated 6He excitation spectrum (thick solid line)
with experimental data is given. (Note that E∗ is the excitation energy from the ground state
and shifted by the separation energy Sb = 0.97 MeV relative to the continuum energy Eκ,
E∗ = Eκ +Sb.) The thin solid, dashed and dotted lines show the dipole 1−, quadrupole 2+, and
monopole 0+ contributions, respectively. The shape of the experimental spectrum shows a peak
at the position of the well-known 2+ resonance at 1.8 MeV, a bump near 3 MeV and subsequently
the strength decreases with increasing excitation energy. The calculations reproduce both the
shape and absolute value of the inclusive spectrum and display a small monopole contribution.
The dipole dominates and the three-body 2+ resonance at 1.8 MeV is strongly excited.

In a recent experimental analysis of correlation data [18], the excitation spectrum as a func-
tion of the energy Eκ has been separated into bins. The obtained experimental distributions were
integrated over the finite energy regions of Eκ within these bins and normalized to unity. Ac-
cordingly, the same procedure has been used for our theoretical calculations. Four energy regions
have been singled out in the 6He excitation spectrum: The first, from 0 < Eκ < 1 MeV, contains
the 2+ resonance, the others cover the energy intervals 1 < Eκ < 3MeV, 3 < Eκ < 6 MeV and
6 < Eκ < 9MeV. To increase the sensitivity to the spectroscopic content of the continuum
excitations, we calculate the modified energy correlations between fragments (as discussed pre-
viously and denoted by Wph in the figures) where the phase space energy factor

√

ǫ(1 − ǫ) has
been divided out. The experimental data for energy correlations [18] were scaled accordingly.

Fig. 6 shows theoretical calculations of the energy and angular fragment correlations in the
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FIG. 7: Energy and angular fragment correlations in 6He +208 Pb breakup at 240MeV/nucleon for
excitation energy region 1 < Eκ < 3 MeV. Notations are the same as in Fig. 6.

energy region 0 < Eκ < 1MeV where the 2+ resonance dominates the spectrum. Parts (a) and
(c) correspond to calculations in the Jacobi coordinate system T while (b) and (d) are for Y.
The dashed, dotted and dashed-dotted lines show contributions from the dipole 1−, monopole
0+ and quadrupole 2+ excitations, respectively. In the T system the energy correlation has
unsymmetrical shape. At ǫ = 0 and 1 it has nonzero values. This shows unambiguously the
presence of excitations with orbital angular momenta lTx and lTy = 0. Since Wph(0) is larger than

Wph(1), the total weight of modes with lTx = 0, lTy > 0 is bigger than the weights for lTy = 0 and

lTx > 0. The 2+ resonance (dash-dotted line) dominates in this energy region.
Fig. 7 compares the theoretical calculations of energy and angular fragment correlations in

the energy interval 1 < Eκ < 3 MeV with the experimental data of [18]. Notations are the
same as in Fig. 6. Qualitatively the shapes of various correlations in this energy interval are
similar to the shapes in the previous one but the partial multipole content is different. From
calculations follows that dipole excitations dominate at these energies. The bell shape of the
dipole energy correlation in Fig. 7(a) is largely due to excitation of the lTx = 0, lTy = 1,
and S = 0 component with hypermoment K = 1 and its interference with the one having
K = 3. The nonzero value at ǫ = 1 reflects the contribution from the excitation of the lTx = 1,
lTy = 0, and S = 1 elementary mode. In spite of the dipole domination, other multipolarities
still play an important role in modifying the shape of total distributions. For example, the
monopole excitations are important near ǫ = 0 and 1. Hence, omitting this contribution may
lead to significant distortion of an analysis of partial content. Energy correlations in the Y

system, Fig.7(b), have almost symmetrical shape since due to the Raynal-Revai transformation
the strong excitation with lYx = 1 and lYy = 0 quantum numbers appears in addition to the

lYx = 0 and lYy = 1 mode. Angular correlations in both systems, Figs. 7(c) and (d)), are mainly
described by the Legendre polynomial of second order. Comparing with the experimental data
of [18] for this energy interval we conclude that the theoretical calculations of angular and energy
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correlations describe measurements in both T and Y systems rather well. It indicates that our
model assumptions concerning the reaction mechanism and nuclear structure are correct.

The situation in the next energy bin is, however, more perplexing. Fig. 8 shows comparison
of theoretical calculations of energy and angular correlations with the experimental data of
[18] for the energy interval 3 < Eκ < 6MeV. The theoretical calculations show that dipole
excitations also dominate in this region. In contrast, the relative contribution from different
multipolarities has become larger. The calculations describe reasonably well the experimental
data for the energy distribution in the T system (Fig. 8(a)) and the angular correlations in the
Y system (Fig. 8(d)). The angular correlation in the T system (Fig. 8(c)) and for energy in Y

(Fig. 8(b)) deviate however strongly from experiment. Note that the shapes of the experimental
distributions described by the calculations (Fig. 8(a) and Fig. 8(d)) are qualitatively similar
to the shapes of the previous energy interval, while the correlations that are not described by
theory (Fig. 8(b) and Fig. 8(c)) have changed dramatically. The most striking difference is
for the angular dependence in the T system. The calculations have convex behavior while the
experimental data show a concave shape, and taking into account the first and last points, create
a wavy curve. Such wiggling can be obtained by Legendre polynomials of order four and higher
with large weights. But to have such terms large relative orbital momenta lTx and lTy must be
excited with sizable weights in the continuum wave function. It requires large amplitudes of wave
function components with K = 4 (positive parity) and K = 5 (negative parity) or higher. The
higherK the more the centrifugal barrier suppresses the corresponding wave function component
at fixed excitation energy. With increasing excitation energy, however, the modes with higher
hypermoment become more significant. To illustrate this point, Fig. 9 shows calculations of
correlations in the energy region 6 < Eκ < 9 MeV. In this region the dipole excitation is largest
as before, but the relative contribution from other multipolarities becomes bigger in comparison
with previous energy intervals. The angular correlation in the T system (Fig. 9(c)) and energy
distribution in Y (Fig. 9(b)) start to develop features similar to the experimental data of Fig.
8(c) and Fig. 8(b), but still components with large K are not excited with sufficient intensity
to produce a sizable oscillation.

In Ref. [18] a phenomenological analysis of the experimental distributions on angular and en-
ergy three-body correlations was presented. The data were described by disintegration of dipole
excitations with amplitudes restricted within the method of hyperharmonics by the lowest hy-
permomenta K = 1 and 3 and fitted to the experiment. In phenomenological analysis of angular
correlations in the T system the concave shape, but without wiggles at forward and backward
directions, was reproduced for the energy interval 3 < Eκ < 6 MeV. The phenomenological
amplitudes were compared with amplitudes from our microscopic calculations [5] of dipole tran-
sitions within the method of hyperspherical functions. The theoretical dipole amplitudes for
energy interval 1 < Eκ < 3 MeV need some adjustment to agree with the phenomenological
results, while they strongly deviate for interval 3 < Eκ < 6 MeV. In our present calculations,
which take into account excitations with a number of multipolarities (dipole, quadrupole and
monopole), we have a good description of experimental correlations for 1 < Eκ < 3 MeV without
any necessity to modify the dipole transitions from the microscopic calculations. The descrip-
tion of a wiggling shape requires, as we mentioned above, to take into account excitations with
higher values of hypermomentum K, that however were not included in the fitting procedure of
the phenomenological analysis.

It is an open question which model features may be responsible for the disagreements in the
excitation energy interval 3 < Eκ < 6 MeV, and what should be done to improve calculations.
One possibility is decays from the octupole and higher multipolarities. Our calculations of
the 3− excitations show that their absolute values are more then one order of amplitude lower
in comparison with dipole, and thus can not significantly modify the theoretical description.
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FIG. 8: Energy and angular fragment correlations in 6He + 208Pb breakup at 240 MeV/nucleon for
excitation energy region 3 < Eκ < 6 MeV. Notations are the same as in Fig. 6.

FIG. 9: Energy and angular fragment correlations in 6He +208 Pb breakup at 240MeV/nucleon for
excitation energy region 6 < Eκ < 9MeV. Notations are the same as in Fig. 6.
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In the theoretical three-body model the neutron-neutron and neutron-core effective interactions
determine properties of nuclear structure and the way that the structure changes with increasing
excitation energy. Thus one option is to modify the interactions to increase the share with large
K hypermoment in the continuum wave functions. But this modification must not destroy the
description obtained for the nuclear structure at lower excitation energies and must not seriously
worsen the quality of agreement with the two-body data on which the effective interactions are
based. We have not succeeded in improving the calculations in this direction.

Another possibility consists of scrutinizing the way experimental data and theoretical calcu-
lations are being compared. Experiments with radioactive beams are done in inverse kinematics
where the exotic nucleus collides with target and breakup fragments are kinematically focused
in forward direction and detected with high efficiency. The theoretical calculations described
above, involve integrations over all unobserved momenta and assume a 4π measurements of the
fragments. But due to the geometry of the performed experiments this is only experimentally
fulfilled for the lowest excitation energies. Recently T. Aumann stated [2]: ”The angular range
for fragments and neutrons covered by the detectors corresponds to a 4π measurement of the
breakup in the rest frame of the projectile for fragment neutron relative energies up to 5.5 MeV
(at 500 MeV/nucleon beam energy)”. In our case the collision energy per nucleon is half this
value. Hence the boundary for 4π measurement is moved closer to threshold and the second
interval 3 < Eκ < 6MeV does not satisfy the condition for complete averaging over unobserved
degrees of freedom assumed in the theory. That means that the correct way to compare theoret-
ical calculations with measured data should be the following: The exclusive eight folded breakup
cross section has to be calculated and its numerical six-dimension integration done over the part
of the allowed phase space that corresponds to experimental conditions for fragment detection.
Without such calculations it is difficult to estimate the influence of the experimental geometry
on the shape of angular and energy theoretical correlations and get a concise assessment of the
underlying nuclear structure model.

IV. CONCLUSIONS

The three-body breakup is an essentially richer but also more complicated process than
binary breakup into two fragments. At fixed continuum energy the relative motions of the three
fragments have continuous distributions of kinetic energies, but it appear that at low excitation
energies the leading physics for Borromean nuclei can be extracted from a few elementary modes
characterized by a few orbital angular momenta. The task of continuum spectroscopy is to define
the dominant excitations (multipolarities) and their quantum numbers (elementary modes). The
way to achieve this task is to explore the world of various correlations in fragment motions. This
demands kinematically complete experiments and theoretical understanding of the underlying
reaction dynamics and nuclear structure. The first steps have now been taken in this direction.

Theoretical calculations of the 6He breakup on the 208Pb target reproduce quite well the low-
lying excitation spectrum and fragment angular and energy correlations near breakup threshold.
While dipole dominates at most excitation energies other multipolarities can significantly distort
the dipole correlation pictures and for a consistent analysis of experimental data all multipole
excitations have to be taken into account. With increasing continuum energy (3 < Eκ < 6 MeV)
some angular and energy correlations are described within the theoretical model while some are
not.

Future measurements of electrons in coincidence with fragments promise to give valuable
information about halo structure. The pattern of energy and angular correlations are rather
specific for different multipole excitations. Correlation measurements in general provide a unique
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tool for revealing the complex dynamics of nuclear excitations and pave the way to spectroscopy
of the continuum, provided that rather small cross sections can be measured.
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Resonances of Multichannel Systems
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We describe the structure of the T -matrices, scattering matrices, and Green functions on
unphysical energy sheets in multichannel scattering problems with binary channels and in the
three-body problem. Based on the explicit representations obtained for the values of T - and
S-matrices on the unphysical sheets, we prove that the resonances belonging to an unphysical
sheet are just those energies where the correspondingly truncated scattering matrix, taken
in the physical sheet, has eigenvalue zero. We show, in addition, that eigenvectors of the
truncated scattering matrix associated with its zero eigenvalue are formed of the breakup
amplitudes for the respective resonant states.

I. INTRODUCTION

Resonances of multichannel systems play a crucial role in various problems of nuclear, atomic,
and molecular physics. In a wider sense, resonances represent one of the most interesting and
intriguing phenomena observed in scattering processes, and not only in quantum physics but
also in optics, acoustics, radiophysics, mechanics of continua etc. Literature on resonances is
enormous and in this short introduction we have a chance to mention only several key points
in the history of the subject and to refer only to a few key approaches to quantum-mechanical
resonances, necessarily leaving many others a part.

With a resonance of a quantum system one usually associates an unstable state that only
exists during a certain time. The original idea of interpreting resonances in quantum mechanics
as complex poles of the scattering amplitude (and hence, as those of the scattering matrix) goes
back to G. Gamov [1]. For radially symmetric potentials, the interpretation of two-body reso-
nances as poles of the analytic continuation of the scattering matrix has been entirely elaborated
in terms of the Jost functions [2]. Beginning with E. C.Titchmarsh [3] it was also realized that
the S-matrix resonances may show up as poles of the analytically continued Green functions.

Another, somewhat distinct approach to resonances is known as the complex scaling (or
complex rotation) method. The complex scaling makes it possible to rotate the continuous
spectrum of the N -body Hamiltonian in such a way that resonances in certain sectors of the
complex energy plane turn into usual eigenvalues of the scaled Hamiltonian. In physics literature
the origins of such an approach are traced back at least to C. Lovelace [4]. A rigorous approval of
the complex scaling method has been done by E.Balslev and J.M.Combes [5]. A link between
the S-matrix interpretation of resonances and its complex rotation counterpart was established
by G. A. Hagedorn [6] who has proven that for a reasonable class of quickly decreasing potentials
at least a part of the scaling resonances for an N -body system (N ≤ 4) turns to be also the
scattering matrix resonances. We remark that the complex scaling seems to be the most popular
approach to practical calculation of resonances, particularly in atomic and molecular systems
(see, e.g., Refs. [7–11] and references cited therein).

If support of the interaction is compact, the resonances of a two-body system can be treated
within the approach created by P. Lax and R. Phillips [12]. An advantage of the Lax-Phillips
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approach is in the opportunity of giving an elegant operator interpretation of resonances. The
two-body resonances show up as the discrete spectrum of a dissipative operator which is the
generator of the compressed evolution semigroup. An operator interpretation of resonances
in multichannel systems, based on a 2 × 2 operator matrix representation of a rather generic
Hamiltonian, can be found in [13].

For more details on the history of the subject and other approaches to resonances, as well
as for the bibliography we refer to books [14–19] (it might also be useful to look through the
review parts of papers [20] and [21]). Here we only notice that, in contrast to the “normal”
bound and scattering states, the resonant ones still remain a quite mysterious object and many
questions related to resonances are still unanswered. This is partly related to the fact that, unlike
the “normal” spectrum, resonances are not a unitary invariant of a self-adjoint (Hermitian)
operator. Moreover, following to J. S. Howland [22] and B. Simon [23], one should conclude
that no satisfactory definition of resonance can rely on a single operator on an abstract Hilbert
space and always an extra structure is necessary. Say, an unperturbed dynamics (in quantum
scattering theory) or geometric setup (in acoustical or optical problems). Resonances are as
relative as the scattering matrix is itself.

In the present approach we follow the typical setup where the resonances arising due to
an interaction V are considered relative to the unperturbed dynamics described by the kinetic
energy operator H0. The resolvent G(z) = (H − z)−1 of the total Hamiltonian H = H0 + V is
an analytic operator-valued function of z ∈ C \ σ(H). The spectrum σ(H) of H is a natural
boundary for holomorphy domain of G(z) considered as an operator-valued function. However
the kernel G(·, ·, z) may admit analytic continuation through the continuous spectrum of H.
Or the form 〈G(z)ϕ,ψ〉 may do this for any ϕ,ψ of a dense subset of the Hilbert space H. Or
the “augmented” resolvent PG(z)P admits such a continuation for P the orthogonal projection
onto a subspace of H. In any of these cases one deals with the Riemann surface of an analytical
function.

In the simplest example with H = H0 = −∆, the two-body kinetic energy operator in
coordinate representation, we have

G(x,x′, z) =
1

4π

eiz1/2|x−x
′|

|x − x′| ,

where x,x′ are three-dimensional vectors. Clearly, G(x,x′, z) as a function of the energy z has
a two-sheeted Riemann surface which simply coincides with that of the function z1/2.

In this way one arrives at the concept of the unphysical energy sheet(s). The copy of the
complex energy plane where the resolvent G(z) is considered initially as an operator-valued
function is called the physical sheet. The remainder of the Riemann surface is assumed to
consist of the unphysical sheets (in general, an unphysical sheet may only be a small part of the
complex plane).

Meanwhile, any analytic function is uniquely defined by its values given for an infinite set
of points belonging to its initial domain and having at list one limiting point. Usually one
knows the T -matrix or Green function on the whole physical sheet which means that, at least
in principle, it should be possible to express their values on unphysical sheets through the ones
on the physical sheet.

In [21, 24] (see also [25, 26]) we have found such expressions. More precisely, we have derived
explicit representations for the values of the two- and three-body G(z), T (z), and S(z) on
unphysical energy sheets in terms of these quantities themselves only taken on the physical sheet.
The same has been also done for analogous objects in multichannel scattering problems with
binary channels [24]. The representations obtained not only disclose the structure T -matrices,
scattering matrices, and Green functions on unphysical energy sheets but they also show which
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blocks of the scattering matrix taken in the physical sheet are “responsible” for resonances on
a certain unphysical sheet. This result paves the way to developing new methods for practical
calculation of resonances in concrete multichannel systems and, in particular, in the three-body
ones (see, e.g. [27–29]). As a matter of fact we reduce all the study of resonances to a work
completely on the physical sheet. The present report essentially extends the presentation given
recently in [30].

II. TWO-BODY PROBLEM

In general, we assume that the interaction potential v falls off in coordinate space not slower
than exponentially. When studying resonances of a two–body system with such an interaction
one can employ equally well both coordinate and momentum representations. However, in the
three-body case it is much easier for us to work in the momentum space (for an explanation see
[21], p. 149). This is one of the reasons why we proceed in the same way in the two-body case.
Thus, for the two-body kinetic energy operator h0 we set (h0f)(k) = k2f(k) where k ∈ R

3 stands
for the reduced relative momentum. In case of a local potential we have v(k,k′) = v(k − k′)
and v(k) = v(−k).

Surely, we need to add some requirements on the analyticity of the potentials in their complex
momentum variables as well as on their fall-off as the real parts of the momenta approach
infinity (see [21] and [24] for details). For simplicity, through all this presentation we assume
that the potentials involved are holomorphic functions of the momenta on the corresponding
whole complex spaces (that is, on the whole C

3 in the two-body case).
The transition operator (T -matrix) reads

t(z) = v − vg(z)v, (2.1)

where g(z) = (h − z)−1 denotes the resolvent of the perturbed Hamiltonian h = h0 + v. The
operator t is the solution of the Lippmann-Schwinger equation

t(z) = v − vg0(z)t(z), (2.2)

that is, in terms of the its kernel we have

t(k,k′, z) = v(k,k′) −
∫

R3

dq
v(k,q)t(q,k′ , z)

q2 − z
(2.3)

taking into account that the free Green function g0 reads

g0(k,k
′, z) =

δ(k − k′)
(k2 − z)

.

Clearly, all dependence of t on z is determined by the integral term on the right-hand side of
(2.3) that looks like a particular case of the Cauchy type integral

Φ(z) =

∫

RN

dq
f(q)

λ+ q2 − z
(2.4)

for N = 3. Cauchy type integrals of the same form but for various N we will also have below
when considering a multichannel problem with binary channels in Sec. III and the three-body
problem in Sec. IV.

Let Rλ, λ ∈ C, be the Riemann surface of the function

ζ(z) =

{
(z − λ)1/2 if N is odd,
log(z − λ) if N is even.

(2.5)



A.K. Motovilov 139

If N is odd, Rλ is formed of two sheets of the complex plane. One of them, where (z − λ)1/2

coincides with the arithmetic square root
√
z − λ, we denote by Π0. The other one, where

(z − λ)1/2 = −
√
z − λ, is denoted by Π1.

If N is even, the number of sheets of Rλ is infinite. In this case as the index ℓ of a sheet
Πℓ we take the branch number of the function log(z − λ) picked up from the representation
log(z − λ) = log |z − λ|+ i 2πℓ+ iφ with φ ∈ [0, 2π). Usually the point λ is called the branching
point of the Riemann surface Rλ.

The following statement can be easily proven by applying the residue theorem (if necessary,
consult [24] for a proof).

Lemma 1. For a holomorphic f(q), q ∈ C
N , the function Φ(z) given by (2.4) is holomorphic on

C \ [λ,+∞) and admits the analytic continuation onto the unphysical sheets Πℓ of the Riemann

surface Rλ as follows

Φ(z|Πℓ
) = Φ(z) − ℓ πi(

√
z − λ )N−2

∫

SN−1

dq̂ f(
√
z − λq̂), (2.6)

where SN−1 denotes the unit sphere in R
N centered at the origin.

Notice that in (2.6) and further on the writing z
∣∣
Πℓ

means that position of z is taken on
the unphysical sheet Πℓ. If the reference to Πℓ is not present and we write simply z than one
understands that we deal with exactly the same energy point but lying on (dropped onto) the
physical sheet Π0.

Let us return to the two-body problem and set

(
g0(z)f1, f2

)
≡

∫

R3

dq
f1(q)f2(q)

q2 − z
,

where f1 and f2 are holomorphic. Then by Lemma 1

(
g0(z|Π1

)f1, f2

)
=

(
g0(z|Π0

)f1, f2

)
− πi

√
z

∫

S2

dq̂ f1(
√
zq̂)f2(

√
zq̂),

which means that the continuation of the free Green function g0(z) onto the unphysical sheet
Π1 can be written in short form as

g0(z|Π1
) = g0(z) + a0(z)j

†(z)j(z), (2.7)

where a0(z) = −πi
√
z and j(z) is the operator forcing a (holomorphic) function f to set onto

the energy shell, i.e.
(
j(z)f

)
(k̂) = f(

√
zk̂).

Taking into account (2.7), on the unphysical sheet Π1 the Lippmann-Schwinger equation
(2.2) turns into

t′ = v − v(g0 + a0j
†j)t′, t′ = t|Π1

.

Hence (I + vg0)t
′ = v− a0j

†j t′. Invert I + vg0 by using the fact that t(z) = v− vg0t and, hence,
(I + vg0)

−1v = t:

t′ = t− a0tj
†jt′. (2.8)

Apply j(z) to both sides of (2.8) and obtain jt′ = jt− a0 jtj
† jt′, which means

(Î + a0 jtj
†) jt′ = jt, (2.9)



140 Resonances of Multichannel Systems

where Î stands for the identity operator in L2(S
2). Then observe that Î + a0 jtj

† is nothing but
the two-body scattering matrix s(z) since the kernel of the latter for z ∈ Π0 is known to read

s(k̂, k̂′, z) = δ(k̂, k̂′) − πi
√
z t(

√
zk̂,

√
zk̂′, z).

Hence

jt′ = [s(z)]−1jt. (2.10)

Going back to (2.8) and using (2.10) we get t′ = t− a0 tj
†[s(z)]−1jt, that is,

t(z|Π1
) = t(z) − a0(z) t(z)j

†(z)[s(z)]−1 j(z)t(z). (2.11)

All entries on the right-hand side of (2.11) are on the physical sheet. This is just the represen-
tation for the two-body T -matrix on the unphysical sheet we looked for.

From (2.11) one immediately derives representations for the continued resolvent,

g(z|Π1
) = g + a0 (I − gv)j† [s(z)]−1j(I − vg), (2.12)

and continued scattering matrix,

s(z|Π1
) = E [s(z)]−1 E , (2.13)

where E is the inversion, (Ef)(k̂) = f(−k̂). Hence, the resonances are nothing but zeros of the
scattering matrix s(z) in the physical sheet. That is, the energy z on the unphysical sheet Π1 is
a resonance if and only if there is a non-zero vector A of L2(S

2) such that

s(z)A = 0 (2.14)

for the same z on the physical sheet.
We remark that this fact is rather well known for the partial-wave Schrödinger equations in

case of centrally-symmetric potentials. In this case the statement that the resonances correspond
to zeros of the partial-wave scattering matrix sl on the physical sheet of the complex energy
plane follows from its representation (see, e.g., [16])

sl(p) = (−1)l
fl(p)

fl(−p)

in terms of the Jost function fl(p) where l stands for the angular momentum and p for the
(scalar) complex momentum. This property of sl(p) was explicitly noticed in the review article
[20, p. 1357]. Generalizations of the statement to the case of multichannel problems with binary
channels and to the three-body problem have been given in [24] and [21], respectively. We will
discuss them below in Sec. III and IV.

The eigenfunction A in (2.14) represents the breakup amplitude of an unstable state asso-
ciated with the resonance z. This means that in coordinate space the corresponding “Gamov
vector”, i.e. the resonance solution to the Schrödinger equation, has the following asymptotics

ψres(x) ∼
x→∞

A(−x̂)
exp

(
iz1/2

∣∣
Π1

|x|
)

|x| (2.15)

A(−x̂)
exp

(
−i

√
z|x|

)

|x| , x̂ = x/|x|.

This claim is a particular case of the statement of Lemma 2 below.
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It should be stressed that the asymptotics (2.15) contains no term with the incoming spherical
wave

exp
(
−iz1/2

∣∣
Π1

|x|
)

|x| .

We conclude the section with a remark that in [31] (see also [32, Section 2] and [20, Secti-
on 3]) Yu. V. Orlov was very close to obtaining a representation that would be a version of the
representation (2.11) for partial-wave two-body T -matrices in the case of centrally-symmetric
potentials. As a matter of fact, only the last step has not been done in [31, 32], the one analogous
to the transition from equation (2.8) to equation (2.11) by using relation (2.10).

III. MULTICHANNEL PROBLEM WITH BINARY CHANNELS

From now on assume that h is an m×m matrix Schrödinger operator of the form

h =




λ1 + h
(1)
0 + v11 v12 . . . v1m

v21 λ2 + h
(2)
0 + v22 . . . v2m

. . . . . . . . . . . .

vm1 vm2 . . . λm + h
(m)
0 + vmm


 , (3.1)

written in the momentum representation. Thus, we assume that

(h
(α)
0 fα)(kα) = k2

αfα(kα), kα ∈ R
nα , fα ∈ L2(R

nα), α = 1, 2, . . . ,m.

We restrict ourselves to the case where the channel dimensions nα satisfy the inequalities nα ≥ 3,
α = 1, 2, . . . ,m, and 1 ≤ m < ∞. For simplicity, we assume that the potential/coupling terms
vαβ(kα,k

′
β) are holomorphic functions of their variables kα ∈ C

nα and k′
β ∈ C

nβ , sufficiently
rapidly decreasing as Rekα → ∞ or Rek′

β → ∞ (see [24]). The thresholds λ1, λ2, . . . , λm ∈ R

are assumed to be distinct and arranged in ascending order: λ1 < λ2 < . . . < λm.
We also introduce the notations

h0 =




λ1 + h
(1)
0 0 . . . 0

0 λ2 + h
(2)
0 . . . 0

. . . . . . . . . . . .

0 0 . . . λm + h
(m)
0


 and v =




v11 v12 . . . v1m

v21 v22 . . . v2m

. . . . . . . . . . . .
vm1 vm2 . . . vmm




for the unperturbed Hamiltonian and the total interaction, respectively. By g0(z) and g(z) we
denote the corresponding resolvents,

g0(z) = (h0 − z)−1 and g(z) = (h− z)−1.

Similarly to the one-channel (i.e. two-body) case of Sec. II, we again begin with the study
of the T -matrix

t(z) = v − vg(z)v

that is the solution to the Lippman-Schwinger equation

t(z) = v − vg0(z)t(z). (3.2)
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The kernels tαβ(kα,k
′
β, z) of the block entries tαβ(z) of the operator matrix t(z) satisfy the

equation system

tαβ(k,k′, z) = vαβ(k,k′) −
m∑

γ=1

∫

Rnγ

dq
vαγ(k,q)tγβ(q,k′, z)

λγ + q2 − z
. (3.3)

As in the two-body T -matrix in equation (2.3), the dependence of the kernels tαβ(k,k′, z) on z
is determined by the integrals on the right-hand-side of (3.3), which are Cauchy type integrals
of the form (2.4).

In contrast to the two-body case, form ≥ 2 we arrive at a multi-sheeted Riemann surface with
number of sheets greater than two. The reason is simple: Every threshold λα, α = 1, 2, . . . ,m,
turns into a branching point. If all channel dimensions nα are odd, the number of sheets should
be equal to 2m, that is, in addition to the physical sheet the Riemann surface will contain 2m−1
unphysical ones. If at least one of nα’s is even, we will have a logarithmic branching point and
the number of unphysical sheets will be necessarily infinite. In fact, this Riemann surface simply
coincides with the Riemann surface R of the vector-valued function

ζ(z) =
(
ζ1(z), ζ2(z), . . . , ζm(z)

)
,

where (cf. formula (2.5))

ζα(z) =

{
(z − λα)1/2 if nα is odd,
log(z − λα) if nα is even,

α = 1, 2, . . . ,m.

To enumerate the sheets of R it is natural to use a multi-index

ℓ = (ℓ1, ℓ2, . . . , ℓm),

where each ℓα coincides with the branch number for the corresponding function ζα, α =
1, 2, ...,m. In particular, if nα is odd then ℓα may get only two values: either 0 or 1. For
even nα the value of ℓα is allowed to be any integer. The sheets of R are denoted by Πℓ. The
physical sheet corresponds to the case where all components of ℓ are equal to zero and thus it
is denoted simply by Π0.

Each sheet Πℓ is a copy of the complex plane C
′ cut along the ray [λ1,+∞). The sheets

are pasted to each other in a suitable way along edges of the cut segments between neighboring
points in the set of the thresholds λα, α = 1, 2, . . . ,m. In particular, if coming from the sheet
Π(ℓ1,ℓ2,...,ℓm) the energy z crosses the interval (λα, λα+1), α = 1, 2, . . . ,m, λm+1 ≡ +∞, in the
upward direction (i.e. passes from the region Im z < 0 to the region Im z > 0), then it arrives
at the sheet Π(ℓ′

1
,ℓ′

2
,...,ℓ′α,ℓα+1,...,ℓm) with all indices beginning from ℓα+1 remaining the same while

the first α indices ℓj, 1 ≤ j ≤ α, change by unity. If nj is odd then ℓ′j = 1 for ℓj = 0 and
ℓ′j = 0 for ℓj = 1; if nj is even then ℓ′j = ℓj + 1. In the case where the energy z passes the same
interval (λα, λα+1) downward, it arrives at the sheet Π(ℓ′

1
,ℓ′

2
,...,ℓ′α,ℓα+1,...,ℓm) where for odd nj the

indices ℓ′j are the same as in the previous case and for even nj they change according to the rule
ℓ′j = ℓj − 1. The indices ℓj with numbers j ≥ α+ 1 remain unchanged.

Under the assumption that the kernels tαβ(
√
z − λα k̂,k′, z) admit the analytic continuation

in z through the cuts (the existence of such a continuation may be rigorously approved, see
[24]) one can perform analytic continuation of the Lippman-Schwinger equation (3.3) from the
physical sheet Π0 onto any unphysical sheet Πℓ of the surface R. Of course, the trajectory along
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which we pull z should avoid the branching points λα. Applying after each crossing the interval
(λ1,+∞) the corresponding variant of formula (2.6) we arrive at the following result

tαβ(k,k′, z
∣∣
Πℓ

) =vαβ(k,k′) −
m∑

γ=1

∫

Rnγ

dq
vαγ(k,q)tγβ(q,k′, z

∣∣
Πℓ

)

λγ + q2 − z
(3.4)

−
m∑

γ=1

ℓγ Aβ(z)

∫

Snγ−1

dq̂ vαγ(kα,
√
z − λγ q̂) tγβ(

√
z − λγ q̂,k′

β , z
∣∣
Πℓ

) ,

where

Aγ(z) = −πi(
√
z − λγ)nγ−2 (3.5)

Notice that the second integral term on the right-hand side of (3.4) includes the half-on-shell
values tγβ(

√
z − λγ q̂,k′

β , z
∣∣
Πℓ

) of the T -matrix kernels tγβ(q,k′
β , z

∣∣
Πℓ

) taken on the unphysical

sheet Πℓ. Thus, like in the two-body case of Sec. II, it is convenient to introduce operators jγ(z)
forcing a holomorphic function f(q), q ∈ C

n, to set onto the corresponding energy shell, i.e.

(
jγ(z)f

)
(q̂) = f(

√
z − λγ q̂), γ = 1, 2, . . . ,m.

From these operators we construct a block diagonal matrix

J(z) =




j1(z) 0 . . . 0
0 j2(z) . . . 0
. . . . . . . . . . . .
0 0 . . . jm(z)


 .

Using this notation one easily rewrites equation (3.4) in the matrix form

t(z
∣∣
Πℓ

) = v − vg0(z)t(z
∣∣
Πℓ

) − vJ†(z)LA(z)J(z)t(z
∣∣
Πℓ

), (3.6)

where L and A(z) are diagonal m×m matrices with scalar entries,

L =




ℓ1 0 . . . 0
0 ℓ2 . . . 0
. . . . . . . . . . . .
0 0 . . . ℓm


 and A(z) =




A1(z) 0 . . . 0
0 A2(z) . . . 0
. . . . . . . . . . . .
0 0 . . . Am(z)


 , (3.7)

and J†(z) is the “transpose” of J(z) which means that the product t(z)J†(z) has half-on-shell
kernels of the form vαβ(k,

√
z − λβk̂′).

When rearranging (3.6) we first transfer the term vg0(z)t(z
∣∣
Πℓ

) to the left-hand side of (3.6)
and obtain

(
I + vg0(z)

)
t(z

∣∣
Πℓ

) = v − vJ†(z)LA(z)J(z)t(z
∣∣
Πℓ

). (3.8)

Our next step is to invert the operator
(
I + vg0(z)

)
(of course, this is only possible for z not

belonging to the discrete spectrum of h). Here, we keep in mind that the energy z in this
operator is from the physical sheet where the Lippmann-Schwinger equation (3.2) holds and

thus
(
I + vg0(z)

)−1
v = t(z). Using this inversion formula we then derive from (3.8) that

t(z
∣∣
Πℓ

) = t(z) − t(z)J†(z)LA(z)J(z)t(z
∣∣
Πℓ

). (3.9)
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At this point it is convenient to introduce another diagonal scalar m×m matrix

L̃ =




ℓ̃1 0 . . . 0

0 ℓ̃2 . . . 0
. . . . . . . . . . . .

0 0 . . . ℓ̃m


 (3.10)

whose diagonal entries are

ℓ̃α =





0 if ℓα = 0,

Sign(ℓα) =
ℓα
|ℓα|

if ℓα 6= 0.

Clearly, the matrices L, L̃, and A(z) commute. Moreover, LL̃ = L. Using these facts one rewrites
(3.9) in a slightly different form

t(z
∣∣
Πℓ

) = t(z) − t(z)J†(z)LA(z)L̃J(z)t(z
∣∣
Πℓ

). (3.11)

which means that the value t(z
∣∣
Πℓ

) of the T -matrix t at a point z on the unphysical sheet Πℓ is
expressed through the value of t itself taken at the same point z on the physical sheet as well as
through the half-on-shell value J(z)t(z

∣∣
Πℓ

) taken still for z
∣∣
Πℓ

and, in addition, multiplied by L̃

from the left. Applying the product L̃J(z) to both side of (3.11) we arrive at a closed equation
for L̃J(z)t(z

∣∣
Πℓ

),

[
Î + L̃J(z)t(z)J†(z)LA(z)

]
L̃J(z)t(z

∣∣
Πℓ

) = L̃J(z)t(z), (3.12)

where Î denotes the identity operator in the sum Hilbert space

G = L2(S
n1−1) ⊕ L2(S

n2−1) ⊕ . . . ⊕ L2(S
nm−1). (3.13)

Therefore, at any point z in the physical sheet where the operator

sℓ(z) = Î + L̃J(z)t(z)J†(z)LA(z) (3.14)

is invertible, we will have

L̃J(z)t(z
∣∣
Πℓ

) = [sℓ(z)]
−1L̃J(z)t(z). (3.15)

Notice that sℓ(z) commutes with L̃, i.e.

L̃sℓ(z) = sℓ(z)L̃,

and hence

LA(z)sℓ(z)
−1L̃ = LA(z)sℓ(z)

−1. (3.16)

Taking into account equalities (3.15) and (3.16) we obtain from (3.12) the following result:

t
(
z
∣∣
Πℓ

)
= t(z) − t(z)J†(z)LA(z)[sℓ(z)]

−1L̃J(z)t(z) (3.17)

= t(z) − t(z)J†(z)LA(z)[sℓ(z)]
−1(z)J(z)t(z). (3.18)

These are just the representations for t
(
z
∣∣
Πℓ

)
we look for: In (3.17) and (3.18) values of the

multichannel T -matrix on an arbitrarily chosen unphysical energy sheet Πℓ are explicitly written
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in terms of the entries whose values are taken from the physical sheet. Formulas (3.17) and (3.18)
are just the ones that represent a generalization of the two-body representation (2.11) to the
case of multichannel Schrödinger operators with binary channels. A slightly different version of
the representations (3.17) and (3.18) was first published in [24].

The operator matrix sℓ(z) given by (3.14) is closely related to the total scattering matrix for
the problem which reads

s(z) = Î + J(z)t(z)J†(z)A(z), (3.19)

Of course, the total scattering matrix contains neither entry L nor entry L̃. For the matrix sℓ(z)
these entries play an important role. Depending on the unphysical sheet Πℓ under consideration,
certain rows and columns of the difference matrix

(
sℓ(z) − Î

)
= L̃J(z)t(z)J†(z)L completely

consist of zero entries. Nullification takes place for those rows and columns of the difference
matrix

(
s(z)− Î

)
= J(z)t(z)J†(z) whose numbers α are such that the corresponding indices ℓα

equal zero. This is a reason why we call sℓ(z) the truncated scattering matrix associated with
the unphysical sheet Πℓ.

Notice that if instead of (3.2) we start with the transposed Lippmann-Schwinger equation

t(z) = v − t(z)g0(z)v ,

then in the same way we obtain for t
(
z
∣∣
Πℓ

)
another representation that can be considered as a

transposed version of the representation (3.17):

t
(
z
∣∣
Πℓ

)
= t(z) − t(z)J†(z)L̃[s†ℓ(z)]

−1A(z)LJ(z)t(z) (3.20)

= t(z) − t(z)J†(z)[s†ℓ(z)]
−1A(z)LJ(z)t(z), (3.21)

where

s†ℓ(z) = Î + LA(z)J(z)t(z)J†(z)L̃ .

The operator s†ℓ(z) represents the result of truncation of the transposed S -matrix

s†(z) = Î +A(z)J(z)t(z)J†(z).

From the uniqueness of the analytic continuation by (3.17) and (3.20) it immediately follows
that

t(z)J†(z)LA(z)sℓ(z)
−1J(z)t(z) = t(z)J†(z)[s†ℓ(z)]

−1A(z)LJ(z)t(z).

To describe structure of the scattering matrices s(z) or s†(z) analytically continued to an
unphysical sheet Πℓ we need some more notations. First, introduce a block diagonal operator
matrix E(ℓ) of the form E = diag

(
E1, E2, . . . , Em

)
where Eα is the identity operator on L2(S

nα−1)

if ℓα is even and Eα is the inversion, (Eαf)(k̂) = f(−k̂), if ℓα is odd. Second, let e(ℓ) be a scalar
diagonal matrix, e = diag

(
e1, e2, . . . , em

)
, with the main diagonal entries eα defined by

eα =





+1 for any ℓα = 0,±1,±2, . . . if nα is even ,
+1 if nα is odd and ℓα = 0,
−1 if nα is odd and ℓα = 1.

That is, eα only depend on the corresponding nα and ℓα. It is obvious that if a matrix-valued
function A(z) is defined on the physical sheet of the Riemann surface ℜ by formulas (3.5) and
(3.7), then after the analytic continuation to the sheet Πℓ it acquires the form

A(z)
∣∣
Πℓ

= A(z)e(ℓ). (3.22)
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Now we are ready to present our main result concerning the S-matrices. We claim that after
continuation to the sheet Πℓ their values are expressed by the formulas

s
(
z
∣∣
Πℓ

)
= E

[
Î + ptqAe − ptqLAs−1

ℓ
ptqAe

]
E , (3.23)

s†
(
z
∣∣
Πℓ

)
= E

[
Î + eAptq − eAptq[s†ℓ]

−1AL ptq
]
E , (3.24)

where we use another shorthand notation

ptq(z) = J(z)t(z)J†(z).

The argument z of the operator-valued functions sℓ(z), s
†
ℓ(z), J(z), J†(z), and A(z) on the right-

hand sides of (3.23) (3.24) is a point on the physical sheet Π0 having just the same position on
the complex plane as the point z

∣∣
Πℓ

on the sheet Πℓ on the left-hand sides of (3.23) and (3.24),
respectively.

At last, we present the representation for the continued resolvent on the sheet Πℓ:

g
(
z
∣∣
Πℓ

)
=g +

(
I − gv

)
J†ALs−1

ℓ J
(
I − vg

)
, (3.25)

=g +
(
I − gv

)
J†[s†ℓ]

−1ALJ
(
I − vg

)
. (3.26)

In this report we skip derivation of the representations (3.23)–(3.26). The interested reader
may find it in [25, Sections 1.4 and 1.5] (see also [24]). Here we only remark that the derivation
is rather straightforward being based directly on the representations (3.20) or (3.21) for the
T -matrix.

The most important consequence of the representations (3.23)–(3.26) is the fact that all
energy singularities of the T -matrix, scattering matrices, and resolvent on an unphysical sheet
Πℓ, differing of those in the physical sheet, are just the singularities of the inverse truncated
scattering matrix [sℓ(z)]

−1 (or, and this is the same, the ones of its transpose [s†ℓ(z)]
−1). This

means that

resonances on sheet Πℓ correspond exactly to the points z on

the physical sheet where the operator sℓ(z) has eigenvalue zero,
(R)

i.e. the resonances on Πℓ are those energies z on Π0 where equation

sℓ(z)A = 0 (3.27)

has a non-trivial solution A 6= 0 in the sum Hilbert space G given by (3.13).
Eigenvectors of the truncated scattering matrices sℓ(z) associated with resonances have a

quite transparent physical meaning. Assume that z is a resonance on the unphysical sheet Πℓ.
This implies that for the same energy z on the physical sheet Π0 equation (3.27) has a solution
A 6= 0, A = (A1,A2, . . . ,Am)†. Clearly, the components Aα of the vector A are non-zero only
for the channels α such that lα 6= 0. Taking into account that (3.27) can be written in the
equivalent form

A = −L̃Jt(z)J†LA(z)A, (3.28)

this conclusion follows from

(I − L̃)A = 0.

Notice that the latter holds since L̃(I − L̃) = 0.
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Along with the vector A we also consider an “extended” vector Ã that is obtained of A as a
result of replacing the projection L̃ on the right-hand side of (3.28) with the identity operator,
i.e.

Ã = −Jt(z)J†LA(z)A. (3.29)

Clearly, A = L̃Ã.
We claim that up to scalar factors the components Ã1( k̂1), Ã2( k̂2), . . ., Ãm( k̂m) of the

eigenvector Ã make sense of the breakup amplitudes of the corresponding resonance state in
channels 1, 2,. . ., and m, respectively. In particular, these amplitudes determine angular depen-
dence of coefficients at the spherical waves in the asymptotics of the channel components of the
resonant solution to the Schrödinger equation in coordinate representation.

To give some details, let us denote by h#
0 and v# the coordinate-space version (Fourier

transform) of the operators h0 and v, respectively. Namely, let

h#
0 = diag(λ1 − ∆x1

, λ2 − ∆x2
, . . . , λm − ∆xm),

where ∆xα , α = 1, 2 . . . ,m, stands for the Laplacian in variable xα ∈ R
nα .

In the statement below we restrict ourselves to the case where absolute values of the
unphysical-sheet indices corresponding to the even-dimensional channels are less than or equal
unity, i.e. we assume that if nα is even then |lα| ≤ 1. Recall that if nα is odd then automatically
lα = 0 or lα = 1.

Lemma 2. Assume that z is a resonance on an unphysical sheet Πℓ with multi-index ℓ =
(ℓ1, ℓ2, . . . , ℓm) such that |ℓα| ≤ 1 for all α = 1, 2, . . . ,m. Let A ∈ G be a non-zero solution to

equation (3.27) for the same energy z but belonging to the physical sheet. Then for this z the

Schrödinger equation

(
h#

0 + v#
)
ψ# = zψ# (3.30)

has a non-zero (resonant) solution ψ#
res = (ψ#

res,1, ψ
#
res,2, . . . , ψ

#
res,n)† whose components ψ#

res,α(xα)
for ℓα 6= 0 possess exponentially increasing asymptotics,

ψ#
res,α(xα) =

xα→∞
Cα(z, ℓα)

(
Aα(−x̂α) + o(1)

)e−i
√

z−λα|xα|

|xα|(nα−1)/2
, (3.31)

while for ℓα = 0 their asymptotics is exponentially decreasing,

ψ#
res,α(xα) =

xα→∞
Cα(z, ℓα)

(
Ãα( x̂α) + o(1)

)e+i
√

z−λα|xα|

|xα|(nα−1)/2
, (3.32)

where Ã( k̂α) stand for the corresponding components of the extended vector (3.29) and

Cα(z, ℓα) =

√
π

2
ei(nα−3)(2ℓα−1)π/4 (z − λα)(nα−3)/4 (3.33)

For the function (z − λα)
nα−3

4 on the right-hand side of (3.33) the main branch is chosen.

Complete proof of this statement may be found in [25, Section 1.6].

The functions ψ#
res,α(xα) taken altogether form the Gamov vector corresponding to the res-

onance energy z (see, e.g. [15, 17]). Just asymptotic formulas (3.31) and (3.32) prove that the
functions Aα( k̂α), ℓα 6= 0, and Ãα( k̂α), ℓα = 0, make sense of the breakup amplitudes describing
decay of the resonant state along open and closed channels, respectively.
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IV. THREE-BODY PROBLEM

In this section we give a sketch of our results on the structure of the T -matrix, scattering
matrices, and Green function on unphysical energy sheets in the three-body problem. For detail
exposition of this material see Refs. [21] or [25].

Let H0 be the three-body kinetic energy operator in the center-of-mass system. Assume that
there are no three-body forces and thus the total interaction reads V = v1 + v2 + v3 where vα,
α = 1, 2, 3, are the corresponding two-body potentials having just the same properties as in Sec.
II.

The best way to proceed in the three-body case is to work with the Faddeev components [33]

Mαβ = δαβvα − vαG(z)vβ (α, β = 1, 2, 3)

of the T -operator T (z) = V −V G(z)V where G(z) denotes the resolvent of the total Hamiltonian
H = H0 + V . The components Mαβ satisfy the Faddeev equations

Mαβ(z) = δαβtα(z) − tα(z)G0(z)
∑

γ 6=α

Mγβ(z) (4.1)

with G0(z) = (H0 − z)−1 and

tα(P,P ′, z) = tα(kα,k
′
α, z − p2

α)δ(pα − p′
α)

where kα,pα denote the corresponding reduced Jacobi momenta (see [21] for the precise defini-
tion we use) and P = (kα,pα) ∈ R

6 is the total momentum.
Assume that any of the three two-body subsystems has only one bound state with the corre-

sponding energy εα < 0, α = 1, 2, 3. Assume in addition that all of these three binding energies
are different. It is easy to see that the thresholds ε1, ε2, ε3, and 0 are associated with particular
Cauchy type integrals in the integral equations (4.1). By Lemma 1 the two-body thresholds εα
appear to be square-root branching points while the three-body threshold 0 is the logarithmic
one. In order to enumerate the unphysical sheets we introduce the multi-index ℓ = (ℓ0, ℓ1, ℓ2, ℓ3)
with ℓ0 = . . . ,−1, 0, 1, . . . and ℓα = 0, 1 if α = 1, 2, 3. Clearly, only encircling the two-body
thresholds one arrives at seven unphysical sheets. The three-body threshold generates infinitely
many unphysical sheets. (There might also be additional branching points on the unphysical
sheets, in particular due to two-body resonances.)

It turns out that the analytically continued Faddeev equations (4.1) can be explicitly solved
in terms of the matrix M = {Mαβ} itself taken only on the physical sheet, just like in the
case of the two-body T -matrix in Sec. II and multichannel T -matrix in Sec. III. The result
strongly depends, of course, on the unphysical sheet Πℓ concerned. More precisely, the resulting
representation reads as follows

M |Πℓ
= M +QM LS−1

ℓ L̃ Q̃M . (4.2)

In the particular case we deal with, L and L̃ are 4 × 4 diagonal scalar matrices of the form
L = diag(ℓ0, ℓ1, ℓ2, ℓ3) and L̃ = diag(|ℓ0|, ℓ1, ℓ2, ℓ3), respectively; Sℓ(z) = I + L̃(S(z) − I)L is
a truncation of the total scattering matrix S(z) and the entries QM , Q̃M are explicitly written
in terms of the half-on-shell kernels of M (see formula (7.34) of [21]). From (4.2) one also
derives explicit representations for G(z|Πℓ

) and S(z|Πℓ
) similar to those of (3.25) and (3.23),

respectively.
Thus, to find resonances on the sheet Πℓ one should simply look for the zeros of the truncated

scattering matrix Sℓ(z), that is, for the points z on the physical sheet where equation Sℓ(z)A = 0
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has a non-trivial solution A. The vector A will consist of amplitudes of the resonance state to
breakup into the various possible channels. Within such an approach one can also find the
three-body virtual states.

In order to find the amplitudes involved in Sℓ, one may employ any suitable method, for
example the one of Refs. [27–29] based on the Faddeev differential equations. In these works the
approach we discuss has been successfully applied to several three-body systems. In particular,
the mechanism of emerging the Efimov states in the 4He trimer has been studied [27, 28].

Acknowledgments

The author kindly acknowledges support of this work by the Russian Foundation for Basic
Research, the Deutsche Forschungsgemeinschaft (DFG) and the South African-JINR collabora-
tive agreement.

[1] G. Gamow, Z. Phys. 51, 204 (1928).
[2] R. Jost, Helv. Phys. Acta. 20, 250 (1947).
[3] E.C. Titchmarsh, Eigenfunction Expansions Associated with Second Order Differential Equations,

Vol. II (Oxford U. P., London, 1946).
[4] C. Lovelace, Phys. Rev. B 135, 1225 (1964).
[5] E. Balslev and J.M. Combes, Commun. Math. Phys. 22, 280 (1971).
[6] G.A. Hagedorn, Commun. Math. Phys. 65, 181 (1979).
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Dynamics of Molecular Trimers: Configuration Space Faddeev

Calculations

M.L. Lekala∗
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We present a method for solving the configuration space Faddeev equations as three-
dimensional equations, i.e. without resorting to an explicit partial wave decomposition.
The method is employed in bound state calculations to obtain vibrational states of several
molecules consisting of three atoms.

I. INTRODUCTION

Clusters of molecules consisting of few atoms attract a great deal of attention in the past
years by both theoreticians and experimentalists ( see e.g. [1] and references therein). One of
the reasons for this interest is the understanding of the dynamical behavior and properties of
trimers under changing thermodynamical environment. This will enable us to shed some light
of how the individual molecular properties are connected to the bulk behavior of materials such
as the super-fluidity, phase transitions and phase coexistence, melting, etc.

Several methods have been used in the past to study the dynamics of trimers. These methods
follow, in general, a two-step process, namely: First, the wave function is expanded in terms of
some finite basis representation, from which the potential energy surfaces are extracted (known
as adiabatic potentials). Second, once the potential energy surfaces are obtained, the bound
and scattering states are calculated. However, the underlying pairwise van der Waal forces for
molecular trimers have a hard repulsive core and the accuracy of adiabatic approximations is not
guaranteed. Furthermore, the strong repulsive potential gives rise, in turn, to strong two-body
correlations and, therefore, to obtain converged results, a large number of partial waves must
be included. As a result, one has to deal with a huge computational problem that makes the
calculations difficult and tedious.

In the present work we employed the three-dimensional three-body Faddeev-type equations
in configuration space within the framework of the total-angular-momentum representation [2, 3]
thus avoiding the cumbersome partial wave decomposition.

This paper is organized as follows. In Sec. II we briefly discuss the formalism of the Faddeev
equations, whereas in Sec. III the numerical method employed is presented. Various aspects
of the method as applied to noble-gas trimers are discussed here, with more emphasis given
to numerical stabilities especially when three-molecular forces are included. The results of
calculations for the various systems considered are presented in Sec. IV. Concluding remarks
are passed in Sec. V.

II. FADDEEV EQUATIONS

We consider a bound system of three non-relativistic particles α, β, and γ, in the presence
of both two- and three-body forces. Kinematically the system is described in terms of a set of

∗
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Jacobi coordinates, schematically shown in Fig. 1, defined in terms of the particle masses as
follows [4]

rα =

√

2mβmγ

mβ + mγ
(rβ − rγ) (1)

ρα =

√

2mα(mβ + mγ)

mα + mβ + mγ

(

rα − mβrβ + mγrγ

mβ + mγ

)

(2)

� �
�

�
���

θα

rα

ρα

t

u uγ β

α

FIG. 1: Jacobi coordinates for three particles

The different Jacobi coordinates are related to each other and are obtained via cyclic per-
mutation as





rβ

ρβ



 =





C11
βα C12

βα

C21
βα C22

βα









rα

ρα



 (3)

where the coefficients Cij
βα are functions of the masses of the particles, given by

C11
βα =

√

mβmα

(mα + mγ)(mβ + mγ)
, (4)

C12
βα = (−1)α−βsign(α − β)

√

mγ(mα + mβ + mγ)

(mα + mγ)(mβ + mγ)
(5)

with C22
βα = C11

βα and C21
βα = −C12

βα.
The Hamiltonian for the systems in the presents of both two- and three-body forces reads

H3 = H0 +
∑

i

v
(2BF)
i + V (3BF) ; i = α, β, γ (6)

and leads to a set of coupled differential Faddeev-type equations
[

H0 + v
(2BF)
i (ri) + V (3BF)(ri, ρi) − E3

]

Φi(ri, ρi) = −v
(2BF)
i (ri)

∑

j 6=i

Φj(rj , ρj) (7)

where i, j = α, β, γ, Φi is the ith Faddeev component describing the subsystem (j, k), i 6= j, k,

and H0 is the free Hamiltonian; v
(2BF)
i and V (3BF) are the two- and three-body potentials

respectively while E3 is the binding energy. As usual the total wave function Ψ3 for the system
is given by

Ψ3(ri, ρi) =
∑

i

Φi(ri, ρi) , i = α, β, γ (8)
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A. Total-angular-momentum representation

When the particles interact via spherically symmetric forces, the Hamiltonian commutes with
the total orbital angular momentum, and one of its projection. As a result the separation of
variables describing the rotation of the system as a whole and the intrinsic variables defined by
the size of the triangle formed by the three-particles is possible. Accordingly, following [2, 3],
Φ can be expanded in terms of the Wigner functions DL

αMLM (ζα, ϑα, ϕα) (i.e. eigenfunctions of
the total angular momentum L) as follows

Φα(rα, ρα) =
∑

L,ML,M

φL
αMLM (rα, ρα, zα)

rαρα
DL

αMLM (ζα, ϑα, ϕα) , (9)

where φL
α(rα, ρα, zα) are the projections of the Faddeev components (sometimes called Faddeev

amplitudes) on subspaces with a fixed angular momentum L, and rα, ρα are the magnitudes of
the Jacobi vectors, i.e. rα = |rα|, etc.; zα = (rα · ρα)/rαρα is the angle between the two Jacobi
vectors, and zα ∈ (−1, 1) . The corresponding projected free Hamiltonian is

HL
0 = DL

αMLM (g−1
α )rαραH0

1

rαρα
DL

αMLM (gα) , (10)

where gα = (ζα, ϑα, ϕα) stands for the coordinates describing the angular motion of the system.
Substituting Eq. (9) into Eq. (7) and projecting on the subspace of the fixed angular momentum
L, one obtains
[

HL
0 + v(2BF)

α (rα) + V (3BF)(rα, ρα, zα) − E3

]

φL
α(rα, ρα, zα) = −v(2BF)

α (rα)
∑

β 6=α

φL
β (rβ, ρβ , zβ)(11)

Equations (11) are the Faddeev equations in the total-angular-momentum representation. They
describe three-body states with fixed total angular momentum L, leading to a set of (6L + 3)
coupled three-dimensional partial differential equations.

For identical particles (i.e. mα = mβ = mγ) and for L = 0 the different Faddeev amplitudes
are related as follows

φ0
β(rβ , ρβ , zβ) = P+φ0

α(rα, ρα, zα) = rαρα
φ0(r+

α , ρ+
α , z+

α )

r+
α ρ+

α
, (12)

φ0
γ(xγ , yγ , zγ) = P−φ0

α(rα, ρα, zα) = rαρα
φ0(r−α , ρ−α , z−α )

r−α ρ−α
, (13)

where P+ (P−) is the cyclic (anticyclic) permutation operator acting on the coordinates. The
coordinates r±, ρ±, z± are given by

r±(r, ρ, z) =

(

1

4
r2 +

3

4
ρ2 ∓

√
3

2
rρz

)1/2

(14)

ρ±(r, ρ, z) =

(

3

4
r2 +

1

4
ρ2 ±

√
3

2
rρz

)1/2

(15)

z±(r, ρ, z) =
±
√

3

4
r2 ∓

√
3

4
ρ2 − 1

2
rρz

r±(r, ρ, z)ρ±(r, ρ, z)
, (16)
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where the subscript α, which is redundant for identical particles, is dropped. Substitution of
Eqs. (12) and (13) into (11) leads to a single equation for the amplitude φ0, namely

[

H0
0 + v(2BF)(1 + P+ + P−) + V (3BF) − E3

]

φ0(r, ρ, z) = 0 , (17)

where the arguments have been suppressed for clarity. Also

H0
0 = − ∂2

∂r2
− ∂2

∂ρ2

(

1

r2
+

1

ρ2

)

∂

∂z
(1 − z2)1/2 ∂

∂z
(18)

In the case of non-identical particles (e.g. mα = mβ 66= mγ), Eq. (11) has two independent
Faddeev solutions, i.e. φγ associated with the (α, β) subsystem and φα associated with the pair
(β, γ). The third component φβ , associated with the subsystem (γ, α), is obtained from φα by
a simple rotation of the coordinate space. Thus, in this case one solves a set of two coupled
equations for the amplitudes.

III. NUMERICAL METHOD

Our objective is to obtain a regular solution to the set of coupled differential equations (11)
or equivalently Eq. (17) for identical particles. To this end φ is expanded in terms of a set of
square integrable basis functions Si [5]

φ(r, ρ, z) =

L
∑

l=1

M
∑

m=1

N
∑

n=1

ClmnSl(r)Sm(ρ)Sn(z) . (19)

The subscripts (L, M , N) refer to the number of basis functions in the three variables (r, ρ, z),
respectively. Substituting Eq. (19) into Eq. (17), followed by the orthogonal collocation proce-
dure [6] gives a system of linear algebraic equations

[Ĥ1 + Ĥ2 − E3Î]C = 0 , (20)

for the expansion coefficients C, where Ĥ1 = Ĥ0 + v̂(2BF) + V (3BF) and Ĥ2 = v̂(2BF)(P̂+ + P̂−).
Treating E3 as a parameter, (20) is turned into an eigenvalue equation

−(Ĥ1 − E3Î)−1Ĥ2C = Λ(E3)C , (21)

where Λ(E3) is the eigenvalue, and for physical solutions Λ(E3) = 1.

A. Discussion on Convergence Properties of the Method

The problem of obtaining eigensolutions to Eq. (21) is equivalent to that of finding the
discrete spectrum of the operator

F̂ = −(Ĥ1 − E3Î)−1Ĥ2 . (22)

which can be realized using standard methods for large matrices such as the iterative Arnoldi
method. In the nuclear case, due to the short-ranged nature of the forces, the Arnoldi method
works satisfactorily for a wide range of potentials. However, in the case of molecular trimers, the
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underlying interatomic potentials are for all practical purposes of hard-core nature. This leads
to several problems. For example, in the case of trimers relatively larger than the helium trimer,
the spectra contain in general a large number of positive and negative eigenvalues, some of which
lie very close to one. The large number of negative eigenvalues suppresses the convergence of the
Arnoldi algorithm. On the other hand, the existence of several eigenvalues close to one makes
it difficult to pinpoint a physical solution.

To address the aforementioned convergence problems we adopt the approach described in
Refs. [5, 7], in which the negative eigenvalues are eliminated from the spectrum by considering
instead of F̂ the spectrum of the operator

M̂(z) = (Ĥ0 + V̂ + V̂m − z)−1(V̂m − V̂ P̂ ) , (23)

where V̂m is a strong short-ranged potential. Of importance is that the positive eigenvalues of
M̂ in the vicinity of 1 are identical to those of Λi,F = 1, and are independent of the modifying
potential. On the other hand, the eigenvalues µi(zi) = −1 correspond to eigenvalues of the
equation

[Ĥ0 + 2V̂m + V̂ (1 − P̂ ) − zi]C = 0 , (24)

and depend on the modifying potential V̂m. Thus by a proper choice of V̂m they can be elimi-
nated. According to Arnoldi algorithm convergence estimations, see for example [8], this feature
of M̂ should improve dramatically the convergence of the eigenvalues.

The aforementioned features can be demonstrated by considering the spectra of F and M,
for the strongly repulsive LM2M2 potential in the case of helium trimer, shown in Fig. 2 and
Fig. 3, respectively.

FIG. 2: Spectrum of L(E) for the LM2M2 potential as given in Ref. [5].

B. Diagonalization

Due to the large sizes of the matrices involved, it is not easy to solve directly the eigenvalue
problem (21). To address this problem we use the tensor-trick technique [9]. According to
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FIG. 3: Same as in Fig. 2 but for M(E).

this technique diagonalization can be simplified if the matrix (Ĥ1 − E3Î)−1 can be written as a
product of simpler matrices. For example, following [7], we write

(Ĥ1 − E3Î)−1 = B̂Ĝ−1B̂∗ , (25)

which has a band structure, and where the matrix B̂ is given

B̂ ≡
Nz
∏

i=1

⊕(B̂i
r ⊗ B̂i

ρ) ⊗ [B̂z]i , (26)

and Ĝ is diagonal matrix Ĝ = diag{g111, g112, · · · , giriρiz , · · · gNrNρNz} with giriρiz given by

giriρiz = Eiz
riρ

+ Eiz
riρ

− E3.
In this work, we solve the eigenvalue problem using the Restarted Arnoldi algorithm.

C. Minimization Approach

In cases where a plethora of closely lying states exist, such as in the case of the Ozone
molecule considered in this work, convergence challenges increase formidably. As a result it be-
comes practically impossible to discriminate levels definitely. In order to address this question we
employed an optimization method called MERLIN [10]. Merlin is an optimization package and
supports many optimization algorithms such as direct, gradient, and conjugate gradient meth-
ods. Examples of the first type of methods include the Simplex method, and gradient methods
include the so-called BFGS update methods. The Fletcher-Reeves and Polak-Ribiere methods
are examples of conjugate gradient methods included. The combination of these strategies that
makes MERLIN highly effective and robust, in contrast to, for example, library routines that
implement a single algorithm.

The Merlin optimization is applied to solve Faddeev equations by transforming eigenvalue
problem (21) into a minimization problem as follows

I(Eλ;p) =

∑

i[Fφλ(ri, ρi, zi;p) − Λλ(Eλ)φλ(ri, ρi, zi;p)]2
∑

i[φλ(ri, ρi, zi;p)]2
, (27)
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where the trial eigenfunction φλ is defined on the collocation points (ri, ρi, zi), and p is the
parameter vector.

D. Algorithm Implementation

The choice of the r-grid is very crucial in the implementation of our algorithm. This grid must
be optimized to always reproduce the two-body binding. This is achieved by dividing the space
Ωr = [a0, rmax] (a0 is the first nonzero grid point from r = 0) into two sub-domains, namely, the
interior domain Ωr,I and the exterior domain Ωr,J , separated by some carefully chosen break-
point rB carefully chosen to eliminate numerical noise associated with the r → 0 behavior. That
is, we partition as follows: a0 = r0 < r1 < · · · < rB < · · · < rNr = rmax. In general, Ωr,I is
relatively dense compared to Ωr,J . Moreover, it must have small separation between grid points,
and contain a sufficient number of points to describe well the most important ranges affecting
the physical quantities involved. In other words the grid must be constructed such that the
density of the points is higher where the wave functions are important. For bound states, the
wave function has more structure at small values of r. In this work, it was found that the
transformation

ri+1 = a0 + iδr
(I)
i , i = 1, 2, · · · , Nr,I − 1 , (28)

ri = ri−1 + δr
(J)
i , i = Nr,I , · · · , Nr , (29)

where the δri
′s are the scaling functions, and Nr,I is the number of interior points in the domain

Ωr,I , fulfills the requirements described. As a rule of thumb the break point rB is chosen in
such a way that roughly two-thirds of the r-grid points are interior points. The ρ-grid is defined
similarly with Ωρ,I .The z-grid, z0 < z1 < · · · < zNz , is obtained by the transformation

zi = g(ti) , i = 0, · · · · · · , Nz , (30)

where ti = −1+ iδz and the function g is given by g(t) = (t + C0t
3)/(1+ C0), with z0 = −1 and

zNz = 1, and the control parameter is chosen within −1 < C0 ≤ 0.
We interpolate using the quintic Hermite splines. We employ the orthogonal collocation

method with three Gaussian quadrature points per subinterval. This means that for a basic grid
with N points there are (3N + 3) collocation points. Once the collocation points are obtained,
the matrix elements of the operators in (17) are easily constructed, leading to (3N+3) equations.
However, in the r and ρ direction, collocation method supplemented by the boundary conditions
reduces the number of equations from 3N + 3 to 3N . For the z coordinate the number remains
3Nz + 3. Thus the dimension of the system of equations to be solved is rather large and equals
NT = 3Nr × 3Nρ × 3(Nz + 1).

IV. RESULTS AND DISCUSSION

We calculated the binding energies for the 4He3,
40Ar3, and the Ozone molecule. In the case

of 4He3 only two-body interactions are employed since it is known three-body forces contribute
<1% to the binding [11]. We used HFD-B, LM2M2 potentials [12], and the so-called TTY
potential of Tang et. al [13]. Our converged results are given in Table I, where Nr (Nρ, Nz)
refers to the number of the mesh points for the r− (ρ−, z−) grid. For the HFD-B potential,
our results are compared with those of Refs. [5, 14], both of which use forms of the differential
Faddeev equations, and of Refs. [11, 15] in which hyperspherical harmonics expansion methods
are used.
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In the case of Ar3, we use the HFD-C potential [13] for the two-body force. For the three-
body forces we consider the first few dominant ones, namely triple-dipole (DDD), dipole-dipole-
quadrupole (DDQ), and dipole-quadrupole-quadrupole (DQQ). With these inputs we calculate
systematically the low-lying states for the trimer. In Table II we present our results. We used
~

2/µ = 1.21381149K · Å−2. The results compared well with those of [16, 17].
Finally, we calculated the low-lying states for the Ozone molecule. Here, we use the potential

given in [18] for two-body forces, and the dominant tripole dipole forces [19] for three-body
potential. The results are given in Table III.

V. CONCLUSIONS

We presented a reliable three-dimensional method for solving The Faddeev-type equations
applied to molecular three-body bound state problems. The method is applied to obtain spectra
for various trimers.

We calculated the binding energies for the ground state and some low-lying excited states
for heavier trimers using two- and three-body potentials. The results obtained using a combi-
nation of two- and three-body forces are in fair agreement with, e.g. those of Refs. [16] and [17],
which were obtained using different formalisms. It is thus clear that the Faddeev-type formalism
employed here is suitable for studies of trimers and the question of handling the multitude of
coupled equations for the various partial waves can be avoided by solving the three-dimensional
equations directly. Finally, our results show that three-body forces have a significant contribu-
tion, especially in heavier molecular trimers, to the binding should, in general, be included.

TABLE I: The binding energies (in K) of the ground state 4He3 for the potentials: HFD-B, LM2M2, and
TTY. The top part of the table gives results obtained in this work as a function of the grid sizes. The
bottom part of the table give results obtained by others using different methods.

Nr Nρ Nz HFD-B LM2M2 TTY
50 50 3 -0.1385316 -0.1218115 -0.1209365
100 100 3 -0.1350168 -0.1269019 -0.1268981
150 150 3 -0.1324774 -0.12641587 -0.12642109
200 200 3 -0.1321926 -0.12641020 -0.12641001

Ref. [11] – -0.1061 –
Ref. [15] – -0.1252 –
Ref. [14] -0.131 – –
Ref. [5] -0.13298 -0.1264 -0.1264

TABLE II: The binding energies (in eV) for the Ar3 obtained with HFD-C as a pairwise potential (v2BF )
and with a combination of v2BF and the DDD, DDQ, and DQQ three-body forces.

ν v2BF v2BF +DDD v2BF +DDD+DDQ v2BF +DDD+DDQ+DQQ
0 -0.0327 -0.0363 -0.0381 -0.0381
1 -0.0295 -0.0325 -0.0340 -0.0343
2 -0.0262 -0.0291 -0.0305 -0.0311
3 -0.0246 -0.0270 -0.0283 -0.0290
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TABLE III: The binding energies (in eV) for the Ozone obtained with pairwise potential (v2BF ) and
DDD three-body forces.

ν v2BF (×102) v2BF +DDD (×102)
0 -0.1005 -0.1342
1 -0.0990 -0.1209
2 -0.0851 -0.1143
3 -0.0809 -0.1129
4 -0.0800 -0.1052
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Towards Multi-Band Inversion in Semiconductor Heterostructures
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The relationship between two well-known methods in physics is studied: the k ·p method
for semiconductors and the Marchenko inversion method from nuclear physics. Two possi-
bilities are suggested for adapting the coupled-channel Marchenko method to the design of
semiconductor heterostructures. Some preliminary results are presented for a 2-band model.

I. INTRODUCTION

In view of ongoing research into new, potentially useful, spintronic devices, which can be
manufactured from carefully designed semiconductor heterostructures, it is currently of interest
to investigate whether well-established techniques in nuclear physics can be applied profitably
to the emerging fields of spintronics [1, 2] and heterostructure design via inversion [3, 4].

In nuclear physics the inverse scattering problem on the line has received numerous theoret-
ical treatments and several important questions concerning the inversion procedure have been
addressed successfully. These include the numerical solution of the Marchenko integral equa-
tion for constant effective mass, dealing with bound states and the successful solution of the
coupled-channel problem with thresholds and bound states [4].

In semiconductor physics however, only limited use has been made of inverse scattering tech-
niques in one dimension; despite their huge prospects for the design of heterostructures [5, 6].
Notwithstanding the old problem of phase reconstruction [7], the lack of progress may be at-
tributed to the fundamental difference between the nuclear and semiconductor cases. In the
latter case the inversion procedure must take into account the periodic nature of the semicon-
ductor lattice potential, which gives rise to interband k · p coupling. In heterostructures with
abrupt transitions from one material to another, the degree of interband coupling may not be
the same in each constituent bulk material. The inverse problem is thus considerably more
complicated. It consists not only of determining the heterostructure profile, but also of finding
the key material dependent k · p parameters that govern the electron transport. Since both the
k · p method [8–11] and Marchenko inversion [12–15] are well documented in the literature, a
review of these two methods will not be provided here.

In the present article, inversion in semiconductor heterostructures is considered. Section II
starts with a brief review of recent developments in single-band inversion. A solution to the
important problem of variable effective mass is recalled. In Sec. III a general formalism is
developed for solving the multi-band k ·p equation. The formal similarity between the coupled-
channel Schrödinger equation (in the nuclear case) and the multi-band k · p equation (in the
semiconductor case), facilitates the derivation of a modified Riccati equation which can be
used to calculate the reflection matrix. Although the Riccati equation is well-known in nuclear
physics, the basic technique presented in Sec. III is entirely new to semiconductor physics. In
Sec. IV an important question is posed: Is it possible to extend the coupled-channel Marchenko
inversion method to include the interband coupling in semiconductors? Due to the complexity
of this question it remains, for the moment, unanswered. However, at the end of Sec. IV, two
possible ways forward are suggested. Finally, in Sec. V some preliminary numerical results are
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presented for a two-band model. These results will serve as input to the anticipated solution of
the multi-band inverse problem in semiconductor heterostructures.

II. SINGLE-BAND INVERSION WITH VARIABLE EFFECTIVE MASS

As a first approximation the time independent Schrödinger equation for a single electron
inside a semiconductor heterostructure can be written as

− 1

2m0
ϕ′′ (z) + VS (z)ϕ (z) = Eϕ (z) . (1)

In this approximation the electron is assumed to have a constant effective mass m0 throughout
the entire heterostructure. The objective of inversion is to recover the potential profile VS(z)
from either of the two reflection amplitudes, R± (k). For a constant effective mass the inversion
of Eq. (1) is well known [12].

In real heterostructures however, the effective mass of the electron varies from one material
to the next. Therefore, a better approximation consists of writing the effective mass as m0m(x),
where m(x) is a function of position along the growth direction of the heterostructure. In this

FIG. 1: Potential profile and variable effective mass m0m(x) for a biased heterostructure. Va is an applied
(bias) potential.

case the Hermiticity of the kinetic energy operator can be ensured by writing the Schrödinger
equation in the BenDaniel-Duke form [11]

− 1

2m0

[
χ′ (x)

m (x)

]′

+ VBDD (x)χ (x) = Eχ (x) . (2)
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It is possible to transform Eq. (2) into the form of Eq. (1) via a unitary transformation,
effected by [7]

χ (x) = m0

√

X
′

(x)ϕ (z) , (3)

with z = X (x). Differentiating χ (x) with respect to x gives

χ′ (x) =
m0

2

[

X
′

(x)
]− 1

2

X
′′

(x)ϕ (z) + m0

[

X
′

(x)
] 3

2 dϕ

dz
. (4)

Dividing Eq. (4) by 2m0 [X ′ (x)]2, differentiating a second time and making use of Eq. (1), then
produces

− 1

2m0

[
χ′ (x)

[X ′ (x)]2

]′

+

(

VS (X (x)) +
X ′′′ (x)

4 [X ′ (x)]3
− 5 [X ′′ (x)]2

8 [X ′ (x)]4

)

︸ ︷︷ ︸

VBDD(x)

χ (x) = Eχ (x) . (5)

Equation (5) has the same form as Eq. (2), provided the identification m (x) = [X ′ (x)]2 is
made. Thus, as long as m(x) ≥ 0, it is possible to map the problem of inverting Eq. (2), for
an unknown potential VBDD(x), to an equivalent, much simpler problem of inverting Eq. (1) to
obtain the potential VS(z). By solving a differential equation for the monotonically increasing
function X(x), the potential VBDD(x) can be recovered from

VBDD(x) = VS (X (x)) +
X ′′′ (x)

4 [X ′ (x)]3
− 5 [X ′′ (x)]2

8 [X ′ (x)]4
. (6)

As an example of the above procedure, the transmission probability corresponding to the
heterostructure in Fig. 1 has been plotted as a function of electron energy, in Fig. 2. The
equivalent constant effective mass potential, as calculated from Eq. (6), is shown in Fig. 3. Note
that the potential profiles shown in Figs. 1 and 3 both produce the transmission probability
shown in Fig. 2. In Fig. 3 it can be seen that the equivalent constant effective mass potential is
considerably more demanding, from a numerical point of view, than the variable effective mass
potential. The height of the peaks in the equivalent potential, at each interface, depends on the
sharpness of the transition in effective mass. In Fig. 3 the peaks are unusually high because the
transition in effective mass takes place over a distance of approximately 1 Å (cf. Fig. 1), which
is less than the lattice constant (a ≈ 6 Å) for a typical III-V semiconductor.

Even though a numerical implementation of the above inversion procedure is possible, it
should be borne in mind that the variable effective mass model can only provide qualitative
information about the electron tunneling in heterostructures. It can be shown that a two-band
model is the minimum structure that can quantitatively model the dominant physical process
in electron tunneling, i.e. interband coupling. Therefore, any multi-band inversion procedure,
even for two bands, would indeed be very useful for more realistic heterostructure design.

III. MULTI-BAND RICCATI METHOD FOR CALCULATING R (E)

In the multi-band case the inverse problem starts from a reflection matrix R (E). To develop
the theory one thus needs a reliable method of calculating R (E).

The following multi-band Riccati method is based on the multi-band k ·p equation. Its main
advantage is that, unlike the transfer matrix method for example, the Riccati method has been
found to work extremely well in type-II heterostructures [16].
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FIG. 2: Transmission probability as a function of electron energy for the heterostructure in Fig. 1.

FIG. 3: Equivalent constant effective mass potential, as calculated from Eq. (6), and corresponding to
the potential shown in Fig. 1. The dotted curve shows a magnified view.

In natural units (see Appendix A) the N -band k · p equation describing an electron in a
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heterostructure grown in the x-direction (see Fig. 4) can be written as
[

−H2
∂2

∂x2
+ H1

∂

∂x
+ V (x) + E

]

F (x) = EF (x) . (7)

where V (x) is a real diagonal N × N potential matrix and E contains the band-edge energies
at k = 0 (threshold energies). The additional term H1∂/∂x in Eq. (7) represents the k · p

coupling. Note that H1 is a real anti-symmetric N × N matrix.

FIG. 4: Schematic multi-band potential profile (showing two bands) along the growth direction of a
heterostructure. Within the active region, i.e. between xL and xR, the potential may vary arbitrarily.
To the left and right of the active region are two contact (flat-band) regions. Va is an applied (bias)
potential.

Following the method of Ref. [16], the multi-band k · p Riccati equation corresponding to
Eq. (7) may be derived as

∂Y

∂x
= H−1

2

(
V (x) + E − k2 + H1Y

)
− Y 2 , (8)

were Y = F
′

F−1.
The solution to Eq. (7), to the left of the active region, can be written in the form

F L (x) = [exp (iKx) + exp (−iKx) R] C (x ≤ xL) (9)

where C is an arbitrary constant matrix. By making the usual assumption, that there are no
incident waves from the right, the solution to the right can be written as

F R (x) = exp (iKx)T C (xR ≤ x) (10)

Here T (E) and R (E) are the, as yet unknown, transmission and reflection matrices, respectively.
Evaluation of F L and its first derivative at x = 0 (using Eq. (9)) yields

F L (0) C−1 = 1 + R , (11)

F
′

L (0) C−1 = iK (0) (1 − R) . (12)
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Multiplication of Eq. (12) from the right by
(
F L (0) C−1

)−1
= CF L (0)−1 produces

F
′

L (0) C−1CF−1
L (0) = F

′

L (0) F−1
L (0) = Y (0) = iK (0) (1 − R) (1 + R)−1 . (13)

The reflection matrix,

R = [iK (0) + Y (0)]−1 [iK (0) − Y (0)] , (14)

is found by solving for R in Eq. (13).
In Eq. (14) the matrix K (0) is obtained from the energy-dispersion relation

H2K
2 + iH1K = k21− E . (15)

Equation (15) is the result of substituting the trial solution exp (iKx) into Eq. (7) for V (0) = 0.
In Eq. (14) Y (0) is obtained by integrating Eq. (8) from x = x0 to x = 0, as described in Ref.
[16]. The boundary condition for this integration is Y (x0) = iK (x0).

A. Example: A two-band model

For a two-band model the required matrices in Eq. (7) are given by

H2 =

(
+1/2 0

0 −1/2

)

, H1 =

(
0 +P/

√
2

−P/
√

2 0

)

and E =

(
0 0
0 −Eg

)

, (16)

where Eg is the fundamental energy gap of the material and P is the interband momentum
matrix element. The latter parameter is a characteristic of the material. Physically, P describes
the coupling between the two bands and is also responsible for the non-parabolicity in the energy
band structure. In this model the non-parabolicity can clearly be seen from the energy-dispersion
relation

E = −Eg

2
± Eg

2

√

1 +
2 (Eg + P 2) k2

E2
g

+
k4

E2
g

. (17)

In Eq. (17) the + sign is for the conduction band and the − sign for the valence band and E is
the electron energy measured from the minimum in the conduction band of the material.

On the other hand, the solution to Eq. (15) yields K11 = K22 = 0,

K12 =
1√
2P

(

−P 2 −
√

4E2 + 4EEg + E2
g − 2P 2Eg + P 4

)

, (18)

K21 = K12 +
2E + Eg√

2P
. (19)

As may be expected from the form of the matrices in Eq. (16), the K matrix in this case
contains only off-diagonal entries. This observation is however not generally true in models with
more than two bands.

IV. MULTI-BAND INVERSION IN THE PRESENCE OF INTERBAND COUPLING

In this section the following important question is posed: Is it possible, in general, to recover
all the structural and compositional data from the reflection matrix? Or in the context of the
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exemplary two-band model: Is it possible to recover V1 (x), V2 (x) and P from the 2×2 reflection
matrix, R (E)?

From the above considerations it is clear that, even for the two-band case, the objective of
inversion in semiconductors is more challenging. Because of the k ·p coupling term, represented
by H1∂/∂x in Eq. (7), there is an additional complication. H1 contains the momentum matrix
element P , which is an empirical material parameter characterizing the material. Therefore,
in much the same way as the variable effective mass had to be recovered from the differential
equation for χ(x), a two-band inversion procedure should recover P , in addition to the potential
profiles V1 (x) and V2 (x). As noted in Ref. [6], in general, multi-band inverse methods should be
able to produce all the structural and compositional data which characterizes the heterostructure
through which the electron tunnels.

Now consider the general solution to Eq. (7). With the choice C = T−1 in Eqs. (9) and
(10), the general solution to Eq. (7) can be written as

F (x) = F + (E, x) =
(

F̃− (E, x) + F− (E, x) R
)

T−1 , (20)

where the solutions F± (E, x) and F̃± (E, x) satisfy the boundary conditions

F + (E, x) = exp (+iKx) and F̃ + (E, x) = exp (−iKx) for xR < x (21)

F− (E, x) = exp (−iKx) and F̃− (E, x) = exp (+iKx) for x < xL (22)

The above boundary conditions ensure that F± (E, x) and F̃± (E, x) are the Jost solutions to
Eq. (7).

For the case when H1 = 0 and H2 = 1, Eq. (7) reduces to

[

−1
∂2

∂x2
+ V (x) + E

]

F (x) = EF (x) (23)

It is know that the Jost solutions to Eq. (23) have the Levin representations

F + (E, x) = exp (+iKx) +

∞∫

x

G+ (x, y) exp (+iKy) dy , (24)

F̃ + (E, x) = exp (−iKx) +

∞∫

x

G+ (x, y) exp (−iKy) dy , (25)

F− (E, x) = exp (−iKx) +

x∫

−∞

G− (x, y) exp (−iKy) dy , (26)

F̃− (E, x) = exp (+iKx) +

x∫

−∞

G− (x, y) exp (+iKy) dy , (27)

where the potential matrix V (x) is related to either of the kernels G± via

V (x) = ∓2
∂

∂x
G±(x, x) . (28)

The differential equations satisfied by the kernels G± (x, y) are

(
∂2

∂x2
− ∂2

∂y2

)

G± (x, y) = V (x) G± (x, y) + [E ,G± (x, y)] . (29)
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Equivalently, the Marchenko integral equations for G± can be derived as in Ref. [14].
In the present case, which includes the additional terms H1∂/∂x and H2 6= 1, the procedure

that was used for Eq. (23) is not immediately possible. In fact, its generalization turns out to
be a formidable problem and one which will require further investigation.

It may be possible to generalize the representation of the Jost-like solutions, so as to take
into account the interband coupling term. Alternatively, it may be possible to develop a folding
procedure [17] which, similarly to the unitary transformation that was used in the single band
case, can transform Eq. (7) into the form of Eq. (23), which can be solved according to the
method of Ref. [14].

In conclusion of this section it is noted that the multi-band k · p method restricts the wave
vector to lie within the first Brillouin zone. As such the carrier energy can not be identified
uniquely with the magnitude of the electron momentum k (compare, for example, Eqs. (A1)
and (A2)). This is because, in essence, the k · p method exploits the periodicity of the bulk
effective lattice potential, via the Bloch theorem, to reduce the problem of an electron inside an
infinite crystal to an equivalent problem which takes place entirely within a single unit cell.

V. PRELIMINARY NUMERICAL RESULTS

In this section a numerical implementations of the theory in Sec. III is made for the two-band
model which is discussed in Sec. IIIA. The preliminary results presented here will be useful in
future work as input to the, as yet unsolved, multi-band inverse problem.

In Fig. 5, Eq. (17) has been used to plot the conduction and valence band for InAs, which
is a typical, technologically important, III-V semiconductor.

FIG. 5: Conduction and valence bands for bulk InAs as calculated from Eq. (17) for T = 0 K. To
illustrate the non-parabolicity in the energy band structure, the parabolic conduction band has been
shown by the dashed curve.

In a bulk semiconductor such as InAs, the temperature dependence of the fundamental energy
gap Eg can often be approximated by the empirical Varshni formula

Eg (T ) = E0 −
αT 2

β + T
. (30)
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For InAs the parameter values are: E0 = 0.417 eV, α = 2.76 × 10−4 eVK−1 and β = 93K. The
momentum matrix element (P = 0.753 in natural units) is chosen so that the effective mass in
the two-band model, which is given by m∗ ≈ Eg/P

2, agrees with the experimental value at low
temperature. The value of P is usually assumed to be independent of temperature. Thus the
temperature variation of the effective mass arises purely through the temperature dependence
of Eg, as given by Eq. (30). The experimental value of the effective mass of an electron in InAs
is given by m∗ = 0.026 at T = 0K [18]. Parameter values appropriate to other important III-V
compound semiconductors and their alloys can be found in Ref. [18].

As an example of the method described in Sec. III, R (E) has been calculated for the
heterostructure shown in Fig. 6.

FIG. 6: Confining potential profile of an InAs/GaSb double quantum well. The solid lines are for the
conduction bands (CB) and the dashed curves for the valence bands (VB). Two case are show: one for
zero applied voltage and the other for an applied voltage Va = 0.1 eV.

For this structure only the conduction band is open to transmit incident electrons with energy
E > 0. The transmission probability as a function of E is shown in Fig. 7 for two different
values of applied voltage Va. It is apparent, in Fig. 7 that, even though the singe-band and
two-band models contain exactly the same effective mass at the zone center (k = 0), the
transmission probabilities predicted by these two models are not in good agreement. This
observation reemphasizes the need for a multi-band formulation. Even if an energy-dependent
effective mass correction is made, by using Eq. (11) and the definition

m∗ =

(
d2E

dk2

)−1

(31)

the resulting transmission probability differs imperceptibly from that shown in Fig. 7 for the
1-band case.

In comparison to higher-band models the two-band model also has shortcomings, though it
is substantially more realistic than a single-band model. Provided the energy associated with
the applied voltage is not too great, the electron transport behavior is governed by a local
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FIG. 7: Transmission probability for the GaSb/InAs/GaSb double quantum well shown in Fig. 6. The
solid and dashed curves were calculated using the two-band model. The remaining two curves were
calculated by using a single-band effective mass model.

neighborhood in the dispersion relation, which is represented quite accurately by the two-band
model. In practice the two-band model thus captures most of the essential physics relating to
charge transport. It is interesting to note that the kinetic energy terms appearing in H2 play
only a minor role in the electron transport. They effectively give rise to a very small increase
in the band-gap; the fractional change being on the same order as the effective mass relative to
the free electron mass. It is therefore not surprising that the energy-dependent effective mass
correction makes almost no difference to the results obtained from the single-band model in Fig.
7. The dominant effect is that of interband coupling.

VI. CONCLUSION

An alternative method has been developed and implemented numerically to calculate the
electronic structure and quantum transport properties of type-II heterostructures. In order to
test the theory and to provide input for future calculations, a numerical implementation has
been made using a two-band model.

Because the theory presented in Sec. III has been based on the familiar k ·p method, it may
easily be extended to include the additional bands required to model other phenomena such as
band anisotropy, spin-splitting (bulk, structural and due to an applied magnetic field), lattice
strain, band bending, etc. [19].

The considerations of Sec. IV have shown that, in the case of semiconductors heterostruc-
tures, the main obstacle for inversion is the presence of interband coupling, i.e. the additional
term H1∂/∂x in Eq. (7). It remains unclear, for the moment, whether or not there exists
an alternative representation, perhaps similar to Eq. (24) to (27), which can solve the more
complicated problem posed by Eq. (7). Another way forward might be via a suitable unitary
transformation which could eliminate the interband coupling term in Eq. (7), and thus reduce
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the problem to one which has been solved previously.

APPENDIX A: NATURAL UNITS

By convention, the natural units [20] in semiconductor physics are those in which length is
measured in terms of Bohr radii and energy in terms of the Hartree energy (See Table 1). In

TABLE I: Natural units of length and energy in semiconductor physics. The Bohr radius a0 is the most
likely distance at which the electron orbits the nucleus of a hydrogen atom in its ground state and the
Hartree energy is equal to the absolute value of the electric potential energy of the hydrogen atom in its
ground state.

Bohr radius: 4πε0~
2/
(
mee

2
)

= 0.0529177249 nm

Hartree energy: ~
2/
(
mea

2

0

)
= 27.2113961 eV

these units the Schrödinger equation for a single electron of mass me (= ~ = c = 1) has the form

−1

2
ϕ

′′

(x) + V (x) ϕ (x) = Eϕ (x) (A1)

In the work on inversion however (See, for example, Ref. [4].), the Schrödinger equation is
written in units for which

−ϕ
′′

(x) + V (x)ϕ (x) = k2ϕ (x) (A2)

and the potential energy of the electron is measured in units of nm−2. The appropriate conversion
factor between the two systems of units is therefore given by

~
2

2me

=
~

2c2

2mec2
=

(197.327054MeVfm)2

2 (0.51099906MeV)
= 0.038099841 eVnm2

For example, a typical potential of V = 1.0 eV in Eq. (A1) is equivalent to

V =
1eV

0.0381 eVnm2
≈ 30 nm−2

in the units of Ref. [4]. Note that all of the potentials considered in Ref. [4] are on the order
of 0.3 nm−2, which is an order of magnitude smaller than the typical potentials which occur in
semiconductor heterostructures.
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[17] M. E. Flatté, et al., Phys. Rev. B 53, 1963 (1996).
[18] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Applied Physics Review 89, 5815 (2001).
[19] A. E. Botha and M. R. Singh, Phys. Rev. B 67, 195334 (2003).
[20] R. McWeeny, Nature 243, 196 (1973).



Searching for Multi-Body Decays pf Low and Middle Excited

Activities

D.V. Kamanin1, Yu.V. Pyatkov1,2, W.H. Trzaska3, and W. von Oertzen4∗

1Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

2Moscow Engineering Physics Institute, 115409 Moscow, Russia

3Department of Physics of University of Jyväskylä,
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In our experiments devoted to investigation of the rare decay modes in the 252Cf (sf)
at the FOBOS set up we have found experimental indications of a new type of nuclear
transformation. The mass-energy correlations for these rare collinear events observed at the
yield level of about 10−5 with respect to the binary fission allowed one to associate them with
the decay of the system into three or more fragments of comparable masses via an elongated
chain-like configuration. In each such mode revealed, at least two of the partners are the
magic nuclei, thus clustering of the decaying system gives rise to the effect observed. For
these reasons we have called this effect “Collinear Cluster Tripartition” (CCT). The CCT
products form different structures in the mass plots look like the rectangles and the lines,
which map presumably an evolution of the multi-components heavy nuclear molecules onto
the space of mass-asymmetry vs deformation. The effect at hand was confirmed recently
in a series of experiments of our collaboration in JYFL (Jyväskylä, Finland). Multiple
attempts to discover similar decay channel (“true ternary fission”) for low excited nuclei
did not succeed in the past. The special features of the equipment used and the new data
processing procedures developed, will allow an observation of very interesting cluster effects
for the first time.

I. EXPERIMENTAL AND THEORETICAL BACKGROUND

It is well known that the energy release (Q-value) calculated within the framework of the
liquid drop model for the fission mode with three fragments, is larger than for binary fission [1].
Within the same approach, the theory also predicts the shape of the fissioning system which
could lead to ternary and even quaternary fission [2]. This is illustrated in Fig. 1. As, however,
was stressed in the cited work, two and three-neck shapes are less favorable as compared to the
conventional dumbbell-like configurations. An additional obstacle for emitting even rather light
particles from the body of the mother system, is the necessity to penetrate the potential barrier
due to the interaction of two partners, if we mean two-neck prescission shape.

In reality, the particle-accompanied fission (or ternary fission) discovered in 1946 [3] is a rather
rare process. Several such processes, in which the charged particle is a proton, deuteron, triton,
3−8He, 6−11Li, 7−14Be, 10−17B, 13−20C, 15−20N, or 15−22O, have been detected in spontaneous
and neutron-induced fission. Many other heavier isotopes of F, Ne, Na, Mg, Al, Si, P, S, Cl,
Ar, and even Ca were recently mentioned [4]. The details of the ternary fission mechanism are
still unclear. It is generally believed that light charged particles, which once in a few hundreds
of cases accompany fission, are born in the vicinity of scission and subsequently accelerated and
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FIG. 1: Symmetrical shapes of equilibrium for a liquid drop model [2]. Abscissa is an X ∼ Z2/A (liquid
drop model parameter X to be proportional to nuclear charge Z and mass number A of the nucleus).
W (X) which is the difference of the potential energy of the deformed nucleus and that of the initial
sphere is plotted along the vertical axis. Two-neck shapes (3) and three-neck shapes (4) are marked by
the arrows. The stars are the most favorable points for the formation of a ”quasi-molecule”.

focused almost perpendicularly to the fission axis by the Coulomb field of the fission fragments
[5]. In spite of this simple picture, it was found that a surprisingly high portion of alphas (the
dominating tripartition particles) can be recorded in the vicinity of the fission axis [6]. This
phenomenon occurring once per 105 fissions was called ”polar emission”. So far, polar emission
of α, p, t, and d were observed in the reactions 235, 233U(nth, f), 252Cf (sf), 238U+p(42MeV)
and some preliminary models of the phenomenon were proposed.

Along with ternary decays quaternary ones are also known [7]. In this case two light charged
particles (predominantly alphas) are detected in coincidence with two heavy fragments. The
ratio of the yields quaternary to binary fission is about 10−6. In theory a more general ”multi-
cluster accompanied fission” was analyzed [8]. Some typical prescission configurations are shown
in Fig. 2. The strong shell effect corresponding to the doubly magic heavy fragment 132Sn is em-
phasized. As can be inferred from the figure’s potential barrier, the polar emission (1st column,
2nd row) is much higher than that of the emission from the neck (1st column, 1st row), which
explains the low yield of the polar emission as compared to that of the conventional ternary
fission. The above processes are different from cluster radioactivity predicted at first theoreti-
cally [9] and discovered later experimentally [10]. The term ”cluster radioactivity” is applied for
spontaneous emission of light fragments heavier than α-particle in the decays of heavy nuclei.
Nowadays there are known 18 nuclides from 231Fr to 242Cm emitting light nuclei from 14C to
34Si. The heavy fragments are grouped in the vicinity of the double magic 208Pb that is why this
domain of cluster decays is known as ”lead radioactivity”. Lead radioactivity is far from being
unique. Many other combinations of daughter nuclei are allowed energetically to be emitted
including the formation of the products of comparable masses named cold fission. However,
cluster radioactivity is a very rare process with a probability 10−10- 10−17 to those of α-decays.
In all known cases, except one, the products of cluster radioactivity are formed in their ground
states in contrast to conventional binary fission fragments. The question, on whether the mech-
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FIG. 2: Aligned and compact configurations for α-accompanied and α+6He+10Be accompanied cold
fission of 252Cf [8]. the corresponding light particles are sketched as circles marked by numbers 1, 2, and
3 respectively. The potential barrier for emitting light particles is shown above each nuclear configuration.

anism of cluster radioactivity resembles to that of α-decay or to that of superasymmetric fission
is still under discussion.

Cluster radioactivity is a binary process. Nevertheless, we mention it in the context of this
report due to the following reason. Bearing in mind that a magicity of one of the decay partners
plays a key role in the process, a natural question arises whether multicluster decays appear to
occur. In other words a decay of heavy nucleus into magic constituents (clusters by definition)
should be searched for. At least one example of dicluster decay is well known, namely 258Fm(sf)
→ 2Sn with two magic fragments in the exit channel [11].

Searching for ternary cluster decays is a challenge very close to the ”true ternary fission
problem” which has a long history. Multiple attempts (see, for instance, the most reported
ones [12, 13]) to discover a decay of low excited nuclei into three fragments of comparable
masses did not succeed so far. Except of the radio-chemical and mass-spectrometric techniques,
being selective reference to revealed nuclides, all the experiments performed aimed at detecting
three moving fragments emitted at some angles to each other (equal angles for equal fragments).
Being pretty expected from the symmetry point of view, such an experimental design contradicts
theoretical estimations. Within the liquid drop approach [14] and, recently, within its extended
version [15], it was shown that the chain-like (prolate) configuration is prefered as compared to
oblate shapes for realizing true ternary fission (Fig. 3). This is quite understandable bearing
in mind that the Coulomb component of the potential barrier has to be overcome for the triple
decay. The elongated (prolate) configuration with two necks for the fissioning 252Cf nucleus was
demonstrated recently in our work [16] where the shell corrections were taken into account.
This result was obtained in our more detailed calculations of the potential energy surface of
the 252Cf nucleus carried out in the framework of the procedure presented in [17, 18] based on
the Strutinsky method. Fig. 4a depicts the shape of the fissioning nucleus at the bottom of
the ”symmetry” valley with the quadrupole moment Q2 = 7.52 a.u. (see Fig. 8 in [18]). As
was already pointed out in our previous works [18–21], the system that fissions in the vicinity
of the bottom of the potential valley, constitutes two magic nuclei (clusters) connected by a
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FIG. 3: Possible ways leading to true ternary fission [14].

FIG. 4: a) The shape of the nucleus at the bottom of the ”symmetric” valley at the point Q2 = 7.52 a.u.
and n = 0.074; b) The same system at the point Q2 = 7.52 a.u. and n = 0.208. See text for details.

neck. In Fig. 4a, these clusters are the deformed magic nuclei of 108Mo (β2 ∼ 0.58). In the
calculations, the shape of the system was varied in such a way that the value of Q2 remained
constant while the mass-asymmetry n changed starting from the value corresponding to the
valley’s bottom. By definition, n = (M1 − M2)/Mc, where M1 and M2 are the masses of the
system concentrated, respectively, on the left and on the right sides of the varied boundary,
which divides the nuclear body into two parts (marked by vertical lines in Fig. 4), and Mc is
the mass of the fissioning nucleus. As a result, the new shape of the system shown in Fig. 4b,
was revealed for the first time. The energy of the system is only slightly higher (by ∼ 2MeV)
than the corresponding value at the bottom. The distinguishing feature of the shape observed
is the double waist which vividly divides the system into three parts of comparable sizes namely
108Mo66,

98
38

Sr, 46Ar28. Magic numbers are marked at the bottom of the element symbol. Thus,
all three constituents are the magic nuclei. It would appear reasonable to identify the double
rupture of such a configuration as the true ternary fission (ternary cluster decay) so long sought.

What can one learn from the theoretical and experimental background in the field under dis-
cussion? Ternary decay of low or middle excited nucleus via chain-like prescission configuration
into magic fragments of comparable masses seems to be reasonable from a theoretical point of
view. It is also reasonable to search for experimental manifestations of such decay channel by
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analyzing almost collinear multibody events. It is just our experimental program during the last
few years. Some experiments within the framework of this program are reported below.

II. EXPERIMENTS AND RESULTS

A. Velocity, momentum, and neutron multiplicity gating in searching for CCT

The first one to be presented was performed at the modified 4π-spectrometer FOBOS installed
at the FLNR of the JINR [22]. In our preliminary experiments at FOBOS setup, the total mass
of two complementary detected fragments in a new exotic decay mode amounted to about 70%
of the initial mass of the fissioning nuclei (252Cf or 248Cm). Mass-energy correlations for these
rare events allow one to associate them with the decay of the system via an elongated three-
body chain-like configuration. At least one of the detected fragments formed in each event under
discussion was a magic nucleus. Two fragments arisen at the outmost left and the outmost right
positions fly apart along the chain axis, i.e. collinear, while the middle fragment can stay almost
at rest. Due to these features we called the decay channel observed collinear cluster tripartition
(CCT). Evaluated excitation energy let one to expect the middle fragment of the chain to be
an isotropic neutron sours of high multiplicity (≤ 10). In order to verify this prediction, the
FOBOS setup has been equipped with neutron detectors.

The experimental layout of the modified spectrometer is shown in Fig. 5. Two groups con-
taining five big and one small FOBOS modules each were used as a double-armed TOF-E (time-
of-flight-energy) spectrometer which covered ∼ 29% of the hemisphere in each arm and thus the
energies and the velocity vectors of the coincident fragments were detected. The neutron detec-
tor consisting of 140 separate hexagonal modules comprising 3He-filled proportional counters in
a moderator covered altogether ∼ 19% of the complete solid angle of 4π. The electronics of the
”neutron belt” were operated in the slave mode being triggered by the event selector of the gas
part of the FOBOS detector. The number of tripped 3He neutron counters was added to the
data stream as an additional parameter for each registered fission event. A special procedure
of mass reconstruction as well as a numerical model of the neutron registration channel were
designed [23]. Simulations within the model help one to fill peculiarities of neutron detection
(Fig. 6).

The mass-mass plot of the coincident fragments with the high multiplicity of neutrons (at
least 3 of them should be detected) is shown in Fig. 7a. It is easy to recognize the rectangular-
shaped structure below the locus of conventional binary fission. This structure becomes more
conspicuous (Fig. 7b) if the velocity cut shown in Fig. 8 is applied to the distribution. The
clearing effect can be explained in the following terms.

Fragments scatter both at the electrodes of the ”stop” avalanche counter and at the sup-
porting grids of the ionization chamber that provides the main part of the faulty events which
imitate the CCT effect searched for. Indeed, the mass of the heavy fragment calculated from the
true velocity value but from incorrect (reduced) value of the energy diminishes proportionally to
the latter. Therefore a pair of the fragments originated from conventional binary fission could
reveal the mass defect similar to that characterizing a CCT event. However, if one rejects the
events corresponding to the sufficient mass asymmetry determined by means of the ratio of the
velocities which occurred beyond the velocity-window selected (Fig. 8), the notable part of the
scattered events under consideration are also discriminated automatically. This selection cuts
off a part of the binary events loci due to velocity gating. Also their ”scattered projections”,
i.e. the tails in the direction of smaller masses, disappear. A special attention should be paid
to the rectangle in Fig. 7b which is bounded by the clusters from at least three sides. The
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FIG. 5: Schematical view of the modified FOBOS setup. The spontaneous fission source is placed inside
the start detector in the middle. The belt consisting of 140 3He neutron counters is placed perpendicular
to the mean fission axis of the registered fragments, which are analyzed by 12 standard FOBOS modules
consisting of the position-sensitive avalanche counters (PSAC) and the Bragg ionization chambers (BIC).

FIG. 6: a) Peculiarities of the neutron registration channel. Even if five neutrons were emitted, the most
probable result is that any neutrons will be detected due to actual registration efficiency. b) Comparison
of the experimental spectrum (points) with the calculated ones for the source intensity n = 330 sec−1

(used in experiment, shown by the rectangles) and n = 1 sec−1, when the rate of random coincidences is
negligible (triangle). For 3 detected neutrons the contribution of the random events is about 35%.

corresponding magic numbers are marked in this figure at the bottom of the element symbols.
More complicated structures (marked by the arrows a, b, and c in Fig. 7c) are observed in the
mass-mass plot if the events with 2 fired neutron counters are also taken into play. Omitting for
a moment physical treating of the structures observed, we attract ones attention to the specific
peculiarity of some lines constituted the structures b and c. The sum of the masses along them
remains constant, see the dashed line in the lower left corner of Fig. 7c for comparison. Fig. 10a
represents a similar structure to that shown in Fig. 7a except that it is not gated by neutrons
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FIG. 7: a) The mass-mass plot of the
complementary fragments with at least
3 neutrons detected; b) The same plot
after filtering the fragment velocities in
the rectangular box shown in Fig.8; c)
Same as in a) but the lowest number of
tripped neutron counters let down to 2
(see text for the explanations).

and both the velocity and the momentum windows are used here to reveal the mass-symmetric
partitions. The corresponding momentum distribution of the fragments and the selection applied
are shown in Fig. 10. The plot in Fig. 10b obtained on conditions of the momentum selection
solely is not so clear.

Like in the previous case, however, the rectangular structure observed is bounded by the
magic fragments, namely 68Ni (the spherical proton shell Z=28 and the neutron sub-shell N =
40) and 84Se (the spherical neutron shell N = 50). Each structure revealed, maps an evolution
of the decaying system onto the mass space. Reconstruction of the evolution scenarios is a goal
of the forthcoming analysis. The events at the lower left corner of the rectangle attract special
attention as they form well-separated blocks in the matrices of the experimental observables
(velocity and energy). Table I exemplifies the parameters of three most symmetric events.
One can judge from this table that the cluster masses obtained by the TOF-E analysis are
located in the vicinity of the mass numbers 68 and 72. Both nuclei are attributed presumably
to the magic Ni isotopes. The content of neutrons for the fragments whose masses are close
to 72 complies then with the prediction of the unchanged charge density hypotheses. The
surprising fact is that the evaluated TKE value even for the chain Ni-C-Zn-C-Ni exceeds the
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FIG. 8: Velocity matrix of the complementary fragments. The events falling into the rectangular box
were used to compose the final mass-mass plot in Fig. 10.

experimental findings (∼ 100 MeV). The next point to be stressed is that the observed neutron
multiplicity (the number of tripped neutron counters in Table I) is low and, hence, the number of
emitted neutrons could not be high. This contradicts the expectations put forward earlier. The
discrepancies reported may be an indication of more complicated decay scenario, for instance,
decay of the middle fragment in chain.

B. Comparative study of the 252Cf (sf) collinear tripartition at different spectrometers

In this subsection we describe the results of three experiments devoted to a search for collinear
tri-partition of the 252Cf nucleus. It should be stressed once more that among all known methods

FIG. 9: Momentum-momentum plot. The events falling into the rectangular box were used to compose
the final mass-mass plot in Fig. 10.
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TABLE I: Experimental parameters of true tripartition events.

Parameter Event No 1 Event No 2 Event No 3
Number of tripped neutron counters 0 0 1
Velocity in the arm ”a” (Va) cm/ns 1.147 1.102 1.135
Velocity in the arm ”b” (Vb) cm/ns 1.173 1.141 1.23
TOF-TOF mass (Mtta) a.m.u. 127.4 128.2 131.1
TOF-TOF mass (Mttb) a.m.u. 124.6 123.8 120.9
Momentum (Pa) (cm/ns)* (a.m.u.) 79.6 80.7 7.8
Momentum (Pb) (cm/ns)* (a.m.u.) 84.7 78.3 83.4
TOF-E mass (Mtea) a.m.u. 69.4 73.2 69.4
TOF-E mass (Mteb) a.m.u. 72.2 68.6 67.8
Etea (emission energy) MeV 47.5 46.3 46.5
Eteb MeV 51.7 46.5 53.4
TKEte (total kinetic energy) MeV 99.1 92.7 99.9

of measuring the masses of nuclear reaction products, the TOF-E (time-of-flight versus energy)
method is the only one, which uniquely allows the study of multibody decays. In this method
both, the fragment velocities V , obtained by means of TOF, and the energy E are measured
for each fragment individually. The fragment mass M is calculated simply using M = 2E/V 2.
Three different TOF-E spectrometers with the detector arms placed opposite to each other and
symmetric to the 252Cf source were used in our experiments as described below. In the first
experiment (Ex1, Fig. 11a), performed at the FOBOS setup in the Flerov Laboratory (FLNR)
of the Joint Institute for Nuclear Research in Dubna, about 13*106 coincident binary fission
events were recorded (the numbers in parenthesis refer to labels in the figure). The TOF of the
fragments was measured over a flight path of 50 cm between the ”start” detector (3) based on
the micro–channel plates (MCP) placed next to the 252Cf-source (1) and the ”stop” position-
sensitive avalanche counters (PSAC, 4). The latter provided through the measurements of the
position also the fragment emission angle with a precision of 0.20. The energies of the coincident
fragments, which passed through the PSACs were measured in the Bragg ionization chambers

FIG. 10: a) The mass matrix of the complementary fragments selected by requirement of their approxi-
mately equal velocities and momenta; b) the same matrix if only momentum selection is assumed.
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FIG. 11: A scheme of coincident measurements of two fragments of the collinear tri-partition partners
for the three experiments. First experiment Ex1 (a) was performed at the FOBOS setup. Here: 1 is a
Cf source, 2 is a source backing; 3 is a microchannel plate (MCP) based timing ”start” detector; 4 is a
position sensitive avalanche counter as ”stop” detector; 5 is an ionization chamber with the supporting
grid 6 on the entrance window. The side view of the grid is shown in the insert (left). Second and third
experiments Ex2, Ex3 (b and c) were performed at the spectrometers based on MCP detectors (2, 10)
and PIN diodes (8) bounded by frame (9). The scheme of detecting the tripartition partners is shown
in the insert (right). After passage of the dispersion foil two light fragments (L1 and L2) obtain a small
angle divergence due to multiple scattering. One of the fragments (L1) can be lost hitting the separating
block, while the fragment L2 reaches the energy detector.

(BIC, 5) with entrance windows supported by a grid (6) with 70% transparency. The geometrical
structure of the grid is hexagonal, the side view is shown in the insert (left) of Fig. 11.

This mechanical structure of the detectors is essential for the registration of the effect de-
scribed below. The 252Cf source is mounted on a Al2O3 backing (2) of a thickness 50 µg/cm2,
the other side was free or coated with a layer of Au of 20 µg/cm2 thickness. In Fig. 11 (top) the
primary heavy fragment (H) is emitted to the left from the free side of the 252Cf-source, the two
light fragments (L1 and L2) are emitted in the same direction. As explained below, scattering
processes will separate the two light fragments in a small angular separation, and only one of
them is likely to be registered. If both fragments enter only the total energy is measured.

A similar source of 252Cf was used in further experiments performed in the Accelerator
Laboratory of the University of Jyväskylä (JYFL). In the second experiment (Ex2, Fig.11b) we
used a different TOF-E-spectrometer based on one MCP ”start” detector and two PIN diodes
(8), the latter provided both time and energy signals. The active area of each PIN diode was
bounded by the frames (9). The flight-paths here were10 cm for each detector arm. An Al-foil
(7), 5µm thick has been placed just near active 252Cf layer. In this experiment, 2*106 binary
events were registered.

In the third experiment (Ex3, Fig. 11c) two pairs of the MCP-based timing detectors (10)
provided signals for measuring TOF’s with flight paths of 8 cm each. The fragment energy was
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measured by PIN diodes. The total transparency of each arm amounted to 70% due to the grids
of the electrostatic mirrors (four per detector, instead of two as in the Ex1 and Ex2) of the
timing detectors. In this third experiment, 2*106 of binary events were collected.

In Fig. 12a, left, we show in a logarithmic scale the two-dimensional (2D) distribution of the
two registered masses of the coincident fragments in the experiment (Ex1) at the FOBOS set up.
Only collinear events in both identical spectrometer arms with a relative angle of (180±1◦) were
selected, this value is within the angular resolution, and it is in the range of a typical angular
spread for conventional binary fission fragments.

The ”tails” in the mass distributions marked 3-6 in Fig. 12, left, extending from the loci (1 and
2) used to mark the conventional binary fission, are mainly due to the scattering of the fragments
on both the foils and on the grid edges of the ”stop” avalanche counters and the ionization
chambers. An astonishing difference in the shapes of the ”tails” (3 and 4) attracts attention.
The only asymmetry, albeit small but important, between the two arms to be emphasized consists
in a very thin source backing for the ”rear side” and the ”start” detector foil located in the arm
b only (Fig. 11, top). There is a distinct bump, marked (7), on the latter ”tail” (4), oriented
approximately parallel to the line defining a constant sum of masses, Ma+Mb =const, i.e., tilted
by 450 with respect to the abscissa axis. The explanation of this bump is the essence of our
analysis. The bump is located in a region corresponding to a large ”missing” mass. In Fig. 12,
left, we show the line for the total mass Mtotal = 225 as a border line to separate these interesting
events from normal binary fission. A statistical significance of the events in the structure (7)
can be deduced from Fig. 12, right. There the spectra of total masses, Mtotal = Ma + Mb, for
the ”tails” (4 and 3), spectrum a and spectrum b, respectively, are compared. The difference
spectrum of b and the tail (3) is marked c, the integral of these events is 4.7×10−3 relative to the
conventional fission events contained in the locus (2), shown in Fig. 12, left. The corresponding
ratio for the gross peak of the curve a (shown by the dashed line) is smaller and amounts to
about 2.7 × 10−3. A background as shown was defined by a polynomial fit (curve d) using the
points outside of the peak. In order to explain the differences in the ”tails” (3 and 4) mentioned
above, the following scenario is proposed, the geometry is shown in Fig.11 (insert top, right). In
ternary fission, the three fragments are emitted collinearly and two of the fragments are emitted
in one direction but become separated with an angle less than 1◦ after passing a dispersing
media, due to multiple scattering [24]. These materials are the backing of the source (located
only on the side of tail (4) or the Al foil placed deliberately in the path). If both fragments pass
on and enter into the (BIC), we register a signal corresponding to the sum of the energies of the
two fragments. The event is registered as binary fission with almost usual parameters. In the
other scenario only a proper energy (mass) of one of the light fragments is measured, because
the second one is stopped (lost) in the supporting grid of the ionization chamber, or for the
other cases on the frame of the PIN diode, playing the role of the separating element.

In order to verify whether the dispersive scattering through a transparent foil can give rise
to the effect discussed, we have performed a special experiment (Ex2, Fig.11b) at the JYFL
spectrometer. One side of the Cf-source was covered by an Al foil (7) of a 5 µm thickness.
This thickness corresponds approximately to a half of the range of a typical heavy fragment.
A bump similar to that shown in Fig. 11a is observed. The result of this experiment is shown
in Fig.13, which depicts the spectra analogous to those presented in Fig.12 right. The bump
obtained with the difference marked c, again appears in the arm pointing to the scattering foil.
The integrated yield of the spectrum c confined within the masses of 180-220 a.m.u. amounts
to 2.4 × 10−3 relative to the corresponding locus of conventional binary fission. These events
typically correspond to a mass loss of 40-70 a.m.u., as in the other case, the positions in the
mass scale of the peaks c agree well in both experiments. This result also shows that the effect
of the dispersive scattering considered, does not depend on the foil thickness.
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In the third experiment (Ex3, Fig. 11c) the grids supporting the foils of the two MCPs used
as timing detectors in each arm, served both as a separating mesh and as a dispersing media, the
system has 72% total transparency within the geometrical solid angle. The energy was obtained
by PIN diodes. Again the separation of the two lighter partners of the tripartition decay was
achieved by scattering in a dispersive foils and the blocking one of the two fragments (scattered
at a very small relative angle) in the frames. We observe again the bump in the sum spectrum of
Mtotal = Ma +Mb confined within 180-220 a.m.u. as shown in Fig. 14. Spectrum a) corresponds
to the arm facing the source backing, which acts as scattering medium. The additional yield in
the same mass range as previously, relative to binary events, amounts to 2.7 × 10−3. The best
mass resolution among our experiments (< 2.5 a.m.u.) was achieved in this case. This is due
to the better measurement of TOFs by the MCP-detectors and the absence of straggling in the
energy channel. Unfortunately, the spectrum suffers from low statistics, this is partially overcome
by applying a simple averaging procedure of the counts in three adjacent channels (curve b).
This procedure smoothes the background fluctuations and produces two statistically reliable
wide peaks in this spectrum, marked by arrows indicating ”missing”70, 68Ni fragments, and
also the total mass of two registered fragments amounting to 204-208 a.m.u., respectively. The
symmetry of the two spectrometer arms is reflected in the result, that the spectrum a) and the
complementary one obtained in the second arm of the spectrometer depicted in Fig. 14 as curve
c, give the same result. The statistically significant regions centered at Mtotal = 204−212 a.m.u.
are marked by arrows in Fig. 14. We note that the same effect of an enhanced yield corresponding
to a missing mass defined by a region of Mtotal = Ma + Mb = 180 − 212 has been observed in
the three independent experiments described. The small variation of the yields relative to the
total binary events can be traced back to the different geometries. Possible uncertainties in the
yields obtained from the experiments at hand need some comments. The statistical error in any
cases does not exceed 2.5%. At the same time a systematic component is difficult to estimate.

FIG. 12: Experimental evidence of the collinear tripartiton of µg/cm2Cf obtained at the FOBOS setup.
Contour map (in logarithmic scale) of the mass-mass distribution of the collinear fragments detected
in coincidence in the opposite arms (marked by letters a and b) of the spectrometer (top). The loci
of conventional binary fission events 1, 2 are prolonged by the ”tails” marked 3-6 due to the scattered
fragments. Bump 7 located below the line of the sum Ma + Mb = 225 a.m.u. is analyzed (bottom).
There the spectra of total masses for the ”tails” (3 and 4), spectrum a and spectrum b, respectively, are
compared. The difference spectrum is marked c. Curve d is a polynomial fit using the points outside of
the gross peak on spectrum a.
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The ratio ”number of ternary events per binary fission” is governed by the multiple scattering
angles of the mass-energy-charge distribution of the ternary decay products unknown in detail.
Thus we can only claim the effect to be not less than 4 × 10−3 per binary fission.

The experimental observations will be interpreted as a collinear ternary decay with three
fragments of similar mass, a decay which is different to the previously reported ”ternary” fission,
where the third light fragment (typically He or Be-isotopes) is emitted perpendicular to the axis
spanned by the heavy fission fragments [25]. For a more detailed discussion we come back to
the results obtained in Ex1. The contour map of the two-dimensional mass-mass distribution
obtained by subtraction of the ”tail” (3) from ”tail” (4), already defined in Fig. 11a, is shown
in Fig. 15a. This distribution shows the contour of the ternary mass splits more clearly, it is
almost free from further experimental background originating from scattered fragments of the
normal binary fission. Some features of this 2D-plot can be further emphasized by a process,
where a second derivative filter is applied, a method which is typically used in the search for
peaks in gamma-spectra [26, 27] (Fig. 15b). The scale of the squares is defined in the insert
to this figure. The tops of the peaks are found over certain linear sections of Ma = const with
intersections with the discrete diagonal lines, as marked in Fig. 15b, they correspond to the
total masses Mtotal = const. with values of 204, 208 and 212 a.m.u., respectively. The listed
peaks have already been marked in Fig. 14. Thus, the bump (7) seen in Figs. 11a and 15a
consists mainly of the three overlapping ridges oriented along the lines Mtotal = const.

From the observed mass spectra we will have to consider a ternary fission process with one
heavier and two lighter fragments. The missing masses in the sum spectra of the experiment
(Ex1) suggest subsystems with particular masses. The same mass values are observed as distinct
peaks in Fig. 14 (from Ex3); these are also seen as ridges in Fig.15b. We note that from these
data the shell closures [28] in proton and neutron number are decisive for the formation of
the emitted subsystems. As can be deduced from Fig. 15a the ridges (marked by the dashed
lines) go through crossing points corresponding to different combinations of two fragments with
”magic” nucleon numbers (marked by the dash-and-dot arrows). These marked points could be
related to mass values with magic subsystems well known from binary fission [28, 29] as follows:
204 → 70Ni+134Te or 72Ni+132Sn (”missing” 48Ca), 208 → 80Ge+128Sn (”missing” 44S28) and

FIG. 13: Spectrum of sum of masses (Mb + Ma) from experiment Ex2, for two registered fragments for
the gate similar to the ”tail”4 from Fig. 12, left. Spectrum b corresponds to the ”clean” opposite arm
free from dispersion foil, c is the difference spectrum.
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for Mtotal = 212 → 80Ge+132Sn or 78Ni+134Te or 68Ni+144Ba.
It should be noted that the central peak in the Fig. 14a (marked as Σ = 204 − 208) is likely

a triplet which includes the peak centered at 206 a.m.u. It could be related to magic subsystem:
206 → 72Ni+134Te (”missing” 46Ar28). Thus, three subsystems from these proposed above
consist of three magic clusters each. The ridges discussed are crossed as well by the horizontal
ridge (seen via bunching of contour lines in Fig. 11c), this effect can be linked with the isotopes
of 68, 70Ni which are also magic [29]. This observation would imply that the detected light
fragment from the two L1, L2 fragments (see Fig. 11b) is always a Ni-isotope. Due to the
symmetry of the detector setup, namely that the two L1, L2 fragments are always detected in
coincidence with the same heavy fragments, one should also observe events with a ”missing”
Ni-fragment. This is indeed observed, and the peak corresponding to ”missing” masses of 70
and 68 a.m.u. is well seen in Fig. 14 (curve b). Thus all different peaks in the ”missing”- mass
spectrum correspond, consistently, to the ternary decay scenario proposed. Inspecting the lower
part of Fig.15a, we observe a gross bump, which is well bounded by the mass of the double magic
nucleus of 48Ca. Further there is a strong manifestation for the formation of the deformed magic
150Ce nucleus [30], which is seen as two peaks (all in all 355 events) in the upper right corner of
Fig. 15a (72, 78Ni/150Ce). Also a weak trace of a vertical ridge in the vicinity of the well known
magic 144Ba88 nucleus should be noted.

We would also like to stress that the observation of structures for the masses of the emitted
fragments and the ”missing” masses corresponding to known shells should be seen as a decisive
argument in favor of the physical origin of the effect of tripartition. No experimental feature
can emphasize these mass values, the experiment does not ”know” magic numbers. The role of
nuclear shells in the effect observed appears in analogy with known molecular like states in light
alpha-cluster nuclei which can also form strongly deformed hyper-deformed resonances. Recent
theoretical studies of multicluster accompanied fission [8] and binary clusterization of the 252Cf
nucleus [31] emphasize the role of the double magic nuclei 132Sn and 48Ca in these processes.

FIG. 14: Spectrum of sum of
masses of two detected fragments
obtained in our third experiment
Ex3: a) From the arm facing the
source backing; b) the same spec-
trum smoothed by means of aver-
aging of counts in three adjacent
channels (shifted up by 25 counts);
c) the sum of spectrum a and a
complementary spectrum obtained
in the second arm of the spectrom-
eter (shifted up by 35 counts). The
sums marked in the panels corre-
spond to different pairs of magic nu-
clei (see text). The peak in spec-
trum b) marked by arrow is due
to the doublet of ”missing” 70, 68Ni
fragments.
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FIG. 15: a) The figure depicts as a 2D-contour map (Mb versus Ma) the difference between the ”tails”
4 and 3, of the events measured with the FOBOS-detector system shown in Fig. 11a; note the expanded
scale for the lighter mass fragments. Dashed lines tilted by 450 with respect to the Ma axis correspond
to the fixed total mass of detected fragments (see the text for more details); b) same as in a), however,
passed through a filter which emphasizes the two dimensional structures.

The observed ternary decay must be viewed as sequence of two neck ruptures of a hyper-
deformed shape, and strongly deformed sub-structures may be created in the first step. In
the ternary decay modes first a heavy fragment may be created, equal by mass to the sum of
two magic clusters (consisting of Sn, Te for the heavy and of Ge, Ni, as the light ones) and a
complementary light fragment L1. The following rupture of the heavy fragment, created in the
first stage, leads to the formation of cluster L2 and complimentary one being heavier than Sn or
Te. An alternative scenario leading to the horizontal ridge in Fig. 15, a differs by the creation
of Ni-cluster at the first step.

We can consider a preformation of two magic clusters in the body of the fissioning system at
the early stage of its elongation. This was shown in the framework of Strutinsky procedure in
[18] to occur by the formation of a potential valley in a multi-dimensional deformation space.
Descending from the fission barrier along a specific valley is accompanied by tunneling of the
system into the valley of separated fragments [32]. This path is described by a continuous
trajectory in the space of observables [33] relevant for the experiment, such as energy, mass, etc.
We can propose that the ternary decays follow the path along the most populated valley based
on the Ge-Sn clusters revealed in Ref. [18] and those energetically close by. All these valleys
give rise to trajectories which are united in the gross bump marked (7) in Figs. 12a and 15a.

Two important facts should be emphasized to explain the occurrence of the ternary fission in
the specific mode observed here. We already know from the liquid drop model, that the Q-value
for the fission mode with three fragments is larger than that for binary fission. Similarly to
the latter, ternary fission is preferred for masses where magic numbers of the shell model are
possible. The mentioned fission valleys are thus deeper than for binary fission and are deepest
for ternary fission with at least two magic (or semi-magic) clusters. The Coulomb interaction
between the two clusters give the minimum energy value (deepest valley) for the collinear con-
figuration. Deviations from these two conditions have very large effect in the reduction of the
fission probabilities.
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III. CONCLUSION

An understanding of the physical mechanism of the CCT will require additional efforts in
experiment and theory, but some conclusions can already be drawn. The results presented here
for the decay of the nucleus of 252Cf show, for the first time, the true ternary spontaneous decay
channel has been observed with good statistical accuracy in agreement with recent theoretical
expectations [15]. The decay fragments with the masses in the vicinity of magic 132Sn, 70Ni and
48Ca isotopes fly apart almost collinearly and we call such decay ”collinear cluster tripartition”
(CCT). The probability of this new effect is not less than 4 × 10−3 with respect to the normal
binary fission. This implies that its probability is much larger than of the known ”ternary
fission” accompanied by the light charged particles. It seems now clear that the effect is due
to the formation of the multi-component nuclear molecules based on magic nuclei as clustered
substructures in the body of the decaying heavy system. This observation points to the need of
an essential refinement of the actual fission theory.
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Experiments carried out using 3H, 6He and 8He beams available from the ACCULINNA
separator are briefly reviewed. In more detail results obtained recently in three experiments
are presented.

Attempt to observe a 7H resonance produced in the reaction 2H(8He, 3He)7H resulted only
in setting a limit dσ/dΩ ≤ 20 µb/sr for the reaction exit channel which could populate a
resonance lying between 0 and 3MeV above the 7H decay threshold.

The spectrum of 9He was studied by means of the 2H(8He, p)9He reaction at a lab energy of
25MeV/amu and small center-of-mass angles. Energy and angular correlations were obtained
for the 9He decay products by complete kinematic reconstruction. The lowest resonant state
of 9He is found at 2.0±0.2MeV with a width of ∼2MeV and is identified as 1/2−. The
observed angular correlation pattern is uniquely explained by the interference of the 1/2−

resonance with a virtual 1/2+ state (a limit a > −20 fm is obtained for the scattering length),
and with a 5/2+ resonance at energy ≥ 4.2MeV.

Quasi-free scattering of the α core bound in 6He was explored keeping in mind the possible
study of the cluster structure of this halo nucleus. For the first time coincident particles
emitted in the 4He(6He, 2α)nn reaction were detected in wide angular ranges giving a wide
kinematical range of the measured angular and momentum distributions. The contribution
of processes, competing with the quasi-free α − α scattering in the α + α + n + n output
channel, was considerably suppressed by the selection of events with Eα1(2)−nn >10MeV.
Experimental distributions, relevant to the reaction mechanism and to the 6He structure,
were compared with the results of Monte-Carlo simulations based on the Plane Wave Impulse
Approximation (PWIA) formalism. The PWIA predictions showed consistency with the
experimental data.
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I. INTRODUCTION

Secondary radioactive ion beams (RIBs) obtained with the use of intermediate energy primary
beams of heavy ions were used extensively to investigate the structure of light halo nuclei.
Mostly, nuclear matter radii and momentum distributions of fragmentation reaction products
were carried out at the RIB energy >40 MeV/amu to extract information about halo nuclei (see
e.g. Ref. [1]). The study of the lightest halo nuclei done by means of direct reactions produced
by lower energy RIBs available from the separator ACCULINNA [2] is an essential part of the
research program carried out at the G.N. Flerov Laboratory of JINR (Dubna).

The finding of a two-neutron exchange process resulting in a large cross section value for the
backward direction 6He + 4He elastic scattering at Elab = 25 MeV/amu made the first experi-
mental proof of the ”di-neutron” configuration in 6He [3]. The known extended distribution of
neutron matter in 6He was explored with the 6He + 1H elastic and inelastic scattering measured
in a broad angular range with a 24.5 MeV/amu beam of 6He nuclei [4] . Data acquired about
elastic scattering and 1n and 2n transfer reactions observed for the 6He + 1H system testified
to a large ”di-neutron” spectroscopic factor in 6He and a low probability for a t+t clustering in
its structure [5]. A similar study made for the 8He + 1H reaction resulted in the estimation of
spectroscopic factors for the 6He(0+g.s.) and 6He(2+) subsystems in 8He and in the observation
of a 5H+t clustering in the 8He structure [6, 7]. Search for a four-neutron exchange in the 8He
+ 4He reaction fixed only an upper limit of 1 µb/sr for the cross section of backward direction
elastic scattering of 25 MeV/amu 8He nuclei [6].

Due to their inherent transparency and not too low cross sections, transfer reactions induced
by RIBs were proven to be effective in the study of resonance states of particle unstable drip-line
nuclei. Cryogenic tritium targets [8] and a 58 MeV beam of 3H nuclei accelerated at the Dubna
U-400M cyclotron [9] played essential role in this work, alongside with the 6He and 8He beams
delivered by ACCULINNA. The energy and width of the 4H ground state (g.s.) resonance were
finally determined in a complete kinematic study made for the transfer reactions 2H(t,p)4H and
3H(t,d)4H [10]. The 5H puzzle was resolved in experiments where the ground state resonance
of this nuclear system was investigated using the 1H(6He,2He)5H [11] and 3H(t,p)5H [12, 13]
reactions. It is worth noting that a T=3/2 isobaric analog state of the 5H g.s. was for the first
time obtained in the 5He spectrum populated in the transfer reaction 2H(6He,3He)5He [14].

These results give us inspiration to employ RIB transfer reactions in order to get even more
neutron-excess nuclei of hydrogen and helium. Quite recently we completed an experiment
combining the conditions necessary for detecting 7H and 9He nuclei emerging as products in the
8He + 2H reaction. Sect. II gives an account of this experiment. Results derived for 9He are
presented in Sect. III.

Exploratory study was undertaken for the (α,2α) knock-out occurring when a helium target
was bombarded with a 25 MeV/amu 6He beam. Conditions adopted in this experiment facili-
tated the observation of quasi-free scattering (QFS) of helium target nuclei from the α-cluster
core of the 6He halo nucleus. These results are presented in Sect. IV.

II. SEARCH FOR 7H MANIFESTATION IN THE 8He + 2H REACTION

Motivation. —In Ref. [15] we revisited the long-standing issue of the 7H nucleus setting
an upper limit of 3 nb/sr for the cross section of the 2H(8He,3He)7H reaction which could
populate a (hypothetical) quasi stable (T1/2 ≥ 1 ns) resonance state in 7H. One could not

∗Electronic address: gurgen@jinr.ru
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a priory exclude such a long life time for 7H without checking this experimentally because,
most likely, this nucleus undergoes an unique decay - the four neutron emission (five-body
decay). Estimates [15] show that the width of the 7H g.s. resonance will be less than 1MeV,
if its decay energy is less than 2–3 MeV. In the experiment discussed here, we made an
attempt to observe the 7H resonance which could come to light in the missing mass spectrum
derived from the kinematical characteristics of 3He nuclei emitted in the 2H(8He,3He)7H reaction.

Experiment. — We used a 34 MeV/amu primary beam of 11B accelerated by the U-400M
cyclotron to bombard the production target of ACCULINNA (Be, 370 mg/cm2). At a typical
primary beam intensity of 4 pµA a 25 MeV/amu secondary beam of 8He nuclei was delivered
by the separator to a target positioned in a reaction chamber at a distance of ∼ 20ṁ from
the production target. Roughly one half of this distance was occupied by the ACCULINNA
separator, whereas the second half was a straight beam line used for the beam diagnostics.

A set of beam detectors was installed on the straight section of the beam line. Two thin
plastic scintillators placed on a 8 m base were used for the energy measurement and particle
identification. These measurements were done individually for any beam particle. The overall
time-of-flight (TOF) resolution was 0.8 ns. Beam tracking was done by two multi-wire chambers
installed 26 and 80 cm upstream of the target. Each chamber had two planes of wires with
a 1.25 mm pitch. The beam energy spread and angular divergence on the target were about
8.5% and 0.23◦, respectively. For each projectile nucleus hitting the target the energy, the hit
position on the target and the inclination angle of the trajectory were defined with accuracy
1.4%, 1.5 mm and 0.1◦, respectively.

The 8He beam intensity was typically 2×104 s−1 at if the separator was tuned for a beam
energy of 25-28 MeV/amu. By tuning the separator for 25-28 MeV/amu 6He beam we could
have 2×106 s−1 6He nuclei on the target. However conditions implied by the beam diagnostics
compelled us to limit the 6He beam intensity to 3×105 s−1. Being focused in a 20 mm circle on
the target window, both beams, 6He and 8He, had a purity of ≥ 95%.

The target used in this experiment was a gas cell filled with deuterium at 1020 mPa and cooled
down to 25 K. The 4mm thick target cell was supplied with 6µm stainless steel windows. The
target thickness was 2.5× 1020 cm−2. In the present experiment, the energy of the 8He beam in
the middle of the target was ∼25 MeV/nucleon.

Slow 3He nuclei escaping from the target in the forward direction were detected by a telescope
composed of a front array of 8 sector type 40µm thick Si detectors followed by an annular
300µm Si detector having an active area of the outer and inner diameters of 82 mm and 32 mm,
respectively. It was segmented in 16 rings on one side and 16 sectors on the other side providing
a good position resolution. The array of 40µm Si detectors matched the active area of the
annular detector. The telescope was installed 100 mm downstream of the target. The ∆E-E
particle identification, provided by the telescope, was essential since the overwhelming majority
of detected charged particles were tritons and 4He nuclei. This background was suppressed by
detecting the 3He nuclei in coincidence with the the 3H nuclei resulting from the 7H decay.

The 3H nuclei resulting from the 9He decay were detected by a Si-CsI telescope installed
55 cm downstream of the target. The telescope consisted of two 1 mm thick silicon detectors
and 16 CsI crystals coupled with pin-diodes. The 6 × 6 cm Si detectors were segmented in
32 strips both in horizontal and vertical directions, providing position resolution and particle
identification (by the ∆E-E method together with the CsI detectors). The CsI crystals
(1.5 × 2 × 2 cm) were arranged as a 4 × 4 wall just behind the Si detectors.

Results. — A beam dose of 2 × 1010 8He nuclei passing through the deuterium target was
accumulated in this experiment. A 7H missing mass spectrum resulting from the detected 3He-
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FIG. 1: Missing mass spectrum of 7H derived from the 2H(8He,3He)7H reaction data. A - 3He events, B
- 3He-3H events.

3H coincidence events is presented in Fig. 1, panel B. Panel A in Fig. 1 shows the 7H spectrum
derived from the data collected for single 3He nuclei. Evidently, the more rich pattern seen in
the spectrum of panel A was due to the 4He background which partly could fall into the 3H
locus on the ∆E-E identification plot. From the few events observed in the spectrum of Fig. 1,
panel B, only a cross section limit dσ/dΩ ≤ 20 µb/sr follows for the reaction 2H(8He,3He)7H
populating a resonance lying between 0 and 3 MeV above the 7H decay threshold.

III. NEW INSIGHTS INTO THE 9He LOW-ENERGY SPECTRUM

Motivation. — Since the first observation of 9He reported in Ref. [16] it was studied in relatively
small number of works compared to the neighboring exotic nuclei. This could be connected with
the technical difficulty of this study. On the other hand, the low-energy resonant states of 9He
were considered to be well established experimentally. The observations made in Ref. [16] were
confirmed in Ref. [17], where the 9Be(14C,14O)9He reaction was used.

A recent experiment [18] was focused on the search for a virtual s-wave state in 9He. An
upper limit on the scattering length a < −10 fm was set in this work. Also, in Ref. [19] the
properties of states in 9He were inferred basing on the studies of isobaric partners in 9Li. The
available results are summarized in Table I.

The interpretation of the 9He spectrum as provided in [16, 17] faces certain difficulties which
did not go unnoticed (Ref. [20]). Indeed, the authors of Ref. [17] reported on the observation of

TABLE I: Experimental positions of states in 9He relative to the 8He+n threshold (energies and widths
are given in MeV).

1/2+ 1/2− 3/2− 5/2+

Ref. a (fm) E9He Γ E9He Γ E9He Γ

[16] 1.13(10) smallb 2.3 smallb 4.9
[17] 1.27(10) 0.10(6) 2.4(1) 0.7(2) 4.3 small
[18] <−10
[19]a 1.1 2.2 4.0

Present work >−20 2.0(2) 2 ≥ 4.2 > 0.5

aInferred from isobaric symmetry.
bObserved peak width is equal to the declared resolution.
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FIG. 2: Left panel: Kinematical diagram showing momentum vectors for the 2H(8He,p)9He reaction (see
text). C entral panel: Experimental data in the {E9He, θ8He} plane. Right panel: The missing mass
spectrum of 9He. The curve shows the total detection efficiency in arbitrary units.

a narrow [Γ = 0.10(6) MeV] 9He resonance at energy 1.27(10) MeV above the 8He+n threshold
with spin and parity assigned as Jπ = 1/2−. However, a much larger width, 0.8 − 1.3 MeV was
estimated in Ref. [20] for such a resonance assuming, as expected, that this is a single particle
state. The observations reported in Refs. [16, 17] require a spectroscopic factor of ≤ 0.1 for
the first resonant state of 9He what conflicts with the idea that this is a single-particle state.
F. Barker in Ref. [20] concludes on this point that ”some configuration mixing in either the
9He(1/2−) or 8He(0+) state or both is possible, but is unlikely to be large enough to reduce the
calculated width to the experimental value”.

The second 9He resonance was found at 2.4 MeV [17]. In order to explain the width [Γ =
0.7(1) MeV] reported for this resonance one should suppose a quite large spectroscopic factor
S ∼ 0.3 − 0.4. However, being assumed to be a 3/2− state [17], it should be a complicated
particle-hole excitation as the p3/2 sub-shell is occupied in 9He.

Having in mind the mentioned issues we decided to study the 9He in the ”classical” (d,p)
reaction well populating single particle states. In contrast with the previous works complete
kinematics measurements were foreseen to reveal the low-energy s-wave mode. Following
the experimental concept of Ref. [13], where the 5H continuum was studied, the so called
”zero geometry” was used in this work. So, the 2H(8He,p)9He reaction was employed in the
experiment presented below.

Experiment. — Conditions of the beam production and diagnostics, as well as parameters inher-
ent to the deuterium target, were identical to those existing in the 7H experiment. Kinematical
diagram for the 2H(8He,p)9He reaction is shown in Fig. 2 (left panel). Slow protons escaping
from the target in the backward direction hit against an annular 300µm silicon detector with an
active area of the outer and inner diameters of 82 mm and 32 mm, respectively. Being installed
100 mm upstream of the target this detector provided for the study of the 2H(8He,p)9He reaction
at center-of-mass (c.m.) angles 3◦ ≤ θ ≤ 7◦. It was segmented in 16 rings on one side and 16
sectors on the other side. A veto detector was installed upstream of the proton detector to
eliminate signals coming from the beam halo.

The 8He nuclei resulting from the 9He decay were detected by the Si-CsI telescope described
in Section II. We did not use particle identification in the proton detector because, due to the
kinematical constraints of the 8He+2H collisions, only protons could be emitted in the backward
direction. The main cause of the background was due to the evaporation protons originating
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from the interaction of 8He beam with the target windows. This background was almost com-
pletely suppressed by the p−8He coincidence. Such coincidence fixed complete kinematics for
the experiment. Finally, an empty target run showed only ∼ 2% of background events.

Experimental results are presented in Fig. 2 (central panel) as a E9He vs. θ8He plot and its
projections on the E9He axis (see Fig. 2, right panel). Hereafter, we denote by E9He the 9He
missing mass energy and by θ8He the 8He angle in the 9He c.m. system (see Fig. 2). Detection
threshold set for the protons (∼ 1.2 MeV) led to the efficiency fall for the missing mass of 9He
above 5MeV (see Fig. 2, right panel). Monte-Carlo (MC) procedures were used to estimate
all experimental details. Energy resolution was found to be 0.65 MeV (FWHM) for the 9He
missing mass energy 0≥E9He ≤3.0 MeV. The main contributions to this value were due to the
target thickness (∼ 75%) and the precision of the beam energy measurement (∼ 20%). In
the full range of measured E9He values efficiency achieved in the p-8He coincidence detection
approached 100% for θ8He <45◦ and θ8He >135◦. At E9He ≥4MeV and 60◦ < θ8He <120◦ this
efficiency fell down to ∼60%. The resolution in θ8He had FWHM ≤ 12◦ at E9He ≥ 3MeV, ≤ 15◦

at E9He ∼ 2MeV, and ≤ 35◦ at E9He ∼ 0.25 MeV. This resolution was mainly defined by the
precision of the beam energy measurement (∼ 70%) and particle tracking (∼ 25%).

Qualitative considerations. — The total number of counts presented in Fig. 2 (∼ 900) cor-
responds to a reaction cross section of ∼7mb/sr. This value is consistent with the direct one-
neutron transfer reaction mechanism at forward angles implied in this work.

The narrow states known from literature do not show up in the data. Instead, we see in Fig.
2 (right panel) two broad peaks at about 2.0 and 4.2 MeV. Near the threshold, the 9He spectrum
exhibits behavior which is consistent rather with s-wave (σ ∼ √

E9He) then with p-wave only

(σ ∼ E
3/2
9He

). This is an indication for a possible virtual state in 9He.
An important feature of the data is a prominent forward-backward asymmetry with 8He

flying preferably in the backward direction in the 9He c.m. system. To describe such an
asymmetry the interference of opposite parity states is unavoidable. As far as the asymmetry
is observed even at low E9He, the s-p interference is compulsory (see Fig. 3 a1-a3). Such an
interference can provide only a very smooth distribution described by the first order polynomial
(see below Eq. 2). Since above 3MeV the distribution character changes to a higher polynomial,
but asymmetry does not disappear, the p-d interference is also needed (see Fig. 3 a5). This
defines the minimal set of states as s, p, and d.

Theoretical model. — In the zero geometry approach the resonant states of interest are
identified by the observation of the recoil particle (here proton) at zero [in reality small,
3◦ ≤ θp(c.m.) ≤ 7◦] angle. This means that the angular momentum transferred to the stud-
ied system should have zero projection on the momentum transfer axis. As a result we get a
complete (strong) alignment for states with J > 1/2 in the produced system. In the 9He case
only the magnetic sub states with M = ±1/2 should be populated for Jπ = 5/2+, 3/2−, and
3/2+ states. This strongly reduces ambiguity in the analysis of correlation patterns. For in-
stance, in the case of zero-spin particles the zero geometry experiments give very clear pictures
with angular distributions described by pure Lagrange polynomial |P 0

l |2. The situation in the
case of nonzero spin particles involved is more complicated (see detailed discussion and further
references in [13]), and diverse correlation patterns are possible.

We have found that our experimental data can be well explained in a simple model involving
only three low-lying states: 1/2+, 1/2−, and 5/2+. The reaction cross section in the DWBA
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ansatz is written as

dσ(Ω9He)

dE9He dΩ8He
∼ vf

vi

√

E9He
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∣

∣
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Y ∗

lM ′
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YlMl

. (1)

For density matrix the generic symmetries are

ρJ ′M ′

JM =
(

ρJM
J ′M ′

)∗
; ρJM ′

JM = (−)M+M ′

ρJ−M
J−M ′ ,

and properties specific to the coordinate choice (spirality representation) and setup (zero geom-
etry) are

ρJ ′M ′

JM ∼ δM,M ′(δM,1/2 + δM,−1/2) .

For the density matrix parametrization we use the following model for the transition matrix. The
wave function (WF) Ψf is calculated in the l-dependent square well (with depth parameters Vl).
The well radius is taken r0 = 3 fm, what is consistent with the typical R-matrix phenomenology
1.4A1/3. The energy dependence of the velocities vi, vf (in the incoming 8He-d and outgoing
9He-p channels) and WF Ψi is neglected for our range of 9He energy. The term V |Ψi 〉, describing
the reaction mechanism, is approximated by radial θ-function:

V |Ψi 〉 → Cl r
−1 θ(r0 − r) [Yl(r̂) ⊗ χS ]JM ,

where Cl is a (complex) coefficient defined by the reaction mechanism. With |ρJ ′±1/2
J±1/2 | denoted

as Al′l, the cross section as a function of energy E9He and x = cos(θ8He) is

dσ(Ω9He)

dE9He dx
∼ 1√

E9He

[

4A00 + 4A11 + 3(1 − 2x2 + 5x4)A22

+ 8x cos(φ10)A10 + 4
√

3x(5x2 − 3) cos(φ12)A12

]

. (2)

Here

Al′l = |Al′ ||Al| , Al = ClNl(E) eiδl(E)

∫ r0

0
drjl(qlr) ,

ql =
√

2M(E − Vl) , φl′l(E) = φ
(0)
l′l + δl′(E) − δl(E) ,

where Nl is defined by matching condition on the well boundary for internal function jl(qlr).

The three coefficients Cl give rise to the two phases φ
(0)
10 and φ

(0)
12 . Positions and widths of the

states are fixed by the three parameters Vl. Their relative contributions to the missing mass

spectrum are fixed by the three parameters |Cl|. Phase φ
(0)
10 is fixed by the angular distributions

at E9He < 2.2 MeV, where the contribution of the d-wave resonance is small. After that, phase

φ
(0)
12 was varied to fit the angular distributions at higher energies. So, the model does not

have redundant parameters and the ambiguity of the theoretical interpretation is defined by the
data quality. In Figs. 3a, b, and c, model calculations with different s-wave contributions are
compared with the experimental data.

We have found that the weight and interaction strength for the 1/2+ state can be varied in a
relatively broad range, still providing a reasonable description of the data. The parameter sets
of the model are given in Table II; sets 1 and 2 correspond to a small negative scattering length
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(a = −4 fm) and different weights of s-wave (the largest and the lowest possible weights), set 3
has a = −25 fm and the largest possible weight for s-wave. It can be seen (comparing Figs. 3a
and b that agreement with the data becomes poor when the population of the s-wave continuum
falls below 15− 25% of the p-wave. On the other hand, a large negative scattering length has a
drastic effect below 0.5 MeV (see Fig. 3c). The data quality is not sufficient to derive the exact
properties of the s-wave contribution. Situations with the large contribution of the s-wave state
but with moderate scattering length (say a > −20 fm) seem to be more plausible. Measurements
with better resolution are required to refine the properties of the 1/2+ continuum.

The experimental data allowed us to well fix the energy and width for the p-wave resonance
(Eres=2.0±0.2 MeV, Γres ∼2MeV) whereas the position of the d-wave resonance is not well
defined in our analysis due to the efficiency fall in the high-energy side of the spectrum. A
broader energy range measured for 9He is needed to resolve the 5/2+ state completely.

Discussion. — It should be noted that the interference of any other combination of s-, p-, and
d-wave states can not lead to the required forward-backward asymmetry in the whole energy
range. The correlation terms (square brackets in Eq. (2) ) are

[

. . .
]

= 2A00 + 2A11 + (1 + 3x2)A22 + 4x cos(φ10)A10

TABLE II: Parameters of the theoretical model used in this work. Vi values are in MeV and weight
coefficients for different states are normalized to unity

∑

|Ci|2 =
∑

Wi = 1.

Set W0 W1 V0 V1 V2 φ
(0)
10 φ

(0)
12

1 0.26 0.35 −4.0 −20.7 −43.4 0.80π −0.03π
2 0.03 0.52 −4.0 −20.7 −43.4 0.85π −0.02π
3 0.12 0.43 −5.817 −20.7 −43.4 1.00π −0.03π
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+ 2
√

2(3x2 − 1) cos(φ20)A20 ,
[

. . .
]

= 4A00 + 2(1 + 3x2)A11 + 3(1 − 2x2 + 5x4)A22 ,
[

. . .
]

= 2A00 + (1 + 3x2)(A11 +A22) + 2x(9x2 − 5)

× cos(φ12)A12 + 2
√

2(3x2 − 1) cos(φ20)A20 ,

respectively, for the {s1/2, p1/2, d3/2}, {s1/2, p3/2, d5/2}, and {s1/2, p3/2, d3/2} sets of states. The
asymmetric term (∼ x) is present here either for the s-p interference only or for the p-d only or
for neither.

Results obtained in the present work are generally consistent with the existing data. The
virtual s-state obtained in the present work was reported earlier in Ref. [18]. Our lower limit of
4.2 MeV for the d-wave resonance is in agreement with the values found in Refs [12, 17]. The
present work gives definite proofs for the 1/2− resonance at E9He=2.0 MeV with the width of ∼
2 MeV. Positions (2.4 and 2.2 MeV) found for a wide resonance in Refs. [12, 17] are compatible
with our result.

A remark should be made about the issue of a possible narrow resonance in the low energy
spectrum of 9He. The 2H(8He,p)9He reaction employed in our experiment well populates single
particle resonances. A resonance of a more complicated structure (and, hence, characterized
with a small single particle spectroscopic factor) should be populated with a low probability in
this reaction. Therefore it might be that we could not reveal such a resonance in our data. It
is worth noting the case of a more narrow p1/2 state imposed on the wide, single particle state
having the same quantum numbers. Whatever weakly such a narrow resonance is populated, the
phase shift for the p1/2 continuum changes across this resonance by a value close to π and the
character of angular distribution, built on the s1/2-p1/2 interference, should change drastically
within this energy range. No trend of this kind is observed in Fig. 3. The data, however, do not
exclude a weak population of a p1/2 state having a width Γ ≤ 0.3 MeV. The phase shift of the
broad 1/2− state changes slowly and hardly achieves π/2 in our calculations. This allows us to
explain the smooth asymmetry behavior obtained at E9He ≤ 3MeV.

The idea that only the 1/2− single-particle resonance state can be found in the low energy
region of 9He not only looks natural, but also finds support in the recent theoretical papers. In
Ref. [21] dealing with the whole chain of helium isotopes in continuum shell model, the 1/2−

state is located at 1.6 MeV above the 8He+n threshold and its width is ∼ 0.6 MeV indicating a
dominant single particle component in the WF. The 3/2− state is predicted to be at 6.6 MeV
and relatively narrow (∼ 2.5 MeV), what is natural for a complicated particle-hole excitation.

Conclusions. — We would like to emphasize the following results of our studies of 9He:

i) Our data show two broad overlapping peaks (at 2.0 and 4.2 MeV) in the 9He spectrum.

ii) An essential contribution of the s-wave 1/2+ state is evident from the data. It is manifested
in two ways: (a) large forward-backward asymmetry at E ≤ 3 MeV and (b) accumulation
of counts around the decay threshold of 9He, which should not take place for the cross
section behavior for higher l-values. A limit a > −20 fm is obtained for the scattering
length of this state, which is consistent with the limit of Ref. [18].

iii) The proposed spin assignment {s1/2, p1/2, d5/2} is unique, as no other reasonable set of
low-lying states can give the observed correlation pattern.

iv) The experimental data are well described in a simple single-particle potential model,
involving only basic theoretical assumptions about the reaction mechanism and the low-
energy spectrum of 9He. This supports the idea that 8He (having closed p3/2 sub shell)
represents a ”good” core in the 9He structure.
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IV. QUASI-FREE SCATTERING IN THE 4He(6He,2α)2n REACTION

Quasi-free scattering of nucleons and clusters bound in nuclei is acknowledged as a tool for
nuclear structure studies (see e.g. [22–24]). Along with the use of electron beams, QFS induced
by beams of protons and α particles has been extensively studied. Momentum distributions
and spectroscopic factors were extracted in these experiments for the knocked-out particles.
Usually, the remaining third body (spectator) was either a stable nucleus or it was found in a
quasi-stationary state. The data were mostly analyzed using PWIA and a better correspondence
between experimental data and theory predictions was achieved at higher collision energies.
The Distorted Wave Impulse Approximation (DWIA) was shown [25] to be more reliable in
getting correct values for spectroscopic factors even from the QFS data acquired with the use
of rather low energy beams. In Ref. [26] the QFS reaction 6Li(α, 2α)d was investigated at
4He beam energies around 100 MeV. The authors analyzed their data by means of PWIA and
DWIA showing that the two approaches lead to quite similar conclusions about the momentum
distribution of the α cluster in the 6Li nucleus and both results were in accord with the wave
function of 6Li given by theory. Most likely, the reason why the PWIA analysis appeared to be
correct in this case is associated with the small binding energy of the α cluster in 6Li. Such a
situation seems to be even more reasonable for the weakly bound drip-line nuclei.

To check this assumption we carried out a test experiment dedicated to the observation of
the QFS of the 6He α core showing up in the 4He(6He,2α)nn reaction. It was tempting to know
from this experiment whether the study of QFS can be used for direct observations of three-body
correlations specific for the ground state of Borromean nuclei. 6He is a convenient object for
such a study because one can believe that its WF is well established in theory [27].

The peculiarity of the 4He(6He,2α)nn reaction consists in the lack of a bound state for the two
neutrons becoming free after the knock-out of the 6He α core. Similar situation occurred when
the QFS reactions 6Li(α,2α)pn and 6Li(p,pα)pn were investigated [28, 29]. These experiments
were performed in coplanar geometry with the use of small-aperture detectors.

We studied the 4He(6He,2α)nn reaction at a 6He beam energy of 25A MeV/amu. The sec-
ondary beam of 6He nuclei with intensity of 2 × 104 s−1 bombarded a helium gas target cooled
down to 16 K. The target thickness was 2×1020 cm−2. The beam diagnostics array was outlined
in Sect. II.

Coincident α particles emitted from the target in angular ranges of 15◦−55◦ were detected by
two position sensitive ∆E-E telescopes installed symmetrically in respect to the beam direction.
Each telescope had a pair of Si strip detectors (one of these detectors had a thickness of 70µm
and another one was 1 mm thick). Behind of this pair, a 6.2 mm Si(Li)detector was installed
in each telescope. The measured α particle energies and angles allowed us to calculate relative
momentum values, Pn−n, observed for the two spectator neutrons in their c.m. system, and
momentum vectors Pnn characterizing the motion of their c.m. in the projectile reference frame.
Resolution attained in the momentum values was about 15 MeV/c. With Z axis chosen to
coincide with the projectile trajectory, the polar and azimuthal angles of momentum vector Pnn

were determined with errors of ≤ 1.5◦. A quite low background level was observed in a run
made with empty target.

Two bumps are seen in Fig. 4 (left panel) showing the PZ
nn distribution observed in the

reaction 4He(6He,2α)nn 1. Spectator neutrons originating from ”real” α − α QFS are in the
event group centered around the PZ

nn=0 point. The maximum rising nearby PZ
nn = −200 MeV/c

is populated by different processes, e.g. the 1n or α transfer from 6He to 4He and inelastic

1 PZ
nn is longitudinal (Z) component of momentum Pnn.
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FIG. 4: Left panel: Distribution in momentum component PZ
nn observed in the reaction 4He(6He,2α)nn.

Points with error bars show the total distribution. Events corresponding to the α−α CM scattering angle
θCM = 60◦−120◦ and to Eα1(2)−nn >10MeV are shown by the histograms drawn by the dashed and solid
lines, respectively. C entral panel: Joint momentum distribution S2(Pn−n vs. Pα−nn) extracted from the
experimental data. Right panel: The S2(Pn−n vs. Pα−nn) distribution obtained by MC simulation. (See
explanations in text).

scattering of 6He projectiles on 4He nuclei. The contribution of these reaction channels extends
rather far to the right side of the PZ

nn = −200 MeV/c point with a tail reaching PZ
nn=0. Selecting

events with θα−α = 60◦ − 120◦ we reduced considerably the part of these interfering processes.
Their contribution was suppressed further by the choice of events with large energy values
characterizing the relative motion in the α1−nn and α2−nn subsystems. The two distributions
obtained for events selected according to these criteria are presented in Fig. 4 (left panel). After
such selection of detected events, the contribution of all interfering reaction channels in the
obtained spectra was well described by a four-body phase space (PS).

To analyze these data, we performed complete MC simulations using a standard PWIA
factorization for the transition matrix:

(

dσ

dΩ

)QFS

α−α

∼ S2(Pn−n,Pα−nn)

(

dσ

dΩ

)

α−α

FPS dEn−n dEα−α dΩαα−nn dΩn−n, (3)

where FPS =
√

En−nEα−α(E0 +Q− En−n − Eα−α) is a phase space factor that accounts for
energy conservation, E0 = En−n+Eα−α+Eαα−nn−Q is the CM energy of the whole α−α−n−n
system (Eαα−nn stands for the energy of relative motion of the αα and nn centers-of-mass). The
α− α elastic scattering cross section, (dσ/dΩ)α−α, was calculated for the relative energy Eα−α

measured in the reaction exit channel. This implied the use of the final-state energy prescription.
Due to the large acceptance provided by the detection system the two α particles were

observed in a wide range of their relative energy Eα−α =(5 – 60) MeV and the observed scattering
angle θα−α covered a range of 30◦ - 150◦. The dependence of cross-section (dσ/dΩ)α−α on Eα−α

and θα−α was derived from the known set of phase shifts measured in a proper energy range.
Function S2(Pn−n,Pα−nn), entering into Eq. 3, contains nuclear structure information rel-

evant to 6He 2. Taking into account the n-n final state interaction (FSI), this function was
calculated as

S(Pn−n,Pα−nn) =

∫

drn−n drα−nnψ
∗

n−n(Pn−n, rn−n)e
−iPα−nnrα−nn ψ6He(rn−nrα−nn), (4)

2 In Jacobi co-ordinates, adopted in the three-body model of Borromean nuclei, the momenta Pn−n and Pα−nn

have conventional notations px and py , respectively.
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FIG. 5: Result of fits made to four distributions obtained from the experimental data. Panels A and B

present the two projections of the distribution shown in Fig. 4 (central panel). Panels C and D show the
event distributions in α− α CM scattering angle θα−α and in energy Eα−α. Points with error bars show
the experimental data. The fit results obtained for the QFS and PS spectra are shown by histograms
drawn by thick solid line and dashed line, respectively. The sums of the QFS and PS distributions are
shown by histograms drawn by thin lines.

where ψ6He(rn−nrα−nn) is the three-body wave function of 6He [27]. Joint momentum distri-
bution S2(Pn−n,Pα−nn) was extracted from the measured data with the use of Eq. 3. The
data were selected with the simultaneous imposition of the two criteria presented in Fig. 4,
left panel. Additionally, condition PZ

nn ≥ 0MeV/c was imposed. The obtained experimental
distribution is shown in Fig. 4 (central panel) together with a MC simulation made with the
use of Eq. 4 (see Fig. 4, right panel). The two distributions are similar in the widths of their
projections to the axes Pn−n and Pα−nn. To check whether the QFS part is considerable in the
experimental distribution we fitted a set of experimentally measured distributions by the sums
of MC simulations made for the QFS and PS spectra. Some of these fits are shown in Fig. 5.
One can make sure that the fits provide a good description of the experimental distributions.

This inference seems to be not trivial in the light of the fact that the QFS process was treated
here in the framework of the model based on assumptions inherent to Eq. 3. It is remarkable
that the final state energy prescription, employed for the calculation of (dσ/dΩ)α−α, lead to
a reasonably good fit to the experimental θα−α distribution obtained as a sum of QFS events
characterized by the so different values of final state energy Eα−α (see Fig. 5, panels C and D).

In Fig. 6 we show three distributions in θα−α obtained from different cuts made in Eα−α.
These spectra were built from the bulk of detected events selected to satisfy the conditions
Eα1(2)−nn >10MeV and Pn−n <100 MeV/c. From panel B of Fig. 5 one can see that the choice
of events with Pn−n <100 MeV/c results in a relative increase of the QFS part in the data.
Strong variations visible in the angular dependencies presented in Fig. 6 are all due to the
behavior of the QFS cross section (the phase-space spectra are smooth). The excellent fits made
to these experimental spectra make us confident that the effect of QFS has been well revealed
in this experiment.

Summarizing, we note that in our experiment the QFS of the α core bound in 6He was
explored keeping in mind the possible study of the cluster structure of this halo nucleus. The
possible use of QFS measurements for revealing momentum correlations specific for three-body
Borromean nuclei was the subject of our interest. The three-body WF of 6He is believed to be
well established in theory and a comparison of theoretical predictions with experimental data
could be a good test for the use of QFS for the study of clustering states in halo nuclei.

For the first time coincident particles emitted in the 4He(6He,2α)nn reaction were detected
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in wide angular ranges giving a wide kinematical range of the measured angular and momentum
distributions. The contribution of processes competing with the α−α QFS in the α+α+n+n
output channel were considerably suppressed by the selection of events with Eα1(2)−nn >10MeV.
This condition provided a reliable separation of events corresponding to QFS. Experimental
distributions relevant to the reaction mechanism and to the 6He structure, was compared with
the results of MC simulations based on the PWIA formalism. The PWIA predictions showed
consistency with the experimental data. One should note that the n-n FSI is the only distorting
factor involved in the data analysis. We assume that the influence of the n-n FSI will be less
significant at higher energies of bombarding 6He nuclei.

The ratio of the cross-section ( dσ/dΩ)α−α emerging from our data to the cross section value
of the free α−α elastic scattering was found to be constant in energy ranges 10<Eα−α <50 MeV
and 0<En−n <40 MeV. The angular distributions of quasi-free α − α scattering measured for
different energies Eα−α were well reproduced by MC simulation while the relative values of the
four-body breakup and α−α elastic scattering cross-sections varied by more than two orders of
magnitude in the energy and angular ranges allowed by the used detector array.
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The experimental program of the NIS project is aimed to search for effects of nucleon
polarized strangeness in production of φ and ω mesons in pp and np scattering. It implies (i)
comparison of production cross sections of φ and ω mesons near their thresholds in proton-
proton interactions and (ii) measurement of φ production in np interactions. NIS experiment
will provide data on the magnitude of the effect of the OZI violation in pp interactions in a
vicinity of the threshold (ε ∼ 83 ÷ 120MeV).

To realize this program, it was proposed to construct a new magnetic spectrometer NIS
with particle identification system based of TOF measurements at Nuclotron. At the Phase
I of the experiment it was suggested to use multiwire proportional chambers of 2m×1m
in size from EXCHARM experiment as trackers. At the Phase II of the experiment, it
was planned to replace these MPWCs with large straw chambers to be produced in JINR
LPP. Commissioning of the setup is expected at 2007, with subsequent start of physical
measurements.
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I. INTRODUCTION

We would like to measure the cross sections of the φ and ω meson production in pp and np
scattering

p + p → p + p + φ (1)

p + p → p + p + ω (2)

d + p → n + p + φ + ps (3)

at 83, 100, and 120 MeV above their thresholds. The measurements are planned at the extracted
beam of the JINR Nuclotron.

The physics motivation is to verify to what extent the large OZI-rule violation seen in some
reactions of the antiproton annihilation at rest (see Sec. IIA) preserves in the nucleon-nucleon
interaction. The first measurement at energies below 10 GeV was made in the DISTO experiment
[1, 2]. Indication on the OZI-rule violation of factor 10 was observed. Strong violation of the
OZI-rule may be connected with the nucleon intrinsic strangeness, as discussed in details in Sec.
IIB.

At present, the first stage of the construction of the experimental apparatus is finished.
The commissioning of the spectrometer and start of the data taking for the reactions (1)-(3)
is scheduled for 2007. It will be possible at the same time to study a0/f0 production and to
search for exotic baryons in φp system. The same setup configuration will be used in search for
Θ+(1540) pentaquark in the reaction:

p + p → Θ+ + K− + π+ + p , Θ+ → K+ + n (4)

At the cross section level of 0.07 µb, the NIS spectrometer can detect more than 1000 recon-
structed Θ+ events per week with the beam intensity of 107 s−1.

II. PHYSICS MOTIVATION

The interest to study the φ and ω meson production in the nucleon-nucleon interactions is
motivated by some unexpected results obtained in the LEAR experiments with stopped antipro-
tons, where, in some reactions of antinucleon-nucleon annihilation, anomalously large yield of
the φ mesons was observed.

A. Apparent OZI-violation in antiproton annihilation at rest

The production of the φ mesons in hadron interactions is obeying the OZI rule [3]. This rule
states that the reactions with disconnected quark lines should be suppressed. It forbids creation
of s̄s mesons in the interaction of hadrons composed from u and d quarks. According to the OZI
rule, the production of the s̄s mesons is possible only due to admixture of u and d quarks in the
s̄s-meson wave function. The amount of this admixture is determined for each meson nonet by
the value of the mixing angle, providing quantitative predictions for the s̄s states production.
The ratio between cross sections of the φ and ω in the interactions of non-strange hadrons for
the vector meson nonet should be

R(φ/ω)OZI = 4.2 · 10−3 . (5)
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This prediction has been tested in a number of experiments (for review, see, [4, 5]). Different
probes were used in a wide interval of energies. It was found that (practically) everywhere the
OZI rule is fulfilled well, within few percent accuracy.

In this situation it was quite surprising to see the discovery made at LEAR experiments,
namely, that in some annihilation channels the φ-meson production significantly exceeds the
prediction of the OZI rule. The main features of this effect are shown at the Fig. 1 and
are summarized below. 1) The deviation from the OZI–rule predictions is unusually strong.

FIG. 1: The ratio R = φX/ωX · 103 of yields for different reactions of p̄p → φ(ω)X annihilation at rest
as a function of the momentum transfer to φ . The solid line shows the prediction of the OZI rule.

The largest OZI rule violation is observed in the p̄p → φγ channel, where the Crystal Barrel
collaboration has found [5, 6] that the ratio of the yields of the corresponding processes after
phase space corrections is

Rγ =
Y (p̄p → φγ)

Y (p̄p → ωγ)
= (294 ± 97) · 10−3, (6)

which is about 70 times larger than the OZI prediction (5).
Another very strong apparent violation of the OZI rule was found by OBELIX and Crystal

Barrel collaborations for the p̄ + p → φ(ω) + π0 channels, where the corresponding quantity is

Rπ =
Y (p̄p → φπ)

Y (p̄p → ωπ)
= (106 ± 12) · 10−3 (7)

for annihilation in a liquid-hydrogen target [5] and

Rπ = (114 ± 10) · 10−3 (8)

for annihilation in a hydrogen-gas target [7]. These ratios are about a factor of 30 higher than
the OZI rule prediction (5).
2) This effect is not universal for all annihilation channels of the φ production but mysteriously
occurs only in some of them. For instance, no enhancement of the φ production is observed for
the φω or φρ channels where (R(φω/ωω) = (19 ± 7) · 10−3 and R(φρ/ωρ) = (6.3 ± 1.6) · 10−3

[4]).
3) There is a strong dependence of the strength of the OZI–rule violation on the quantum
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numbers of the initial p̄p state. It was clearly demonstrated by the OBELIX collaboration
results [8]:

Rπ(φ/ω, 3S1) = (120 ± 12) · 10−3 , (9)

Rπ(φ/ω, 1P1) < 7.2 · 10−3 with 95% CL (10)

4) There is a serious indication that the degree of the OZI rule violation depends on the
momentum transfer (see, Fig. 1).

5) The apparent OZI-violation was found not only for the φ meson production but also for
the tensor s̄s state - f ′

2(1525)-meson. As in a case of φ meson, the apparent OZI violation for
tensor mesons turns out to be extremely sensitive to the quantum numbers of the initial state.

Using the f ′
2 yield from the analysis of the K+K−π0 channel and f2 from the π+π−π0 one,

it was obtained [8] that

R(f ′
2(1525)π

0/f2(1270)π
0) = (47 ± 14) · 10−3 , S-wave (11)

= (149 ± 20) · 10−3 , P-wave (12)

The OZI–rule prediction for the tensor mesons is R(f ′
2/f2) = (3 − 16) · 10−3.

B. Polarized nucleon strangeness model

An explanation of these facts was provided by the model of polarized nucleon strangeness
[9, 10]. The main idea is that the OZI rule, by itself, is always valid. Some deviations from this
rule are only apparent. They are due to a non-trivial dynamics of the process, which cannot be
described by diagrams with disconnected quark lines.

For instance, the OZI rule forbids the production of a pure s̄s state in the nucleon-nucleon
interaction, if there are no strange quarks in the nucleon. Only in this case the production of the
s̄s pair is described by a disconnected diagram. But if the strange quarks in the nucleon play a
non-negligible role, then the s̄s pair could be produced in the nucleon-nucleon interaction via
shake-out or rearrangement of the strange quarks already stored in the nucleon. This process
is described by a connected diagram and the OZI rule suppression is not applicable in this
situation. Therefore the observed violation of the OZI rule is only apparent. It means that the
φ meson may be created from the strange quarks already stored in the nucleon.

It turns out that the polarization of the nucleon strange sea may naturally explain the ob-
served dependence of the degree of the OZI rule violation from the initial state quantum numbers,
initial energy, and the final state content. A number of tests of the model was proposed [9–11];
part of them was already successfully confirmed by the experiment. The main assumptions of
the model are the following:

• Negative polarization of the strange quarks in the nucleon,

• formation of the s̄s meson via rearrangement processes, and

• the quantum numbers of the s̄s pair in the nucleon is JPC = 0++.

It was assumed that the formation of the s̄s mesons is going via rearrangement diagrams, shown
in Fig. 2. It means that the two nucleons must take part in the s̄s production If the nucleon
spins are parallel (Fig. 2, then the spins of the s̄ and s quarks in both nucleons are also parallel.
If the polarization of the strange quarks is not changed during the interaction, then the s̄ and
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FIG. 2: Production of the s̄s mesons in NN interaction from the spin-triplet (a) and spin-singlet (b)
states. The arrows show the direction of spins of the nucleons and strange quarks.

s quarks could keep parallel spins in the final state. The total spin of s̄s quarks will be S = 1
and if their relative orbital momentum is L = 0, what means that the strangeonium has the
φ quantum numbers; if L = 1, it will correspond to the creation of tensorial strangeonium,
f ′
2(1525).

Another important assumption of the polarized intrinsic strangeness model [10] is that the
quantum numbers of the s̄s pair in the nucleon is JPC = 0++. The shake-out of such pairs will
not create φ or tensor f ′

2(1525) meson, but a scalar strangeonium.
The polarized intrinsic strangeness model gives rather definite predictions for the φ meson

production in nucleon-nucleon collisions:
1) If the s̄s pair has JPC = 0++ quantum numbers the apparent OZI violation for φ produc-

tion in NN collisions must exist at energies where spin-triplet initial states dominate. At these
energies the ratio

Rpp =
σ(pp → ppφ)

σ(pp → ppω)

is expected to be much higher than the value predicted by the OZI rule (5).
2) It was conjectured [9] that the degree of OZI rule violation might depend on the momentum

transfer. In Fig. 1 the compilation of the data on the ratio R = (φX/ωX) · 103 of yields for
different reactions of p̄p → φ(ω)X annihilation at rest is shown as a function of the momentum
transfer to φ . The solid line corresponds to the prediction of the OZI rule (5).

One could see that the largest OZI-violation has been observed for the reactions with the
largest momentum transfer to φ. That is, first of all, the Pontecorvo reaction p̄d → φn and
p̄p → φγ, φπ processes. The degree of the violation smoothly decreases with increase of the
mass of the X-system created with the φ, i.e. with decreasing of the momentum transfer to
φ. Thus for the φππ final state with light effective masses of the two-pions system around 300-
400 MeV, the deviation from the OZI rule is significant, whereas for the φη final state there is
no problem with the OZI rule.

The polarized strangeness model explained this trend as appearing due to the rearrangement
nature of the φ production. The rearrangement mechanism implies that two nucleons should
participate in the φ production. This means a dependence on quantum numbers of both nucleons
as well as appearance of some minimal momentum transfer from which this additional mechanism
becomes important.
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3) The ratio between the total cross sections of φ production on neutron and on proton is:

Rnp =
σ(np → npφ)

σ(pp → ppφ)
=

1

2

(

1 +
|f0|

2

|f1|2

)

(13)

where f1 and f0 are the amplitudes corresponding to total isospin I = 1 and I = 0, respectively.
At threshold, when the orbital momentum of two nucleons in the final state is l1 = 0 and

the orbital momentum of the produced meson relative to the center-of-mass system of these
two nucleons also vanishes, the connection between the isospin and the total spin of the two
nucleons in the initial state is fixed. The amplitude f1 corresponds to the spin-triplet initial
nucleon state, and the amplitude f0 corresponds to the spin-singlet one. Therefore, using the
experimental data on the pp and np cross sections, it is possible to estimate the ratio between
spin-singlet and spin-triplet amplitudes.

In the case of dominance of the production from 3S1 state one must observe that φ production
in pp interaction will be higher than in np with ratio

Rnp =
σ(np → npφ)

σ(pp → ppφ)
≈

1

2
.

C. Experiments on φ and ω production

The predictions of the polarized strangeness model were confirmed in part by the DISTO
Collaboration measurements [1] of the φ and ω production at the proton energy of 2.85 GeV,
i.e. at 83 MeV above the φ production threshold.

FIG. 3: Result of the DISTO experiment at SATURNE-II [1].

It was found that (see also Fig. 3)

Rpp =
σ(pp → ppφ)

σ(pp → ppω)
= (3.7 ± 0.7+1.2

−0.9) · 10
−3 . (14)

One can see that (up to 2 years ago) the DISTO measurement was the only one at the energies
less than 10 GeV. The solid line in Fig. 3 shows the result of the fit of the experiments at high
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energies. The dotted line shows prediction of the OZI rule corrected for the phase space. The
φ cross section was measured at 83 MeV above the threshold whereas ω cross section was taken
at 320 MeV above the corresponding threshold. Therefore the difference in the (φpp) and (ωpp)
phase spaces is quite high and the corrected ratio (14) is by a factor 13 larger than the OZI–rule
prediction.

The cross section of the ω production (2) near the threshold was measured by the SPES-
III and COSY-TOF collaborations [12, 13]. The data base for the energy dependence of the
cross section (2) of the ω production can be found in Refs. [1, 12–15]. The data from SPES-
III and COSY-TOF collaborations (Ref. [12, 13]) allowed to find a smooth phenomenological
approximation (see Ref. [16, 23] and ANKE proposal #104 [16]).

Basing on DISTO data [1] for φ production cross section at ε ≈ 83 MeV and on COSY-TOF
data [13] for ω cross section at ε ≈ 92 MeV, the degree of the OZI-rule violation was estimated
as Rpp ∼7.

Beside the DISTO measurement, up to the last year, the φ production in pp interaction (1)
had been investigated only in two other experiments, at 10 and 24 GeV/c ([14, 15]). In the
current year (2006), the results from the ANKE collaboration 1 were published in Ref. [18]. The
cross section of the φ production in reaction (1) was measured at 18.5, 34.6, and 83MeV above
the threshold. The typical statistics comprises 200-250 events. The published results reported
by the ANKE collaboration agree with DISTO data (see Fig. 4) and demonstrate a substantial
OZI-rule violation (14).

FIG. 4: Data from ANKE published recently in [18]. The topmost solid line: fit to the p(p, p)pω
data,normalized to the DISTO point.

However, it is interesting that the strength of the OZI-rule violation is energy dependent,
which is easily seen in Fig. 4. Being averaged over all the 3 energies the ANKE data give for

1 apparently influenced by the NIS project, see [17]
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Rφ/ω

Rφ/ω = (3.3 ± 0.6) · 10−2 ∼ 8 × ROZI (15)

In addition, results of ANKE indicate that the FSI effects in (ωpp) and (φpp) systems are sig-
nificantly different, which discards the assumption about a similarity between the ε-dependence
of the ω and φ production cross sections close to their thresholds.

It is interesting, that the DISTO collaboration [2] has observed also differences between the
angular distributions of φ and ω mesons produced in (1)-(2). The φ meson angular distribution
is flat, whereas to fit the ω angular distribution the first three even Legendre polynomials are
needed (Ref. [1]). This was confirmed by the COSY-TOF collaboration [13], where it was found
that that the angular dependence of the ω meson production is not isotropic at the energy
excess of about ∼ 173 MeV.

In general, the difference in angular distributions of φ and ω meson is an indication of
different production mechanisms. It contradicts the OZI rule prediction that φ could be formed
in pp interactions only via ω-φ mixing. However, to demonstrate this, one should compare
φ and ω meson distributions at the same energy above the corresponding thresholds.

D. Comparison with conventional models

Calculations of φ production in near-threshold NN reactions within the framework of con-
ventional boson exchange mechanism were done ([20–23]). Two mechanisms of φ production
were analysed, namely, the one due to the φρπ coupling and the other due to the direct φNN
interaction. It turns out that the former dominates.

It was shown that the φ production in pp interaction is dominated by the spin-triplet 3S1

initial state till 20-50 MeV above the threshold. Even at 100 MeV above the threshold the role
of the spin-triplet initial state is still dominant. It is predicted [20] that the ratio

Rnp =
σ(np → npφ)

σ(pp → ppφ)
≈ 3 − 7 (16)

depending on the set of parameters used.
The energy dependence of φ production measured by the ANKE collaboration [18] disagrees

with the calculations of [24] (note that parameters of this calculation has been fitted to reproduce
the DISTO point).

E. Polarized strangeness model with JPC(ss̄) = O−+

The quantum numbers of the s̄s pair in the nucleon are not fixed a priory. In the original
version of the polarized strangeness model [9, 10] it was assumed that JPC of the s̄s pair has
the vacuum quantum numbers O++. It turns out that for better description of some new
experiments one should assume that the s̄s system has 1S0 quantum numbers JPC = O−+ and
the quantum numbers of the us system are also JPC = O−+. Schematically, the configuration
looks as follows:

N
↑
•

◦

↓ s
◦

↑ s̄ (17)

In the case of antiproton annihilation the choice of 0−+ wave function for s̄s system leaves
intact all predictions of the original model [9, 10] concerning suppression of the φ production
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from the spin-singlet initial state or enhancement of f ′
2(1525) strangeonium from initial states

with L = 1 and S = 1. However, for the nucleon-nucleon scattering the situation will change.
The corresponding rearrangement diagram is shown in Fig. 5.

-

�

�

-

�

-

a)

s̄
s

s̄
s

s̄
s

0−+

N

N

N

N

SN

SN

-

-

�

-

�

-

�

�

b)

s̄
s

s̄
s

s̄
s

Φ

N

N

N

N

SN

SN

�

-

FIG. 5: Production of the s̄s mesons in NN interaction, assuming JPC(ss̄) = O−+, from spin-triplet
(a) and spin-singlet (b) initial states. The arrows show the direction of spins of the nucleons and strange
quarks.

It is clear that in this model the φ is formed from the spin-singlet initial state. From the
spin-triplet initial state the rearrangement diagram of Fig. 5 will increase production of the
strangeonium with the JPC = O−+.

It means, that at small energy above the threshold, where initial spin-triplet state is dominant,
one could not expect large apparent OZI violation. This effect must appear at highest energies,
where spin-singlet states will start to work. At large energies, above the threshold, the connection
between the spin and isospin amplitudes is not as simple as in Eq. (13). To disentangle the
models more experimental data are needed.

Summarizing, one can conclude that there are sharp distinctions between polarized
strangeness model predictions and conventional approaches. The differences are:

• Predicted value of φ/ω cross section ratio,

• momentum transfer dependence of the φ/ω cross section ratio, and

• different values for Rnp.

It is necessary to measure cross-sections and isospin correlations (spin-spin correlations might
be useful as well) for φ and ω meson production keeping the same energy excess above the
thresholds for both φ and ω production. The first step towards this task is already done by
ANKE collaboration in a study concerning the p(n, d)φ reaction.

F. Search for the pentaquark baryon production.

About 3 year ago an exotic and narrow baryon resonance in the K+n and K0p systems
(the Θ+ baryon) was observed in four independent experiments [25] but with limited statistics
(from 20 to 60 events in the peak above a background for each of them). In one of the exper-
iments the resonance was produced by the hadron beam (K+Xe → K0pXe′ with the bubble
chamber DIANA at ITEP (Moscow) in Russia); in the three other experiments the resonance
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was found in the photoproduction reactions (γn → nK+K−, with LEPS at SPring-8 electron
accelerator (Osaka University), γd → K+K−pn with CLAS at JLAB in USA, γp → K0

SK+n
with SAPHIR at ELSA (Bonn) in Germany). Inspection of the old BEBC data for νµ and ν̄µ

interactions with hydrogen, deuterium, and neon nuclei, done by the ITEP group, resulted in an
additional signal for the K0p resonance [27]. Masses of 1540±10 MeV/c2, 1540±4±2 MeV/c2,
1539±2 MeV/c2, 1543±5 MeV/c2, and 1533±5 MeV/c2 were reported with the resonance width
estimations somewhere between (9 ÷ 22) MeV.

These messages were exciting because it was the first evidence for the existence of baryons
with positive strangeness (the narrow width, by itself, is not so much surprising). Up to now,
only negative strangeness baryons were known. Baryons with positive strangeness cannot be
built from 3 quarks: it can only be for at least a five quark system within the standard quark
theory. The popular interpretation of the reported Θ+ (initially called Z+) resonance is that it
is a 5-quark system uudds̄. Another unexpected and exciting feature of the new data [25–29]
was that the possible new baryon is rather light. At the moment, the experimental data are
controversial (see, for example, Ref. [36]) and the problem remains unsolved.

G. Present status of the pentaquarks.

Since the first claims, both positive and negative results on the Θ+ pentaquark production
were published. As a rule, experiments with positive signals have low statistics. A common
features of these experiments are: they are of exclusive type, event multiplicity is low, and the
data were taken at intermediate energies. In contrast, experiments with negative results are
mostly of inclusive type, event multiplicity is high, and the center of mass energy is high as well,
but the collected statistics are very high. Concerning the claimed Ξ−− pentaquark baryon, there
is only a single positive result reported by NA-49 collaboration: no other experiments reported
a positive evidence for the existence of this baryon.

Up to now the quantum numbers (spin, parity, and isospin) of Θ+-baryon are not determined
experimentally. The only attempt to estimate spin of the Θ+ was done in Ref. [30], where the
authors claimed that the spin value of 1/2 is excluded. Moreover, even the value of Θ+ mass
became a puzzle: in the Θ+ → nK+ decay channel it is slightly higher than in the Θ+ → pK0

s

one.
Nevertheless, a number of theoretical papers about the quark structure, properties, and

production mechanisms of such baryons is already huge. Theorists discuss even the possibility
of ”penta”-nuclei existence.

The recent result from CLAS [31] at high statistical level discards the low statistics result of
Ref. [26]: no Θ+ production was observed in the photoproduction off protons in the reaction
γp → Θ+K̄0, while the same CLAS group reported [29] observation of the Θ+ in the reaction
γp → Θ+K−π+. This challenge was taken by theorists. First, it was immediately noticed that if
the spin of the Θ+ is not 1/2 but rather 3/2, than the contact (Kroll-Ruderman like) term works
for neutron target and is absent for proton target in the photoproduction reaction γN → Θ+K
(an analogy with Λ(1520) photoproduction where such an asymmetry is known experimentally);
see [33].

It should be mentioned that a more general spin/isospin analysis of γN → Θ+K reaction
was done in Ref. [34]. It was noticed that:

• A photon which turns into K+K− (φ in the vector meson dominance picture) can make
a Θ+K directly on a neutron but cannot make it on a proton. (Again, the asymmetry in
production of Λ(1520) in γp and γn gives the basis. The γK0K̄0 vertex is forbidden by
an SU(3)f flavor selection rule.)
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• Interference between resonances and background can result in differences between K+n
and K0p modes of detecting the Θ+, including the ”visible” shift in its mass. Here the
φ-component of the photon plays again a crucial role.

An interesting search for Θ+ in pion induced reaction π−p → K−X was done recently (as a
by-product) in Ref. [38].

A new view on structure of baryons was suggested recently by D. Diakonov and V. Petrov [35],
where a new estimation of Θ+ width is given: ΓΘ ∼ 2 ÷ 4MeV.

Summarizing, one can conclude that the very existence of the pentaquark baryons remains
a question but it seems rather natural from a theoretical point of view. This means that new
experiments in this direction are necessary. We have proposed to perform dedicated search
for Θ-baryon production in proton-proton interactions at the Nuclotron using the setup being
constructed for the NIS project.

III. DETECTOR CONFIGURATION

The initial goal of the NIS project was to search for effects of nucleon polarized strangeness
in production of φ and ω mesons in pp and np scattering (II). To realize this program, it was
proposed to built a magnetic spectrometer with trackers based on the multiwire proportional
chambers of 2m×1m in size from the EXCHARM experiment[39], (Phase I; at Phase II these
MPWCs should be replaced by a modern tracker system based on straw tubes) and with the
particle identification system based on TOF measurements (Fig. 6). The spectrometer is placed
at Nuclotron extracted beam in the LHE Building 205.

The typical signature of the pp → φpp event planned to be used in the main event selection
trigger is pp → (K+K−) + pp with 3 positively and 1 negatively charged tracks (4-prongs
signature).

A similar 4-prong signature corresponds to the production of the Θ+ baryon with positive
strangeness in reaction (4) and (18) when it decays into the nK+ channel:

pp → Θ+ + K− + p + π+ , Θ → pK0 , K0
S → π+π− . (18)

Although its decay into pK0 channel with subsequent K0
S → π+π− decay corresponds to the

6-prongs signature with 4 positively charged and 2 negatively charged tracks, it is not necessary
to detect pions from the K0

S decay explicitly in order to select this channel: one can select it
demanding that the missing mass reconstructed on 4 charged particles must be the kaon mass.

It is necessary to note that the threshold of the reactions (4) and (18) is about ≈216 MeV
(in the c.m.) above the φ-meson production threshold for pp interaction.

Due to the difference with φ-production in kinematics, pions are too ”soft” (in most cases)
to escape the volume of the analysing magnet. In order to detect these pions, 3 minidrift
wire chambers (MDC) with multitrack resolution capability will be installed into the analyzing
magnet. One of the MDCs, with an insensitive zone for the beam passing, will be installed
immediately after the target perpendicularly to the beam direction (the ”forward MDC”) while
the two others (the ”side MDCs”) will be installed in the free space between the pole tips and
the yoke as shown schematically in Fig. 6.

The ”forward” MDC will significantly improve the tracking capability of the NIS setup as
well as the background suppression, because it will provide for each track an additional space
point measured with good accuracy in the magnetic field region near the target. Thus it will be
possible to reconstruct tracks originating from ”secondary” vertices (not from the target region),
for example, from Λ → pπ− decays.
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FIG. 6: Layout of the NIS spectrometer. The tracker stations (PC, MDC ) and the TOF stations (based
on RPC detectors) are shown schematically. SciFi (scintillation fibre counter) will provide timing signal
for TOF measurements and beam parameters monitoring. Two positions of the beam profilometer (BP)
are shown: in blue - during measurements, in red - during beam tuning before the measurements. The
unscattered beam passes through the holes between the last detector stations; the coordinate detectors
of the 1-st station have holes (insensitive zones) to pass the beam. The volume of the magnetic field is
100×68×150cm3 (X × Y × Z). The maximal strength of the field is 0.8T.

With this setup it is possible to perform the search of the Θ-baryons in other production chan-
nels. A very attractive option is the production of the Θ-baryon in neutron-proton interactions.
It can be investigated by making use of the reaction

dp → Θ+ + pS + Λ , Λ → pπ− . (19)

Here pS is the proton-spectator. It must be detected in coincidences with the Λ decay products,
the proton and π−. The ”forward” MDC is of vital importance for this experiment.

IV. EXPECTED EVENT RATES OF φ PRODUCTION AT NIS

The event rates were estimated for φ-production using Monte-Carlo simulation of the reaction
for the layout outlined in Fig. 6. The factor called below as εacceptance includes both the
geometrical acceptance of the setup and kaon losses due to their decays. For the ”minimal”
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configuration of the setup (i.e. the 1-st MDC is installed, the side MDCs are not) it is about of
εacceptance ≈ 7 · 10−3. Below this value is taken conservatively. Other factors are:

• 10 cm liquid hydrogen target i.e. Ntarg ≈ 4.26 · 1023 protons/cm2.

• The proton beam intensity: 107 s−1 with the burst duration of 5 sec (the duty factor is
δ =0.5); this corresponds to the integrated proton flux through the target of Ihour ∼
1.8 · 1010 particles per hour.

• Due to the time needed for machine maintenance during a calendar day, the working time
of the machine (the ”live” beam time) may be conservatively estimated as 20 hours per
day; (actually it means that the overall duty factor should be taken as δ × 20/24 ≈0.42);
it results in the integrated proton flux through the target of Iday = 24 · 0.83 · 1.8 · 1010 =
3.58 · 1011 particles per day.

• The overall estimated ”luminosity” L = Ntarg · Iday ≈ 1.53 · 1035 cm−2day−1 or 1.53 ·
105 µb−1 day−1. For the excess over the φ threshold ε = 83, 100, and 120 MeV, the
estimated φ production cross section σprod is to be 0.19, 0.28, and ∼0.35 µb, respectively;
below the value of σprod = 0.2 is taken conservatively, what gives the estimate L · σ ≈
3.1 · 104 day−1.

• An event of φ production in reaction (1) with all 4 tracks inside the setup acceptance
can be treated as ”found” after off-line analysis, when all 4 tracks are reconstructed,
all 4 particles are identified and the effective mass of the found K+K− is within the φ
peak in the corresponding distribution. Because of detectors (PCs, RPCs) inefficiencies,
losses of events due to cuts during particle identification and φ-selection procedures, the
probability wfind φ is to be about of wfind φ ∼ 0.5.

Taking all the factors together one gets the number Nreconstructed
φ /day of φ mesons, detected and

selected off-line in the K+K− effective mass distribution per calender day of the data taking,

N reconstructed
φ

1

day
= wfind φ · εacceptance · L · σtot ≈ 110

events

day
.

In order to get Rpp with δRpp ∼ 2% one needs ≥ 2500 detected φ’s. To evaluate the φ-
production cross section we use below very conservative estimation concerning the value of
OZI-rule violation, i.e. that the cross section of ω-production is about of 40 times bigger than
that of φ.

The corresponding beam time necessary to find in off-line analysis of about of 2500 φ-mesons
per one ε point is estimated to be ∼ 22 days. Taking into account that the acceptance for the
detection of the ω-meson in the channel pp → pp + ω → pp + π+ + π− + π◦ is less than for the
detection of φ, the time sharing between measurements of φ and ω production cross sections can
be taken as 3:1, i.e. ∼ 7 days of data taking for ω production. Thus, the corresponding beam
time needed for data taking at one ε point in reactions (1) - (2) is ≈ 30 days. If the relation (16)
is valid, the beam time needed for measurement of reaction (3) should be of ∼ 7 days.

The total beam time necessary for calibrating and background measurements, setting up the
apparatus in the begin of runs and the tuning of the accelerator, we estimate conservatively as
∼30 days.
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FIG. 7: Rear NIS proportional chambers in place.

V. DETAILS OF THE APPARATUS

The main components of the spectrometer are mounted in place and were tested at Nuclotron
beam in several runs.

• The tracking subsystem is based on the large area multiwire proportional chambers
(MWPC), Fig. 7 and on MDC chambers which are in production.

The tracking system will allow reconstruction of ≥4 tracks with 3 tracks of positive and
one of negative charged particles. The idea of the track reconstruction is similar to that of
Saclay experiment E278 [40] with SPES4-π setup: the measured track, traced backward
through the magnetic field, must match coordinates measured in MDC1 and hit a small
size (∼3 cm) target placed in front of the magnetic field.

• The PID and trigger subsystems will be based on RPC modules. The idea of the
particle identification is based on measurements of the time of flight (TOF) measurements
on the base between the RPC stations (Fig.6) and momentum-TOF correlation with the
measured track length on the TOF baseline taken into account. The time resolution of
the RPC modules was measured at test-bench with cosmic rays and at Nuclotron beam.
In this study two RPC modules were placed close to each other; a pad of the first one
gave ”start” signal, the conjugated pad of the second module gave ”stop” signal. The
time resolution of ∼0.2 ns was obtained(without correction for signal propagation time in
20 cm RPC pads).

• The main criterium for trigger selecting the events will be the multiplicity condition:
≥3 particles (with positive electric charge) in the one arm and one negatively charged
particle in the other one.

VI. CONCLUSIONS

The search for effects of nucleon polarized hidden strangeness in production of φ and ω
mesons in pp and np scattering was first proposed in 2000. At present time, the measurements
of the cross sections of the φ and ω meson production in pp and np scattering
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p + p → p + p + φ (1)

p + p → p + p + ω (2)

d + p → n + p + φ + ps (3)

at 83, 100, and 120 MeV above their thresholds are planned at the extracted beam of the JINR
Nuclotron.

The total beam time needed for data taking at one ε point in reactions (1) - (2) is ≈ 30 days.
The beam time for measurement of reaction (3) should be of ∼ 7 days.

The cross sections of φ and ω production were measured ([1]) in DISTO experiment at
SATURNE-II. Measurements of ω production were published from SPES-III [12] and COSY-
TOF [13] collaborations. Evidence on OZI-rule violation (factor 6 to 13) was observed.

It should be emphasized that to find the OZI-rule violation in proton-proton interaction
is crucially important for the very notion of the nucleon polarized hidden strangeness. This
violation was found in anitproton-proton interaction and it is important to see whether this
effect exists in nucleon-nucleon system also.

Significance of the OZI-violation problem remains high, what is well emphasized by the
fact that in the last two years investments were made to increase the energy limit of COSY
accelerator over its nominal project energy, up to 3.8 GeV, in order to allow measurements of
φ meson production in reaction (1) at ANKE setup [16–18].
The NIS experimental setup at Phase I will include tracking system based on MWPCs and
newly produced MDC chambers inside the gap of the analyzing magnet; straw tube chambers
should be added at Phase II. Particle identification system based on time-of-flight measurements
in combination with measured momenta will be used.

At present, the NIS setup is at final stage of the assembling. The main detectors
(MWPC, TOF-detectors based on RPC) have been mounted.Methodical studies are in progress
(tests of detectors, studies of backgrounds) on the Nuclotron beam and on the test-benches
(with r/a sources and with cosmic rays). The liquid hydrogen target is ready. Manufacturing
of the first MDC is almost completed; works on preparation of the start-detector based of
scintillation fibres is close to the end. The first beam profilometer was manufactured, tested and
is ready for use; elements of the other 2 profilometers are being produced. R&D and tests of
multichannel TDC and QDC modules in VME standard are finished; their mass-production is
started. R&D on high voltage cells for RPC and MDC is completed; mass production of the cells
and control modules is completed on 80%. Front-end pre-amplifiers for MDC and SciFi detectors
are being prototyped. Modules of trigger logics are at the production stage. Completion of their
production is being determined only by available funding. Necessary software tools have been
developed; software for on-line data taking was developed for test-benches and for the work at
the beam. Monte-Carlo tools were developed; new tools for the event reconstruction are created.

The main components of the NIS setup were successfully tested at extracted Nuclotron beams.
Commissioning of the setup is planned for the 2007 with start of calibrating measurements at
the Nuclotron beam with subsequent start of the data taking according the physical program of
the project.
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In the present paper which is an extended version of paper [1] we consider a Mathematica-
based package for simulation of quantum circuits. It provides a user-friendly graphical inter-
face to specify a quantum circuit, to draw it, and to construct the unitary matrix for quantum
computation defined by the circuit. The matrix is computed by means of the linear algebra
tools built-in Mathematica. For circuits composed from the Toffoli and Hadamard gates the
package can also output the corresponding multivariate polynomial system over F2 whose
number of solutions in F2 determines the circuit matrix. Thereby the matrix can also be
constructed by applying to the polynomial system the Gröbner basis technique based on the
corresponding functions built-in Mathematica. We illustrate the package and the method
used by a number of examples.

I. INTRODUCTION

Quantum computations is a topic of great interest for the last two decades. One reason for
this is a potential ability of a quantum computer to do a certain computational task much more
efficiently than can be done by any classical computer [2, 3]. Two of the most famous examples of
such calculations are Shor’s algorithm [4] for efficient factorization of large integers and Grover’s
algorithm [5] of element search in an unsorted list. Nevertheless, despite of considerable efforts
in the quantum computing community, the number of such efficient quantum algorithms which
have been discovered still remains rather small. For this reason a search for other problems
which may be efficiently solved with a quantum computer and developing the corresponding
quantum algorithms, as well as the physical question of the feasibility of building a quantum
computer, is of great interest in present-day investigations.

Since realistic quantum computers have not yet been built, it is worthwhile to simulate quan-
tum computation on a classical computer, and there is quite a number of such simulators (see,
for example, [6, 7]). Among two equivalent models of quantum computation – quantum Tur-
ing machine and the circuit model – the last one is more convenient both for simulation and
application [2].

The circuit model of computation was introduced first for a classical computer that can be
considered as an electrical circuit made up of wires and logical gates. The wires are used to carry
information around the circuit, while the logic gates perform manipulations of the information,
converting it from one form to another. Note that inside a classical computer any information is
encoded into a sequence of bits which are the elementary units of information. And any complex
logic operation can be represented as an ordered sequence of some elementary logic gates which

∗
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act on single bits or pairs of bits. Using special notation for these gates, one can easily visualize
a circuit and clearly show a structure of computations. Thus, the circuit model turned out to
be very convenient and realistic for many applications and is widely used in computer science.

In the present paper we use the computer algebra system Mathematica [8] for simulation of
quantum computation and develop a package which provides a user-friendly graphical interface
to specify a quantum circuit, to draw the circuit specified, and to construct a unitary 2n × 2n

matrix U defined by the circuit with n qubits. In Sec. II we discuss general structure of an
arbitrary quantum circuit and introduce the basic logical gates commonly used in the quantum
circuit model. In Sec. III we describe an algorithm for the quantum circuits generation with
Mathematica. And in Sec. IV we develop an algorithm for computing the unitary matrix
defined by the circuit and implement it with Mathematica. In Sec. V circuits of special type are
considered which are composed from the Hadamard and Toffoli gates only. If a circuit is of this
type our Mathematica package can generate the system of polynomial equations over F2 whose
solution space in F2 uniquely determines the circuit matrix [9]. We show in Sec. VI how the
built-in Mathematica Gröbner bases module can be used to to construct the circuit matrix in
terms of the polynomial system. Throughout the paper we illustrate the methods used and the
package by simple examples.

II. STRUCTURE AND BASIC ELEMENTS OF QUANTUM CIRCUITS

The circuit model is easily transferred to quantum computations by means of creating quan-
tum analogues for the basic components of a classical computer [2]. Quantum information is
represented as a sequence of quantum bits or qubits which are the elementary units of quantum
information. A qubit is a two-level quantum system that can be prepared, manipulated and
measured in a controlled way. The state of a qubit is denoted as |a〉 corresponding to standard
Dirac notation for quantum mechanical states. Two possible states for a qubit are usually de-
noted as |0〉 and |1〉, which correspond to the states 0 and 1 for a classical bit. But in contrast
to classical bits, qubit as a quantum system may exist not only in one of the states |0〉 or |1〉
but also in the state |a〉 being a superposition of these states

|a〉 = α|0〉 + β|1〉 , (1)

where α and β are complex numbers constrained by the normalization condition |α|2 + |β|2 = 1.
Thus, the state of a qubit is represented by the vector (1) in the two-dimensional complex
vector space, where the special states |0〉 and |1〉 form an orthonormal basis and are known as
computational basis states [2].

A set of n qubits forms a quantum memory register, where the input data and any inter-
mediate results of computations are held. It is shown on diagrams as a column of states of the
form |aj〉 (j = 1, 2, ..., n) from which quantum wires start. Although a quantum circuit doesn’t
contain any wires as such, the term ”wires” is merely used to show evolution of qubits acted on
by various quantum gates. General structure of any quantum circuit can be readily understood
from Fig. 1, where a very simple quantum circuit containing two qubits and two quantum gates
is depicted. The circuit is to be read from left-to-right. It means that a column of two qubits
|a1〉 and |a2〉 in the left-hand side of the diagram in Fig. 1 corresponds to the initial state of
quantum register. Then it is successively acted on by two quantum gates and its final state is
shown on the right-hand side of the diagram as the column of qubits |b1〉 and |b2〉. Note that a
quantum circuit containing more qubits and quantum gates can be built in a similar way.

As in the case of classical computation, there are two groups of the elementary quantum
gates which perform manipulation of quantum information. The first group consist of the single-
qubit gates. Such gates have only one input and one output wires and are depicted by some
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FIG. 2: Single-qubit gates.

capital letter placed into a square. Following [2], we’ll use here only six non-trivial single-qubit
quantum gates which are shown in Fig. 2 together with their matrix representation with respect
to the computational basis states. Using this set of single-qubit matrices one can construct any
operation on a single qubit. Note that the matrix of any single-qubit gate shows how the gate
acts on the states of the computational basis, for example,

H|0〉 =
1√
2
(|0〉 + |1〉) , H|1〉 =

1√
2
(|0〉 − |1〉) . (2)

The second group of elementary quantum gates consists of the gates acting on two and more
qubits, i.e., the multi-qubit gates. Let us consider first two-qubit quantum gates. Remember
that the state of one qubit is represented by the vector (1) in the two-dimensional complex vector
space with the basis vectors |0〉 and |1〉. Hence, the state of the system of two independent qubits
may be determined as a direct (tensor) product of two two-dimensional spaces associated with
each qubit. Such a space has four basis vectors

|0〉1 ⊗ |0〉2 ≡ |00〉 , |0〉1 ⊗ |1〉2 ≡ |01〉 ,

|1〉1 ⊗ |0〉2 ≡ |10〉 , |1〉1 ⊗ |1〉2 ≡ |11〉 , (3)

where the symbol ⊗ denotes a direct product of basis states associated with the first (|0〉1, |1〉1)
and the second (|0〉2, |1〉2) qubits. Thus, the system of two qubits has a four-dimensional space of
states with computational basis states (3), an arbitrary state of such a system may be represented
as superposition of the form

|ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉 , (4)

where coefficients α, β, γ, δ are complex numbers constrained by the normalization condition
|α|2 + |β|2 + |γ|2 + |δ|2 = 1. Hence, any two-qubit quantum gate can be represented as a 4 × 4
matrix in the computational basis states (3). One of the useful two-qubit gates is a controlled-
NOT or CNOT gate, its graphical and matrix representation is shown in Fig. 3. This gate has
two input qubits, known as the control qubit (|a1〉 with black dot on the corresponding wire)
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FIG. 3: Controlled two-qubit gates and swap gate.

and the target qubit (|a2〉 marked with the sign ⊕). It flips the state of the target qubit if the
control qubit is in the state |1〉 and does nothing if the control qubit is in the state |0〉. In other
words, if the control qubit is in the state |1〉 the Pauli-X gate is applied to the target qubit.
Other controlled gates shown in Fig. 3 act similarly as the CNOT gate: if the control qubit is
in the state |1〉 then the corresponding Z, S or T gate is applied to the target qubit, otherwise
the target qubit is left alone. Another example of the two-qubit gate is the SWAP gate (see
Fig. 3) which interchanges the states of two input qubits.

The set of six single-qubit gates shown in Fig. 2 together with the CNOT-gate is a universal
set of gates [2]. It means that any quantum computation can be decomposed in terms of this set
gates. In practice, however, there may be more specialized quantum gates that would enable us
to construct more compact circuits for specific computations, some of them are shown in Fig. 3.
We’ll use also the Toffoli gate (Fig. 4) or controlled-controlled-gate [2]. It can be considered as a
generalization of CNOT-gate and has three input qubits and three output qubits: two of them
are the control qubits and one is the target qubit. And it flips the state of the target qubit only
if both control qubits are in the state |1〉. Note that other two-qubit gates in Fig. 3 may be
generalized to the three-qubit gates in a similar way.

Toffoli gate
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Èa3\

Èb1\

Èb2\

Èb3\

FIG. 4: Toffoli gate.
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III. BUILDING OF QUANTUM CIRCUITS

Before describing an algorithm for generating quantum circuits let us note that any quantum
circuit may be represented as a rectangular table. The number of rows in the table is equal
to the number of qubits in the circuit, while the number of columns depends on the number
of quantum gates and their arrangement. Consider, for example, a quantum circuit containing
three qubits and six quantum gates (see diagram in the left-hand side of Fig. 5). Drawing dashed
lines, we can separate neighboring rows and columns in the table in such a way that each of
its cell would contain some elementary gate (wires without any gates can be considered as the
identity quantum gates, i.e., the gates making identical transformation of the corresponding
qubits).
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FIG. 5: Table representation of the quantum circuit.

Obviously, we can shift the S-gate to the second column in the table without any disturbance
of the circuit. Then the first column will contain only three identity gates and it can be removed
from the table. Hence, two diagrams in Fig. 5 represent the same circuit but the table in the
right-hand side is smaller and simpler. In general, drawing the circuit, we’ll adhere the following
convention: each column in the table can contain either one multi-qubit gate or only single-qubit

gates and there are not any neighboring columns containing only single-qubit gates acting on

different qubits. Note, that according to this convention, we can not shift the Pauli-Z gate in
Fig. 5 to the last column because it would turn out to be in the same column together with
multi-qubit CNOT gate.

Thinking of any quantum circuit as a table of elementary quantum gates, we can define
a matrix whose elements are some symbols, denoting the gates, and this matrix will contain
all information on the circuit. An example of such matrix is shown in Fig. 6, where C and
X correspond to the control and target qubits, respectively (the symbols corresponding to the
single-qubit gates are obvious). Obviously, this matrix completely determines the structure of
the quantum circuit.
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FIG. 6: Matrix representation of the quantum circuit.

In our Mathematica package we just use such matrix representation for quantum circuits and
define the function circuit[mat ?MatrixQ] which generates the quantum circuit, corresponding
to any given matrix mat. It is quite cumbersome and we do not describe it here. Of course,
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before evaluating this function, we should choose a set of symbols, denoting different quantum
gates, and define the functions, determining the corresponding graphical objects. One possible
function, generating the Hadamard gate, is shown in Fig. 7 (the corresponding expression is
written in Mathematica code).

hadamardGate@yy_, xx_D := Block@ 8x, y<,
x = 0.1 Hxx - 1L; y = 0.1 H1 - yyL;

8 Line@88x, y<, 8x + 0.025, y<<D,
Line@88x + 0.075, y<, 8x + 0.1, y<<D,
Line@88x + 0.025, y - 0.025<, 8x + 0.025, y + 0.025<,

8x + 0.075, y + 0.025<, 8x + 0.075, y - 0.025<,
8x + 0.025, y - 0.025<<D, Text@

StyleForm@"H", FontFamily ® "Times", FontSize ® 18,

FontWeight ® "Bold"D, 8x + 0.05, y - 0.003<D< D

FIG. 7: Function generating the Hadamard gate.

Here the integers yy, xx correspond to the row and column numbers, respectively, and deter-
mine the position of the Hadamard gate in the matrix mat. Note that other single-qubit gates
are defined in a similar way.

Then we define a function matrixGenerating which generates a cell, containing two Mathe-

matica expressions: the matrix mat with given number of rows and columns all of its elements
are equal to 1 and function circuit[mat] (Fig. 8).

mat =

i

k
jjjjjj
1 1 1 1
1 1 1 1
1 1 1 1

y

{
zzzzzz ; circuit@matD

FIG. 8: Function for generating the quantum circuits.

Now, in order to generate a quantum circuit, it is sufficient to change units in the matrix mat
by symbols, corresponding to constituent quantum gates, and evaluate the cell. If the matrix
mat in Fig. 8 has been changed in such a way that it would coincide with the matrix given
in Fig. 6, for example, then, as a result, we obtain the circuit shown in Fig. 6 as a result. It
should be noted that, using the functions matrixGenerating and circuit, we can generate any
quantum circuit.

IV. COMPUTING THE CIRCUIT MATRIX

A system of n qubits has 2n basis states of the form |a1a2 . . . an〉, where aj = 0, 1 (j =
1, . . . , n). They are obtained as direct product of basis states (|0〉j , |1〉j) associated with all n
qubits [2]. In the case of n = 2 the corresponding basis states have been written in (3). Hence,
the unitary matrix U defined by the quantum circuit with n qubits may be represented as a
2n × 2n matrix with respect to these basis states.

As the circuit is read from left-to-right and we use the matrix mat to represent the circuit,
then the matrix U can be written as the following product

U = UmUm−1 . . . U1 , (5)
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where Uj (j = 1, 2, . . . ,m) is the 2n × 2n matrix defined by the quantum gates being in the jth
column of the matrix mat and m is a number of columns.

If the column contains only single-qubit gates then its matrix Uj may be constructed as
a direct product of all 2 × 2 matrices corresponding the gates available in this column. For
example, the first column of the matrix in Fig. 6 contains Hadamard (H), phase (S) and identity
gates (matrices of H and S gates are shown in Fig. 2 while the matrix of the identity gate is just
the 2× 2 unity one). Then the matrix U1 defined by this column is determined by the following
Mathematica command

Fold[BlockMatrix[Outer[T imes,#1,#2]]&, {{1}}, {matH,matS,matI}]

where matH, matS, matI are the matrices of the corresponding gates.

gateCN@n_, kn_, kc_?ListQD :=

Block@ 8basisOld, basisNew, u0, rules<,
basisOld =

Table@IntegerDigits@j, 2, nD, 8j, 0, 2n - 1<D;
basisNew = Map@ReplacePart@#,

Mod@Apply@Times, #PkcTD + #PknT, 2D,
knD &, basisOld, 1D;

rules = Table@8Position@basisNew, basisOldPjT DP
1, 1T, j< ® 1, 8j, 2n<D;

u0 = SparseArray@rules, 82n, 2n<D ;
u0 D

FIG. 9: Function for computing the matrix of CNOT and Toffoli gates.
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FIG. 10: Matrix corresponding to the Toffoli gate.

Matrices defined by the multi-qubit gates can not be, in general, found as direct product
of some 2 × 2 matrices and we need to compute them separately. For example, the function
gateCN [n , kn , kc ?ListQ] shown in Fig. 9 computes the 2n × 2n matrix Uj corresponding
to CNOT and Toffili gates. It has three arguments: integer n, the number of qubits in the
circuit; number kn and the list of numbers kc determine position of the target qubit and the
controlled qubits, respectively. To compute the matrix corresponding to the Toffoli gate we
have to evaluate the function gateCN [3, 3, {1, 2}] (see Fig. 10). The matrix defined by the last
column of mat shown in Fig. 6 is computed by the command gateCN [3, 1, {2}]. Similarly, one
can compute matrices corresponding to other controlled gates.

As soon as all matrices defined by the columns of the primary matrix mat are computed, we
can evaluate the matrix U defined by the corresponding quantum circuit. This task is fulfilled
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jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 1 0 0 0
0 -1 0 0 0 -1 0 0

0 0 0 ä ã
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ä Π
������4
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ä Π
������4 0 0 0 ä ã

ä Π
������4 0

ã
ä Π
������4 0 0 0 -ã

ä Π
������4 0 0 0

0 -ã
ä Π
������4 0 0 0 ã

ä Π
������4 0 0

0 0 ä 0 0 0 ä 0
0 0 0 -ä 0 0 0 -ä

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

FIG. 11: Matrix defined by the circuit of Fig. 6.

by the function matrixU [mat ?MatrixQ], whose argument is just the matrix mat which we use
to define a quantum circuit. For the circuit shown in Fig. 6 the corresponding matrix U given
in Fig. 11.

In order to demonstrate that with the package developed we can easily simulate any quantum
circuit, let us consider the circuit for a 3 qubit quantum Fourier transformation [2]. To generate
this circuit and compute its unitary matrix U we have to evaluate the following Mathematica

commands. First of all, we generate a skeleton 3×7 matrix with the function matrixGenerating
(see Fig. 12).

mat =

i

k
jjjjjj
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

y

{
zzzzzz ; circuit@matD

FIG. 12: A skeleton 3 × 7 matrix.

Then we replace some units in the matrix mat according to the algorithm of quantum Fourier
transformation [2] (see Fig. 13) and evaluate the function circuit[mat]. As a result, the corre-
sponding quantum circuit is obtained as output.

mat =

i

k
jjjjjj
H S T 1 1 1 SW
1 C 1 H S 1 1
1 1 C 1 C H SW

y

{
zzzzzz ; circuit@matD

Èa1\

Èa2\

Èa3\

Èb1\

Èb2\

Èb3\

H S T

H S

H

´

´

FIG. 13: Circuit for 3 qubit quantum Fourier transform.

At last, we evaluate the function matrixU [mat] and obtain the matrix U (see Fig. 14) defined
by the circuit of Fig. 13 (cf. [2]).
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y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

FIG. 14: Matrix defined by the circuit of Fig. 13.

V. POLYNOMIAL EQUATIONS DESCRIBING CIRCUITS BUILT FROM

HADAMARD AND TOFFOLI GATES

If a circuit contains only the Toffoli and Hadamard gates, then one can construct its circuit
matrix by the alternative method [9, 10] that does not use the above method based on the
straightforward linear algebra. Instead, the alternative method exploits algebra of multivariate
polynomials associated with the circuit. With all this going on, it should be noted that the
Toffoli and Hadamard gates form a universal gate set [11] and that there is a famous Soloway-
Kitaev algorithm requiring software [2, 12, 13] for conversion of circuits composed from other
gates for its implementation.

To construct the system of multivariate polynomials one can apply the quantum-mechanical
Feynman’s sum-over-paths approach to a quantum circuit [9]. This means for every path any
quantum gate in the circuit under consideration acts as its classical counterpart. In doing so, the
classical gate for the quantum Hadamard gate outputs the path variable x ∈ F2 [9] irrespective
of the input. Its value determines one of the two possible paths of computation. Thereby, the
classical Hadamard gate acts as

a1 7→ x , ai, x ∈ F2 ,

whereas the classical Toffoli gate acts as

(a1, a2, a3) 7→ (a1, a2, a3 ⊕ a1a2)

where ⊕ denotes addition modulo 2.
Let us now consider as an example the 3 qubit circuit built from the Hadamard and Toffoli

gates [9]. Again we generate, first, the 3× 4 matrix corresponding to this example by means of
the function matrixGenerating as shown in Fig. 15 which is the output of the circuit of Fig.
16. Its circuit matrix computed by the function matrixU [mat] as described in of Sec. IV is
given by Fig. 17.

mat =

i

k
jjjjjj
H C H X
H C 1 C
1 X H C

y

{
zzzzzz ; circuit@matD

FIG. 15: 3 × 4 matrix generating the example from [9].

Turning back to Feynman’s sum-over-paths approach, a classical path is defined by a sequence
of classical bit strings a,a1,a2, . . . ,am = b produced from action of the classical gates. Each
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Èa1\

Èa2\

Èa3\

Èb1\

Èb2\

Èb3\

H

H

H

H

FIG. 16: The circuit example from [9].
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FIG. 17: Matrix for circuit of Fig. 16 computed by linear algebra.

set of values of the path variables xi gives a sequence of classical bit strings which is called
an admissible classical path. All path variables and, thus, all admissible classical paths for
Fig. 16 are explicitly shown in Fig. 18. The corresponding sequence of classical bit strings
is a = {a1, a2, a3}, a1 = {x1, x2, a3}, a2 = {x1, x2, a3 ⊕ x1x2}, a3 = {x3, x2, x4}, a4 = {x3 ⊕
x2x4, x2, x4} = b.

a1

a2

a3

b1

b2

b3

H

H

H

H

x1

x2

a3Åx1 x2

x3

x4

x3Åx2 x4

FIG. 18: The admissible paths for the circuit of Fig. 16.

Each admissible classical path is provided with a phase which is determined by the Hadamard
gates applied [9]. The phase is changed only when the input and output of the Hadamard gate
are simultaneously equal to 1. Thereby, this gives the formula

ϕ(x) =
∑

Hadamard gates

input • output (1)
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with the sum evaluated in F2. As to Toffoli gates, they do not change the phase.
In the example of Fig. 16 the phase of the path x reads

ϕ(x) = a1x1 ⊕ a2x2 ⊕ x1x3 ⊕ a3x4 ⊕ x1x2x4 .

According to the Feynman’s sum-over-paths method the matrix element of a quantum circuit is
the sum over all the allowed paths from the classical state a to b

〈b|Uf |a〉 =
1√
2h

∑

x:b(x)b

(−1)ϕ(x) ,

where h is the number of Hadamard gates. Apparently, the terms in the sum have the same
absolute value but may vary in sign.

Let N0 be the number of positive terms in the sum and N1 be the number of negative terms:

N0 = | { x | b(x) = b and ϕ(x) = 0 } | , (2)

N1 = | { x | b(x) = b and ϕ(x) = 1 } | . (3)

Hence, N0 and N1 count the number of solutions for the indicated systems of n+ 1 polynomials
in h variables over F2. Then the matrix element may be written as

〈b|Uf |a〉 =
1√
2h

(N0 −N1) . (4)

In our Mathematica package there is function polynomials[mat ?MatrixQ] which constructs and
outputs the set of polynomials over F2 which follows from the bit string of the form b(x) = b that
relates the output bits with the path variables. Here we denoted by b(x) the last bit string am

in the admissible path set which depends polynomially on the path variables x = {x1, . . . , xh}.
Since in constructing the circuit matrix we have to count the number of solutions for polynomial
systems (2) and (3) in F2, and input and output bit variables ai, bi also take values in F2, function
polynomials[mat ?MatrixQ] outputs the polynomials in the form b(x) + b = 0 and adds the
phase polynomial (1) to the system.

For the circuit of Fig. 16 function polynomials[mat ?MatrixQ] outputs

x3 Å x2 x4 Å b1

x2 Å b2

x4 Å b3

a1 x1 Å a2 x2 Å x1 x3 Å a3 x4 Å x1 x2 x4

FIG. 19: Polynomial system for the circuit of Fig. 16.

The upper tree polynomial in Fig. 19 are those generated by the output bit string relating the
input and output qubit values for admissible paths coded in terms of the variables {x1, x2, x3, x4}.
The bottom polynomial is the phase polynomial defined by formula (1).

VI. SOLVING CIRCUIT POLYNOMIAL SYSTEM

To count the number of solutions in F2 for the polynomial systems (2) and (3) in order to
apply formula (4) we rewrite them into the form

F0 = {b(x) + b, φ(x)} , (5)

F1 = {b(x) + b, φ(x) + 1} . (6)
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Here F0 denotes the output of the function polynomials[mat ?MatrixQ] in our Mathematica

package. It is convenient to transform the system into the canonical Gröbner basis form [14].
The Gröbner basis method invented in [15] is the most universal algorithmic tool for investigation
and solving multivariate polynomial systems.

To compute N0 and N1 one can convert F0 and F1 into an appropriate triangular form [16]
providing elimination of the path variables x1, ..., xh. One of such triangular forms is the pure
lexicographical Gröbner basis that can be computed by means of Mathematica which has a
built-in module for computing polynomial Gröbner bases.

For the system of polynomials F0 in (5) shown in Fig. 19 the lexicographical Gröbner basis
for the ordering on the variables x1 ≻ x2 ≻ x3 ≻ x4 is given by

G0 :















g1 = a1x1 ⊕ b1x1 ⊕ a2b2 ⊕ a3b3 ,

g2 = x2 ⊕ b2 ,

g3 = x3 ⊕ b1 ⊕ b2b3 ,

g3 = x4 ⊕ b3 ,

(7)

The Gröbner basis (7) can easily be obtained with Mathematica. To do this it is sufficient to
define the polynomial set (5) as Mathematica polynomial list by the command

F0 = 8x3 + x2 * x4 + b1, x2 + b2, x4 + b3,

a1 * x1 + a2 * x2 + x1 * x3 + a3 * x4 + x1 * x2 * x4<
FIG. 20: Input Mathematica form for F0 in (5).

and invoke the Mathematica function GroebnerBasis with the arguments specified as follows

GB0 = GroebnerBasis@F0, 8x1, x2, x3, x4<,
MonomialOrder ® Lexicographic, Modulus ® 2D

FIG. 21: Mathematica command for computation of (7).

The last option in Fig. 21 says to the function that coefficient field is F2. As a result
Mathematica will output the Gröbner basis (7)

8b3 + x4, b1 + b2 b3 + x3, b2 + x2, a2 b2 + a3 b3 + a1 x1 + b1 x1<
FIG. 22: The Mathematica output for the command of Fig. 21.

Similarly, for the system F1 in (6) the Gröbner basis is

G1 :















g1 = a1x1 ⊕ b1x1 ⊕ a2b2 ⊕ a3b3 ⊕ 1 ,
g2 = x2 ⊕ b2 ,

g3 = x3 ⊕ b1 ⊕ b2b3 ,

g3 = x4 ⊕ b3 .

(8)

The lexicographical Gröbner bases (7) and (8) immediately yield the following conditions on
the parameters:

G0 : a1 ⊕ b1 = a2b2 ⊕ a3b3 = 0 , (9)

G1 : a1 ⊕ b1 = 0 , a2b2 ⊕ a3b3 = 1 . (10)
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It is immediately followed that if conditions (9) are satisfied then the polynomial system G0

(resp. F0) has two common roots in F2 and G1 (resp. F1) has no common roots, and, vise-versa,
if conditions (10) are satisfied then G0 has no roots and G1 has two roots. In all other cases
there is one root of G0 and one root of G1.

In that way, the 8 × 8 matrix for the circuit of 16 is easily determined by the formulae (4)
where the numbers N0 and N1 are defined from systems (7) and (8). As a result, the matrix of
Fig. 17 is obtained.

A n−qubit circuit with h−Hadamard gates the polynomial systems (5) and (6) contains
n+ 1 polynomials in h−variables x = {x1, x2, . . . , xh} and 2n−parameters a = {a1, a2, . . . , an},
b = {b1, b2, . . . , bn}. These parameters determine the values of the input and output qubits,
respectively. To apply formula (4) for computing the circuit matrix by the Gröbner bases
method one needs to take into account that both variables and parameters are elements in the
finite field F2. By this reason, generally, to increase efficiency of computation with the use of
Mathematica function GroebnerBasis (Fig. 21) one should add to every of the systems (5) and
(6) the binomials of the form

x2
i + x1 (i = 1, . . . , h) . (11)

and also take into account the restrictions

a2
j + aj = 0, b2j + bj = 0 (j = 1, . . . , n) .

Due to the last restrictions all the intermediate polynomials arising at the Gröbner basis con-
struction by Buchberger’s algorithm [14, 15] admit substantial simplification.

It turns out that if one uses another algorithmic approach to construction of Gröbner bases
called involutive (see [17] and references therein), then this makes possible to avoid handling
extra polynomials (11). In doing so, one can work with variables directly as with elements in
F2. The first implementation in C++ of an involutive algorithm for computation of Gröbner
basis over F2 with polynomial variables from F2 described in [18]. After proper optimization
it is planned to incorporate that C++ code into the open source software GINV [19] which is
a C++ module of Python and oriented to computation of Gröbner bases for polynomial ideals
and modules by involutive methods.

It should be noted that solving systems of multivariate polynomial equations variables over
F2 whose variables take values in F2 is also of interest in cryptanalysis. One of the attacks
of a HFE (Hidden Fields Equations) public key cryptosystem is based on construction of a
Gröbner basis for multivariate polynomial system over finite fields [20]. In particular, quadratic
n polynomials in n with n ≥ 80, variables over field F2 was recommended as a public key, and
n = 80 was suggested as the first challenge. In paper [21] his challenge was broken by the
Gröbner basis computation by means of the C program implementing author’s algorithm [22].
This remarkable computational result gives a hope that construction of the circuit matrices by
means of polynomial systems (5) and (6) may be computationally superior to the linear algebra
based method (Sec. IV) for circuits with n ≫ h where n and h are, as above, the numbers of
qubits and Hadamard gates.
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Python: The Pocket Knife of Scientific Computing

M. Braun∗
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In this contribution a short introduction to the main features of the object oriented script-
ing language Python will be given and the libraries, tools, and modules of interest for com-
putational physics will be discussed. Using well known subroutines written in Fortran it
will be shown, how to access a Fortran77 code from Python using the versatile automatic
connection tool f2py. The benefits of having a mixed application where the initialization,
outer loops, flow control, and file handling are coded in Python and only the serious number
crunching is delegated to Fortran, are outlined.

I. INTRODUCTION

The modern object oriented scripting language Python [1, 2] has recently attracted a lot of
attention by computational scientists from many disciplines [3], especially from computational
physics. The traditional work horse for the latter discipline is the Fortran77 language which
is efficient for numerical tasks and an abundant treasure of well tested and reliable libraries
exists. However, it lacks many modern features, such as efficient I/O and object orientation,
to only name two of them. With Fortran90 and Fortran95 some features such as modular
programming and operator overloading were added, which made them more suitable for complex
programming tasks. These languages still do not support object orientated programming. The
very popular compiled language C++ is object orientated but, in my view, rather tedious to
program. Since it would be wasteful to throw away the well tested and efficient libraries that
have been programmed in Fortran, C, and C++, it is imperative that these libraries can be
accessed from scripting languages, for which a number of tools have been developed for this
purpose.

With the ever increasing speed of CPUs, scripting languages such as Matlab/Octave, Perl,
Python, and Ruby have emerged as tools for many tasks, including scientific computing. Their
advantages include: i) No declaration of variables is needed, ii) increased speed of development,
and iii) many advanced language features. Concerning the Python language, we mention that
it was originally developed as glue language for the distributed Operating System Amoeba by
Guido van Rossum at the Dutch Centrum voor Wiskunde en Informatica (CWI) and named
after ”The Monty Python Show”. Its suitability for tasks unconnected to the original purpose
became soon evident and thus it was released as open source in 1991. The design was inspired
by the language ABC that van Rossum had been involved with in the 1980s. Python is by
now the second most popular scripting language worldwide after Perl. It is undergoing constant
development by a large team of volunteers and reached version 2.5. It is estimated that, nowa-
days, Python is used by ∼500 000 programmers. Companies using Python include the search
engine Google, the peer-to-peer file sharing protocol Bittorrent, the web framework Zope, and
the video sharing platform youtube.com.

There are a lot of reasons for choosing Python as scripting language. To start with, it has
an efficient modular system, it has a clean syntax, it is easy to extend, and the implementation
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of objects is easy. Furthermore, Python comes with Libraries/Modules for close to everything
and it can be used with Unix, Linux, Win32, MacOSX, Symbian (Cellphones!), and many other
OSs while implementations exist in C, Java, and NET as well. At a personal level, I have also
experienced that a code can be developed more quickly than in Fortran so that many tasks can
be expressed in a convenient manner, which is easy to remember and understand when looked
at later. Finally, I have found that for extensions and use of libraries, it is better suited to the
purposes of scientific computing than is the case with some of the competing scripting languages.

In Sec. II we present an overview of the Python language, in Sec. III we demonstrate its use
in few examples, while in Sec. IV we draw our conclusions.

II. LANGUAGE OVERVIEW

The most striking features of Python for somebody who programmed in C/C++/Java are the
importance of white space and the definition of blocks via indentation, which enforce readability
of loops and conditional expressions. Admittedly, these features take some getting used to. The
object model is quite similar to the one of Java, and (close to) everything is an object. Just as
in Java there are no pointers, but there is really no need for them.

The primary building blocks for data structures are lists, i.e. mutable arrays of arbitrary
Python objects, tuples. i.e. immutable lists, and associative arrays, i.e. arrays with arbitrary
immutable objects as indices. Python has built-in types for integer, double precision, complex
and (arbitrarily) long integer. The interactive use of Python on the command line is convenient
for testing and development and provides easy access to built in documentation via doc-strings
that are embedded in the source code.

There are a great variety of libraries and extension available for close to every computer
related task [4], a selection of which is summarized below:

1. Operating System services: OS system etc.

2. GUI interfaces: Tkinter (build on Tcl/TK). included, bindings to Qt, Gnome, and many
other toolkits exist as well.

3. Modules for standard networking protocols.

4. NumPy (Numerical Python) which includes also f2py.

5. Gnuplot: Pipe based interface to Gnuplot.

6. Scientific Python: Nomen est Omen.

7. Ipython: Improved Python shell.

Concerning the tools of special interest to computational physicists we mention here the
most essential extension for computational tasks, namely NumPy, which provides multidimen-
sional arrays, ufuncs, overloaded arithmetic operators, matlab-like syntax, and linear algebra
operations via Lapack. In addition, the included tool f2py creates shared libraries to access
Fortran77/Fortran90 functions and subroutines. Thus Python+NumPy+Gnuplot can (mostly)
replace Matlab/Octave. Many additional extensions are provided by Scientific Python such as
automatic derivatives, fitting, handling of vectors, and an interface to MPI.
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III. EXAMPLES

A. Using f2py

The tool f2py which is part of NumPy, automatically creates shared libraries for Fortran sub-
routines as demonstrated in the following for the subroutine GAULEG.F from Numerical Recipes
[5]. To indicate which arguments are input and which are output the lines starting with cf2py
have been inserted in the source code as shown below:

SUBROUTINE GAULEG(X1,X2,X,W,N)

% =============================

cf2py intent(in) x1,x2

cf2py intent(out) x,w

.

.

.

RETURN

END

The shared library and Python module is then created via

f2py -m gauleg -c gauleg_f2py.f

and can be loaded into a interactive python session and the points and weights of 8th order
accessed as follows:

Python 2.4.3 (#2, Sep 18 2006, 21:07:35)

[GCC 4.1.1 20060724 (prerelease) (4.1.1-3mdk)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> from gauleg import gauleg

>>> x,w=gauleg(0.0,1.0,8)

>>> print x

[ 0.01985507 0.10166676 0.2372338 0.40828268 0.59171732 0.7627662

0.89833324 0.98014493]

>>> print w

[ 0.05061427 0.11119052 0.15685332 0.18134189 0.18134189 0.15685332

0.11119052 0.05061427]

>>>

B. Cubic spline interpolation subroutines and serialization of a spline object

As above the subroutines SPLINE.F and SPLINT.F are from Numerical Recipes and they can
be used for cubic spline interpolation [5].

SUBROUTINE SPLINE(x,y,n,yp1,ypn,y2)

C ==================================

INTEGER n,NMAX

DOUBLE PRECISION yp1,ypn,x(n),y(n),y2(n)

cf2py intent(out) y2

cf2py intent(in) yp1,yp2,x,y
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.

.

.

END

SUBROUTINE SPLINT(xa,ya,y2a,n,x,y)

c ==================================

cf2py intent(in) xa,ya,y2a,n,x

cf2py intent(out) y

.

.

.

END

As in the previous example the shared library is obtained via

f2py -m cubic_spline -c cubic_splines.f

and the cf2py lines contain the information as to the intent of the variables.
The following python code encapsulates cubic spline interpolation in a convenient class and

also provides for serialization, i.e saving to disk.

from cubic_spline import *

from numpy import *

import pickle

import sys

class spline_int:

def __init__(self,xi,yi):

self.xi,self.yi=xi,yi

self.n=len(xi)

self.y2=spline(self.xi,self.yi,1e40,1e40)

def __call__(self,x):

if isscalar(x):

return splint(self.xi,self.yi,self.y2,x)

else:

tmp=[]

for xx in x:

tmp.append(splint(self.xi,self.yi,self.y2,xx))

return array(tmp)

def pickle(self,fname):

wf=open(fname,"w")

pick=pickle.Pickler(wf)

pick.dump(self)

wf.close()

This class can be used as follows

>>> from numpy import *

>>> x=arange(0.0,2*pi+1e-6,2*pi/512)

>>> y=sin(x)

>>> from spline_int import spline_int

>>> s=spline_int(x,y)

>>> s.pickle("sin.dat")
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to create a cubic spline interpolating sinx on [0, 2π] and to dump the spline object to disk in
the file “sin.dat”. Subsequently the following script can be used to read a spline from disk and
plot it using Gnuplot:

#!/usr/bin/env python

# script to read a pickled spline and plot it

import Gnuplot

from numpy import *

import pickle

import sys,time

sfile = sys.argv[1]

fp=open(sfile,"r")

s=pickle.Unpickler(fp).load()

xmin=s.xi[0]

xmax=s.xi[-1]

h=xmax-xmin

xp=xmin+arange(0.0,1.0001,1./512)*h

yp=s(xp)

ymin=min(yp)

ymax=max(yp)

zxy=zip(xp,yp)

hy=ymax-ymin

g=Gnuplot.Gnuplot()

g("set style data lines")

g("set xrange[%f : %f]" % (xmin-0.1*h,xmax+0.1*h))

g("set yrange[%f : %f]" % (ymin-0.1*hy,ymax+0.1*hy))

g("set xzeroaxis linetype 3")

g("set yzeroaxis linetype 3")

g.plot(zxy)

raw_input("")

via

spline_plot.py sin.dat

on the command line.

C. Scripting Java using jython

The jython-project [6] has created a Python interpreter written in pure Java, which allows
for the efficient scripting of Java. All Java classes can be dynamically loaded. The following
example shows how to draw a simple graph using jython+Java

from java import awt

from math import *

from jarray import array

class Graph(awt.Canvas):

def __init__(self):

self.function = None

def paint(self, g):

if self.function is None:
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return self.error(g)

sz = self.size

xs = range(0, sz.width, 2)

xscale = 4*pi/sz.width

xoffset = -2*pi

yscale = -sz.height/2.

yoffset = sz.height/2.

ys = [ ]

for x in xs:

x = xscale*x + xoffset

y = int(yscale*self.function(x)+yoffset)

ys.append(y)

g.drawPolyline(array(xs, ’i’), array(ys, ’i’), len(xs))

def error(self, g):

message = "Invalid Expression"

g.font = awt.Font(’Serif’, awt.Font.BOLD, 20)

width = g.fontMetrics.stringWidth(message)

x = (self.size.width-width)/2

y = (self.size.height+g.fontMetrics.height)/2

g.drawString("Invalid Expression", x, y)

def setExpression(self, e):

"@sig public void setExpression(java.lang.String e)"

try:

self.function = eval(’lambda x: ’+e)

except:

self.function = None

self.repaint()

if __name__ == ’__main__’:

def enter(e):

graph.setExpression(expression.text)

expression.caretPosition=0

expression.selectAll()

p = awt.Panel(layout=awt.BorderLayout())

graph = Graph()

p.add(graph, ’Center’)

expression = awt.TextField(text=’(sin(3*x)+cos(x))/2’, actionPerformed=enter)

p.add(expression, ’South’)

import pawt

pawt.test(p, size=(300,300))

enter(None)

Saving this code as Graph.py it can be run from the command line via
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jython Graph.py

and creates the window shown below:

D. Graphical User Interface for finite element method

A graphical user interface was developed that uses a finite element engine written in Python
and Fortran77 connected via f2py to solve the one dimensional eigenvalue equation

[

−

1

w(x)

∂

∂x
w(x)

∂

∂x
+ v(x)

]

ψ(x) = λψ(x)

with either open or zero boundary conditions at x = a and x = b

A screen-shot of the GUI is given below, where the five lowest eigenvalues for the harmonic
oscillator potential V (x) = x2 on [−5, 5] have been calculated and the wave function of the third
excited state is plotted:
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The Python code for this user interface consists of less then 200 lines of code. Thus this
demonstrates how user interfaces can be constructed quite easily.

IV. CONCLUSIONS

It has been demonstrated why Python deserves to be called the “pocket knife of Computa-
tional Physics”. Some examples of a mixed/hybrid approach to Computational Physics tasks
were given for this purpose. The approach uses the most convenient and efficient tools for dif-
ferent tasks such as the control and administration of the calculation for simple numerical tasks
while the heavy number crunching is done in Fortran to achieve maximum performance. It is
also important to note that data structures and file handling via Python result in a modern
and object oriented code, while still using the high performance libraries written in Fortran, C,
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C++, etc.
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Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

We constructed an additive numerical method for systems of nonlinear evolutionary equa-
tions containing first derivatives in a divergent form. The main idea of our approach is to
integrate differential equations and then use a well-known difference scheme which possesses
the property of having fixed sign. The properties of conservation of movement integrals and
convergence to the solution of the initial differential problem are proved. Next we studied a
coupled shock waves’ evolution in nonlinear viscous medium and described it by the system
of two coupled Burgers equations. We applied our scheme to this system and revealed some
new effects. It was also found that our scheme prevents the smearing of the shock waves.

I. INTRODUCTION

Multidimensional second-order parabolic equations containing divergent first-order differen-
tial forms are rather common in mathematical models used for numerical modeling of a wide
range of nonlinear problems emerging in acoustics, optics, solid state physics, etc. As a rule,
much attention is given to preservation of the most important characteristics of the studied
phenomena in the process of computation. This requires a development of numerical methods
which could combine the whole range of specific features, such as stability, conservativeness,
fixed sign property, etc.

When constructing difference schemes for systems of nonlinear coupled evolutionary equations
one often meets serious difficulties in attempting to bring together all these properties in a single
scheme. Thus, for instance, the property of fixed sign is in conflict with the conservativeness.
This may result in a loss of computation accuracy and even faulty solutions. A technique which
may cope with most of these difficulties in designing accurate and effective numerical schemes has
been introduced in [1]. This approach makes it possible to develop additive difference schemes
which hold the property of having fixed sign for non-negative solutions and difference analogs
of conservation laws as well.

In this paper we demonstrate how to apply our method to the mathematical modeling of
dynamics of two-component coupled waves in nonlinear viscous medium. Waves’ propagation
in quadratically nonlinear viscous non-dispersive medium is described by Burgers equations for
slowly varying profiles. In many cases one should consider a wave in air or liquid. Burgers and
Korteweg de Vries-Burgers equations are actively engaged in fluid mechanics. These equations
are known to posses exact solutions which can be found by rather sophisticated methods or quite
easily, for instance, with the help of tanh method [2]. In solid state and plasma physics as well as
in nonlinear optics and acoustics one usually deals with several waves of different polarization.
Since waves interact with each other through a quadratic nonlinearity, the models consisting of
coupled equations are dominant. A system of coupled Burgers equation is used in [3] to study
longitudinal density variations of fluid particles. Properties of coupled viscous Burgers equations
are considered also in [4]. The author of [5] used a classification of the symmetric integrable
coupled equations of Burgers type. In a previous paper [6], we investigated the dynamics of

∗
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two-component coupled waves in a nonlinear viscous medium. We found that the stationary
solutions corresponding to trajectories on a phase plane between singular points and specified
the existence domains for solutions of kink type. Furthermore, we revealed the shock wave profile
dependence on a type of singular point and demonstrated that properties of shock wave fronts
formed from initial harmonic signals are sufficiently well described by the derived stationary
solutions.

This paper is organized as follows. To begin with we give, in Sec. II, a brief description of a
general approach to the construction of conservative difference schemes for systems of nonlinear
evolutionary equations containing first derivatives in a divergent form. Then, in Sec. III, we
show how to apply our method to the system of quadratically nonlinear Burgers equations. In
Sec. IV we present results for a two-component dissipative solutions, shock waves, and short
video-pulses as well. Finally our conclusions are summarized in Sec. V.

II. BRIEF DESCRIPTION OF THE ADDITIVE DIFFERENCE METHOD FOR
PARABOLIC EQUATIONS

We consider the following p-Dimensional (p-D) parabolic equation

∂u

∂z
=

∂2u

∂x2
α

+
∂

∂xα

(

r(α)(x, z, u)u
)

+ f(x, u, z) (1)

with initial

u(x, 0) = u0(x) (2)

and boundary conditions

∂u

∂xα

+ r(α)u|xα=0,1 = 0 (3)

Here x = (x1, . . . , xp), 0 < xα < 1.
For clarity, let us confine ourselves to the 1-D case by assuming x = x1 and thus omitting

the lower index of x. Integrating (1) with respect to x and taking into account (3) we find the
following conservation law

d

dz

∫

x

u(x, z) dx =

∫

x

f(x, z, u) dx (4)

For real physical problems the right-hand side of (4) is, usually, equal to zero. Then this equality
takes the form of the conservation law

∫

x

u(x, z) dx =

∫

x

u0(x) dx , z ∈ (0, Z]

Moreover, if u0(x) ≥ 0 and f(x, z, u) ≥ 0 then the solution of (1)–(3) is non-negative.
To solve (1)–(3) numerically we proceed as follows. Let

U(x, z) =

∫ x

0
u(ζ, z) dζ . (5)

Then the problem (1)–(3) is equivalent to

∂U(x, z)

∂z
=

∂2U(x, z)

∂x2
+ r(x, z)

∂U(x, z)

∂x
+

∫ x

0
f(ζ, z) dζ (6)
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U |x=0 = 0 ,
∂U

∂z

∣

∣

∣

∣

x=1

=

∫ 1

0
f(ζ, z) dζ, u =

∂U

∂x
(7)

To approximate (6)–(7) and, hence, also (1)–(3) let us construct the grids

ωz = {z = zn = nτ, n = 0, . . . , N, τ = Z/N};
ωx = {x = xi = ih, i = 0, . . . , Nx, h = 1/Nx};

ω′
x = {x′ = x′

i = (i − 0.5)h, i = 1, . . . , Nx, h = 1/Nx}

and the grid functions for y and Y . These functions are, respectively, the analogs of u and U
on the grids ωz × ω′

x and ωz × ωx.
To calculate the values of y at zn-layer for n = 0, . . . , N −1 we apply the following procedure.

It starts with the initial values y0
i = u0(x

′
i) ≥ 0 and passes on to the next z-layer in three stages.

At first the values

Y n
i =

i
∑

k=1

yn
k h, Y n

0 = 0 (8)

are computed. Then the function Y n+1
i is obtained from the following difference scheme

(Y n+1
i − Y n

i )/τ = ΛY n+1
i + Fn+1

i , (9)

with Y n+1
0 = 0 and (Y n+1

Nx
− Y n

Nx
)/τ = Fn+1

Nx
(see [7] for details). Finally, at the third stage we

determine the grid analog of the solution to the problem (1)–(3) at the zn+1-layer by means of
discrete differentiation yn+1

i = Y n+1
x̄,i .

The grid operator Λ and the grid function Fn
i are defined as follows:

ΛYi = κiYx̄x,i + r+
i Yx,i + r−i Yx̄,i , (10)

Fn
i = F (xi, zn, yn

i ) =

i
∑

k=1

fn
k h , (11)

where

r±i =
ri ± |ri|

2
, ri =

r(xi, zn, yn
i ) + r(xi+1, zn, , yn

i+1)

2
, κi =

1

1 + 0.5|ri|h
.

The solution of the above non-linear difference scheme can be obtained iteratively,

s+1
Y

n+1

i −Y n
i

τ
= Λ

s+1
Y

n+1

i +
s

F
n+1

i ,
s+1
Y

n+1

0 = 0, (12)

s+1
Y

n+1

Nx
−Y n

Nx

τ
=

s

F
n+1

Nx
,

0
Y

n+1

i = Y n
i (13)

We recall here the following relevant theorems:

Theorem 1 (Iteration convergence, existence, and uniqueness:) [1]
Let |f(x, z, u)| < M(1 + |u|m), m is integer, M = const. Then the iteration process converges

to a unique solution of the numerical problem on the current layer at the rate of a geometric

progression.
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Sketch of the proof: We show that iterations are uniformly bounded above in the grid norm L2,

i.e. assuming ‖ g ‖2
L2

=‖ g ‖2=
N
∑

k=1

|gk|
2h. Then we obtain the inequality ‖

s+1
Y

n+1

−
s

Y
n+1

‖≤

Kτ ‖
s

Y
n+1

−
s−1
Y

n+1

‖, K = const. When Kτ < 1, i.e. τ is sufficiently small, this inequality

means that the transform of
s

Y
n+1

into
s+1
Y

n

is a contraction operator. Thus, the theorem
statement follows from the contraction principle.

Lemma 1 (Monotonicity) [1]
Provided that u0(x) ≥ 0 and f(x, z, u) ≥ 0, the solution of the difference scheme is non-negative:

yi
n ≥ 0, n = 0, . . . , NT .

Proof: By induction on n. The basis of induction is trivial. Assume yn
i ≥ 0. Then, from (8), the

function Y n
i is non-negative and nondecreasing in x direction. Using non-negativity of f(x, z, u)

and the scheme construction it is easy to show that Y n+1
i ≥ 0 (see [7] for details). Hence, in

view of Y n+1
0 = 0, we have Y n+1

1 ≥ Y n+1
0 . Thus, to prove that yn+1

i ≥ 0 it suffices to show that
Y n+1

i has no local maxima. Assume for contradiction that xirmmax
is a local maximum point for

Y n+1
i . Then three possible alternative cases of Y n+1

i behavior should be considered in turn.

(i) Y n+1
imax

≤ Y n
imax

. According to the boundary condition Y n+1
Nx

≥ Y n
Nx

the function Y n+1
i has

ximin
as its local minimum point, where imin > imax. Since, by (9), we get Y n+1

imin
≥ Y n

imin
,

contrary to the assumption for the point ximax
.

(ii) Y n+1
imax

≥ Y n
imax

and Y n+1
i decreases to for i > imax. Comparing the right boundary condition

with (9) at the point ximax
, we obtain Y n+1

Nx
≥ Y n+1

imax
. This inequality contradicts the

assumption of the decrease of Y n+1
i .

(iii) Y n+1
imax

≥ Y n
imax

and Y n+1
i has a local minimum for i > imax. Using (9), monotonicity of Y n

i ,

Fn+1
i , and taking into account ΛY n+1

imin
≥ 0, ΛY n+1

imax
≤ 0 we have the obvious contradiction

Y n+1
imin

≥ Y n+1
imax

.

Thus, Y n+1
i is nondecreasing function and, hence, yn+1

i = Y n+1
x̄,i ≥ 0.

Theorem 2 (Conservativeness)
Difference analog of the conservative law holds:

Nx
∑

k=1

yn+1
k h =

Nx
∑

k=1

yn
kh + τ

Nx
∑

k=1

fn+1
k h .

This equality follows from the right boundary condition.

Theorem 3 (Convergence) [1]
The solution of the difference problem converges to the continuous solution in the grid norm L2

at the rate O(τ + h2).

Proof. We introduce the discrepancies zn
i = yn

i − un
i and Zn

i = Y n
i − U

n

i , where un
i is the

projection of the solution to (1)–(3) on the grid ωz × ω′
x, and U

n

i =
i

∑

k=1

un
kh. One can easily
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derive from (8)–(11) the system of equations for Zn
i and zn

i . By using Conservativeness Theorem
we estimate zn

i in the grid norm L2

‖ zn ‖≤ M1(τ + h2), M1 = const.

This proves the theorem statement.

The method introduced above can be easily extended to the case of p-D equations [1]. Instead
of the problem (1)–(3) we solve the sequence of the problems

1

p

∂ũ

∂z
=

∂2ũ

∂x2
α

+
∂

∂xα

(

r(α)(x, z, ũ)ũ
)

+
1

p
f(x, ũ, z), α = 1, . . . , p , z ∈ (zn+α−1, zn+α].

For each subproblem we introduce the integral function U (α)(x, z) and construct a scheme of
the form (8)–(11).

III. DIFFERENCE SCHEME FOR THE SYSTEM OF TWO COUPLED BURGERS
EQUATIONS

We study a dynamics of two-component coupled waves in nonlinear viscous medium on the
base of two Burgers equations.

∂u(x, z)

∂z
=

∂(αu2(x, z) + (β/2)v2(x, z))

∂x
+ Γ1

∂2u(x, z)

∂x2
, (14)

∂v(x, z)

∂z
+ µ

∂v(x, z)

∂x
= β

∂(u(x, z)v(x, z))

∂x
+ Γ2

∂2u(x, z)

∂x2
. (15)

As can be seen from this system, one of the wave components has a quadratic nonlinearity
whereas the other possesses a nonlinearity of parametric type. The meaning of variables and
parameters is as follows: z is the propagation coordinate, x = ω(t − z/ci) stands for the time
in a moving coordinate system, c1 is the velocity of the component u, µ = 1/c2 − 1/c1 is the
mismatch of reverse velocity values, α and β are nonlinear coefficients, and Γ1,2 characterize the
viscosity. The following initial signals are launched in the input of nonlinear medium

u(x, z = 0) = U0(x), v(x, z = 0) = V0(x) (16)

while the boundary conditions are given by

u(x = 0, z) = u(x = Lx, z) = v(x = 0, z) = v(x = Lx, z) = 0 (17)

To apply the scheme we introduce the integral functions

U(x, z) =

∫ x

0
u(ζ, z) dζ , V (x, z) =

∫ x

0
v(ζ, z) dζ . (18)

Then the system (14)–(15) is transformed to

∂U(x, z)

∂z
= αu

∂U(x, z)

∂x
+ (β/2)v

∂V (x, z)

∂x
+ Γ1

∂2U(x, z)

∂x2
, (19)

∂V (x, z)

∂z
+ µ

∂V (x, z)

∂x
= βu

∂(V (x, z))

∂x
+ Γ2

∂2V (x, z)

∂x2
, (20)

the new boundary conditions being

U(x, z)|x=0 = V (x, z)|x=0 = 0 ,
∂U(x, z)

∂z

∣

∣

∣

∣

x=0

=
∂V (x, z)

∂z

∣

∣

∣

∣

x=0

= 0 .
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To solve this system numerically, we adapt the difference scheme described in the previous
section:

Un
i =

n
∑

k=1

un
kh , V n

i =

n
∑

k=1

vn
k h , (21)

Un+1
i − Un

i

τ
= ΛuUn+1

i ,
V n+1

i − V n
i

τ
= ΛvV

n+1
i , (22)

with

Un+1
0 = 0, V n+1

0 = 0,
Un+1

Nx
− Un

Nx

τ
= 0 , and

V n+1
Nx

− V n
Nx

τ
= 0 ,

un+1
i =

Un+1
i − Un+1

i−1

h
, vn+1

i =
V n+1

i − V n+1
i−1

h
(23)

The grid operators in (22) are defined by

ΛuUn+1
i = κui

Γ1U
n+1
x̄x,i + α

[

(un
i )+Un+1

x,i + (un
i )−Un+1

x̄,i

]

+
β

2

[

(vn
i )+V n+1

x,i + (vn
i )−V n+1

x̄,i

]

(24)

ΛvV
n+1
i = κvi

Γ2V
n+1
x̄x,i + (β(un

i )+ − µ)V n+1
x,i + (β(un

i )− − µ)V n+1
x̄,i (25)

IV. MODELING TWO-COMPONENT DISSIPATIVE SOLUTIONS, SHOCK WAVES,
AND PULSE DIFFERENTIATION

Let us first compare our results based on the difference scheme (21)–(23) with the analytical
estimations presented in [6]. In order to provide an accurate comparison, we have chosen Γ1 =
Γ2 = Γ, µ = 0, and the initial harmonic signals

u(x, 0) = −u0 sin(2πx), v(x, 0) = −v0 sin(2πx) . (26)

It is known that propagation of the signals of the form (26) in a nonlinear viscous medium
results in two identical shock waves which become smooth while they propagate under dissipative
effects. The shock wave front has the maximum slope at the moment of the dynamic balance
between dissipative and nonlinear effects. This moment corresponds to the stationary profiles
which are the solutions of the stationary Eqs. (14)– (15) (see [6]). Fig. 1 illustrates the results
of our computations (a) and the analytical prediction (b). One can see that they are in a good
agreement.

We also studied a spectrum of the signal and observed excitation of high harmonics which rise
while the steady-state profile is being generated by the shock front. This means that nonlinear
effects dominate by dissipative ones. After the process of shock formation is completed, the
dissipative spreading becomes more essential than non-linear influence, the high harmonics decay,
and finally the signal takes the initial sinusoidal shape. To model formation and interaction of
two shock fronts in non-dispersive medium we use the system (14)– (15) with different viscous
coefficients and µ = 0. This corresponds to the case when the energy exchange is taken into
account, and losses of each component are strongly different. The input signals are still the
same as they appear in (26). To show an accuracy of our method we computed the values of the
maximum slope of shock wave fronts defined by the derivatives ∂u/∂x and ∂v/∂x. In Table I the
numerical results are compared with the analytical estimations of the shock wave slopes [8]. Note
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FIG. 1: a) Computed evolution of the signal of the form (26). b) Stationary analytical solution of the
kink form. Both components u and v have the same profile.

that in the second column of the Table I the initial values of amplitudes are shown (see (26)), and
the third column displays the computed equilibrium values, i.e. the asymptotes of amplitudes
while x → ∞. We should emphasize that the results of Table I demonstrate the accuracy of our
modeling for various viscous coefficients and initial amplitudes. Shapes of shock profiles formed
from the incident harmonic signals (26) are well described by the stationary solutions given in
[8]. Let us consider the dynamics of ultra-short pulses in quadratically nonlinear medium. In

TABLE I: Results of our calculations for various viscous coefficients.

Slope of component U Slope of component V
Viscous Initial Equilibrium Numerical Analytic Numerical Analytic

coefficients amplitudes amplitudes experiments estimation experiments estimation
Γ1 = 0.1 u0 = 10 ueq = 8.8

v0 = 1 veq = 1.4 397 387 1149 1232
Γ2 = 0.01 u0 = 1 ueq = 2.0

v0 = 10 veq = 8.1 376 400 1602 1600
Γ1 = 0.01 u0 = 10 ueq = 9.8

v0 = 1 veq = 1.1 4864 4850 121 112
Γ2 = 0.1 u0 = 1 ueq = 6.7

v0 = 10 veq = 6.1 2420 2200 310 400

contrast to both previous examples that correspond to acoustic waves, we now deal with light
waves. When studying the case of an ultra-short pulse, i.e. the pulse with length less than ten
periods, we should utilize the approach of slowly varying profile. This approach leads to the
system of equations (14)–(15) with Γ1 = Γ2 = 0 and µ 6= 0.

Let us discuss now the results of our numerical experiments on the analysis of effects of short
video-pulse differentiation and frequency duplication of few-cycle wave-packet. Suppose that
v ≫ u. In this case the general solution of (14)–(15) can be written as follows

u =
β

2µ
[v2

0(x) − v2
0(x − µz)]. (27)

where we let

v = v0(x − µz) .

If the distance is sufficiently small, i. e. z ≪ T0/µ, then the effect of signal duplication is
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FIG. 2: Gaussian video-pulse differentiation. Left-hand side: the moment of duplication: z ≪ T0/µ.
Right-hand side: duplicated pulse propagation: z ≫ T0/µ.]

possible, i.e

u =
β

2

∂v2
0(x)

∂x

Thus, when the initial pulse has the Gaussian form

v0 = V0 exp(−x2/T 2
0 )

the generated profile is given by the simplified formula

u = βV 2
0 z(x/T 2

0 ) exp(−x2/T 2
0 ) .

For longer distances, z ≫ T0/µ, a part of the generated pulse travels at the velocity of v
component while another part has the velocity of u component. This process is described by
the equation (27) which, for Gaussian pulses, gives

u =
β

2µ
v2
0

{

exp(−x2/T 2
0 ) − exp[−(x − µz)2/T 2

0 ]
}

Fig. 2 demonstrates a bipolar pulse formation and propagation. The graphs illustrate our
computer modeling based on the difference scheme (21)–(23). Note that the numerical results
reflect exactly the scenario outlined above although dissipation terms are negligible in this
example.

Using the initial few-cycle wave-packet,

v = V0 exp(−x10/T 10
0 ) sin(ωx)
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we observed an effect of doubled frequency harmonic generation. If the propagation length
is small then dispersion is negligible and the harmonic amplitude increases in proportion to
the passed distance. Next, the coherence of frequency doubling is broken due to the velocity
mismatch, and spatial pulsations of the second harmonic amplitude manifest themselves. At
the same time a differentiation of the harmonic profile is observed. In this example analytical
prediction and computer modeling are also in good agreement.

V. CONCLUSION

We applied the conservative monotone difference scheme to the nonlinear system of Burg-
ers equations. It is shown that the resources of our numerical approach provide an accurate
mathematical modeling of complicated processes described by the quadratically nonlinear cou-
pled Burgers equations. We revealed new effects of a short video-pulse differentiation and a
frequency duplication of few-cycle wave-packet. Analytical results of the process are in good
agreement with the results of our numerical calculations.
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Closing Remarks

S. Karataglidis∗

Department of Physics and Electronics, P.O. Box 94,

Rhodes University, Grahamstown, 6140, South Africa

This Symposium is not of the same format as most other conferences. First, it is on a small
scale with limited participants. Second, the interests of the participants are quite varied from a
number of disparate fields, as was noted by Rakityansky. It is then a problem for this humble
scribe to try and find some common thread among the varied topics that were discussed during
the course of this meeting.

The first general topic was that of nuclear structure, which included a number of topics:

Few-Body Models: These largely concentrated on the use of Faddeev-type and AGS calcula-
tions in 3- and 4-body systems (Sofianos) or cluster models (Malykh, Ershov).

Many-body models: Various models were described: the generalisation of Faddeev by the
IDEA (Adam); the AMD (Rampho); the Shell model (Karataglidis); Skyrme-Hartree-
Fock and (Q)RPA (Karataglidis, Voronov).

Exotic nuclei: Few- (Ershov) and many-body (Karataglidis) descriptions of 6He particularly;
the role of the continuum in models (Ershov).

Hypernuclei: Calculations of ΛN and ΛNN effective interactions (Adam, Rakityansky).

Experiments: Search for unbound neutron-rich isotopes of H (Ter-Akopian).

As Karataglidis pointed out, the common thread through all this is the idea of correlations in
nuclear systems where the natural degrees of freedom are the nucleons. The various models treat
correlations differently, from the use a priori of clusters to the calculation and use of effective
interactions in many-body theories. The search for the unbound isotopes of H is predicated on
the interest in finding correlations in pure neutron matter.

The second general topic is that of nuclear reactions. The talks covered several classes of
reactions, which were:

Photoabsorption: Sum rules in photoabsorption (Gerasimov).

Astrophysics: Low-energy capture reactions (Belyaev).

Applied physics: Use of neutron capture in detection of suspect materials (Sapozhnikov).

Unbound systems: Reactions to find the unboound resonances of neutron-rich isotopes of H
(Ter-Akopian);

Scattering: Elastic and inelastic scattering of exotic nuclei (Karataglidis, Ershov).

Fission: Fission in the actinide region (Kamanin);

Resonances: Definition and identification in reactions (Motovilov).
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Finding a common thread through all these disparate topics is not so easy: some relate back to
structure and the use of reactions therein. Others are applications of nuclear reactions to other
phenomena. There is scope for commonality among these.

The third topic dealt with the application of nuclear theory tools in other fields of physics.
Lekala discussed the use of Faddeev approaches to atomic systems, while Botha discussed the
use of nuclear techniques in Solid State physics.

Particle Physics was also represented: Saphoznikov discussed the search for strangeness in
the nucleon, while baryon structure and photoexcitations were discussed by Matamba.

Finally, more mathematical and numerical in scope: Gerdt discussed quantum computing,
Braun discussed computing tools for use in nuclear physics, while Numerical techniques were
discussed by Zakharova.

Quite a variety of topics covered by our small gathering, certainly. What may come of this
diversity of ideas would be innovative applications of research in other areas, as was discussed by
Botha and Lekala. This has a positive feedback inasmuch as we may draw on ideas from other
fields in our own work. The hope is that this begins a process for a longlasting and productive
collaboration between the two communities.


