ОТЗЫВ
на автореферат диссертации Капустья Дмитрия Павловича
«Молекулярно-динамическое моделирование реакций в гидратированных
системах», представлённой в Диссертационный совет МГУ.014.3 Московского
государственного университета имени М.В.Ломоносова на соискание ученой
степени кандидата физико-математических наук
по специальности 1.4.4 – «Физическая химия»

Моделирование молекул и реакций в конденсированных средах, в первую
очередь, растворах, является одним из главных вызовов, стоящих перед областью
квантовой химии. Этот вызов обусловлен, с одной стороны, тем, что большинство
реакций протекает в растворах и экспериментальное изучение подавляющего
большинства характеристик и свойств молекул также проводится в них. При этом
свойства растворенного вещества разительно отличаются от свойств изолированных
молекул. С другой стороны, моделирование процессов в растворе или твердом теле
требует учета огромного количества молекул, что делает применение классического
квантовохимического моделирования настолько сложных систем практически
невозможным. В связи с этим в области моделирования разработано множество
подходов к учету эффектов сольватации, континуальные или основанные на
статистической физике, однако игнорирование явных взаимодействий с молекулами
растворителя приводит к относительно низкой точности таких расчетов. Подходы,
сопротягющие квантовую и молекулярную механику (КМ/ММ), являются особенно
перспективными в этом смысле, поскольку позволяют сопрячь строгость
квантовохимического описания с возможностью моделирования крупных систем за
счет использования молекулярной механики.

В работе диссертанта проведено детальное исследование применимости
КМ/ММ моделирования к описанию явлений в водных растворах. Научная
значимость подхода обусловлена точным учетом всех основных взаимодействий с
растворителем за счет включения растворителя в квантовую систему для учета
специфических взаимодействий и явного моделирования толщи растворителя с
помощью молекулярной механики. Расчет параметров взаимодействий
производится с использованием строгих методов молекулярной динамики. Этот
подход применялся автором для решения достаточно широкого круга разнотипных
задач, во всех из которых показана высокая точность подхода, достигающая
химической точности. Так, предложенный подход применялся автором для оценки
свободной энергии связывания металлов с органическими лигандами, использующимися для разделения радиоактивных изотопов, для изучения катализитических реакций на металлоферментах с учетом растворителя, для изучения процессов таутомерии и электронных спектров таутомеров в растворах. Успешное решение поставленных задач показывает применимость подхода к широкому кругу явлений и открывает перспективы его использования для решения различных практических задач, что обусловливает практическую значимость полученных результатов.

Достоверность полученных автором результатов подтверждается высоким качеством проведенных исследований, хорошим соответствием полученных с помощью КМ/ММ результатов имеющимся экспериментальным данным. Диссертация хорошо апробирована, по материалам диссертационного исследования опубликовано 4 статьи в журналах, индексируемых Scopus и WoS. Автор принял участие в ряде конференций международного и всероссийского уровня.

Автореферат прекрасно написан, практически не вызвал замечаний по проведенной работе, однако оставил ряд вопросов неотмеченными.

1. Проводилось ли на каких-нибудь примерах сопоставление данных КМ/ММ моделирования с результатами, полученными другими способами учета растворителя, скажем, популярным методом учета растворителя с помощью поляризованного континуума? Может ли быть такое, что использование последнего, пусть и более грубого, но вычислительно существенно менее затратного подхода позволит получить также неплохое описание изученных систем и показать хорошее соответствие экспериментальным данным?

2. В автореферате очень бегло описывается влияние числа сольватных оболочек на качество результатов. Например, на странице 11 говорится о том, что нужно использовать сферу из молекул, покрывающей полностью сольватируемую систему, а в выводах говорится о том, что нужно учитывать две сольватные оболочки, хотя в автореферате это ничем не обосновывается, возможно, есть ответы в тексте самой диссертации. Создается впечатление, что автор использует термин сольватная оболочка в разных контекстах и поэтому возникает вопрос, как автор определяет сольватную оболочку (теоретически и практически)?
3. Какие видит автор ограничения предложенного подхода?

В то же время указанные замечания не умаляют научную значимость и очевидные достоинства прекрасно выполненного диссертационного исследования. По актуальности, новизне, уровню выполнения, объему, научной и практической значимости полученных результатов рассматриваемая диссертационная работа полностью отвечает критериям, определенным пп. 2.1-2.5 «Положения о присуждении ученых степеней в Московском государственном университете имени М.В. Ломоносова», а ее автор достоин присуждения ученой степени кандидата наук по специальности 1.4.4 (02.00.04) – Физическая химия.

Маджидов Тимур Исмаилович, кандидат химических наук (специальность 02.00.03 - Органическая химия), доцент, ФГАОУ ВО «Казанский (Приволжский) федеральный университет», ведущий научный сотрудник НИЛ «Интеллектуальная химическая робототехника» Химического института им. А.М. Бутлерова

Почтовый адрес: 420008, г. Казань, ул. Кремлевская, 18
Телефон: (843) 233-73-71
Адрес электронной почты: timur.madzhidov@kpfu.ru, tmadzhidov@gmail.com

15.06.2022 г.

Согласен на размещение своих персональных данных в документах Диссертационного совета МГУ.014.3 (МГУ.02.04) на базе Московского государственного университета имени М.В. Ломоносова и их дальнейшую обработку.

[Подпись]
[Подпись]