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INTRODUCTION

The following problem arises in system stabilization by a feedback controller of given structure.
Suppose that the characteristic polynomial of the closed system depends on parameters. Is it
possible to choose parameter values ensuring that the polynomial is stable? The parameter range
may be given in advance [1].

The papers [2, 3] deal with special cases of this problem in which the parameters are the n+ 1
or n (the higher coefficient is fixed to be equal to unity) coefficients of the characteristic polynomial
(of degree n) of the closed system, which can vary in some domain of the real space. The main
results of these papers are estimates of the distance from a given unstable polynomial to the nearest
stable polynomial in some metric on the parameter space (the instability radius).

The present paper solves the more general problem of finding the instability radii of polynomials
in the following setting. An arbitrary part of the coefficients is fixed, and the remaining coefficients
can vary in some domain of the real space of the corresponding dimension. We describe a set of
polynomials for which our estimate of the instability radius coincides with the exact value and
obtain an upper bound of the instability radii for some classes of polynomials.

ROBUST INSTABILITY OF POLYNOMIALS

We take a subset {i1, . . . , im} ⊂ {0, . . . , n}, i1 < · · · < im. Let

{j1, . . . , jn−m+1} = {0, . . . , n}\ {i1, . . . , im} , j1 < · · · < jn−m+1.

We also take m arbitrary positive numbers q1, . . . , qm ∈ R+. For the set (i1, . . . , im; q1, . . . , qm),
consider the set Pn (i1, . . . , im; q1, . . . , qm) of polynomials of the form

p(s) = a0 + a1s+ · · · + ans
n,

aik = qk, aj ∈ R, j ∈ {j1, . . . , jn−m+1} , an 6= 0,

identified with vectors b = (b1, . . . , bn−m+1) (b1 = aj1 , . . . , bn−m+1 = ajn−m+1) of the space Rn−m+1

equipped with the norm ‖b‖ = max {|bi|}.
To indicate the relationship of the polynomial p(s) with a point of the space Rn−m+1, we denote

p(s) by p(s, b).
A polynomial p(s, b) ∈ Pn is said to be stable if all of its roots in the complex plane lie strictly

in the left half-plane and is said to be unstable otherwise.
Consider the set

Pn (i1, . . . , im; q1, . . . , qm;B) = {p(s, b) = a0 + a1s+ · · ·+ ans
n, b ∈ B} (1)

of polynomials in Pn (i1, . . . , im; q1, . . . , qm) such that the corresponding subset of coefficients varies
in some admissible set B ⊂ Rn−m+1. We say that this family is robustly unstable if the polynomials
p(s, b) are unstable for all b ∈ B.
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Consider the set

I(B) =
∞⋃
ω=0

I(ω;B)

of values of the polynomials in the family (1), where I(ω;B) = {p(jω, b), b ∈ B}. The following
assertion establishes sufficient conditions for the robust instability of the family (1).

Theorem 1. Suppose that the set B is connected and, for some b0 ∈ B, the polynomial p (s, b0)
is unstable and has no pure imaginary roots ; moreover, suppose that an 6= 0 for all b ∈ B. Then
the condition 0 6∈ I(B) is sufficient for the robust instability of the family (1).

The proof is similar to that of Theorem 1 in [2].

ROBUST INSTABILITY OF AN INTERVAL FAMILY OF POLYNOMIALS

Consider the following interval family of polynomials:

Pn

(
i1, . . . , im; q1, . . . , qm;B

(
b0
))

=
{
p(s, b) = a0 + a1s+ · · ·+ ans

n, ajk = bk, k = 1, . . . , n−m+ 1,

ail = ql, l = 1, . . . ,m,
∣∣ajk − b0

k

∣∣ ≤ γ},
b0 =

(
b0

1, b
0
2, . . . , b

0
n−m+1

)
, b = (b1, b2, . . . , bn−m+1) .

(2)

Assumption 1. {i1, . . . , im} ⊂ {2, . . . , n} (i.e., a0 and a1 are not fixed).

Assumption 2. b0 ∈ Rn−m+1
+ (i.e., b0

i > 0 for all i).

For the polynomial p (s, b0), we consider the Tsypkin–Polyak hodograph [1]

z
(
ω, b0

)
= x0(ω) + jy0(ω), 0 ≤ ω ≤ ∞,

where

x0(ω) = g0(ω)/r(ω), y0(ω) = h0(ω)/q(ω),
g0(ω) = a0

0 − a0
2ω

2 + a0
4ω

4 − · · · , h0(ω) = a0
1 − a0

3ω
2 + a0

5ω
4 − · · · ,

a0
0 = b0

1, a0
1 = b0

2, a0
jk

= b0
k (k = 3, . . . , n−m+ 1), a0

il
= ql,

r(ω) = α0 + α2ω
2 + α4ω

4 + · · · , q(ω) = α1 + α3ω
2 + α5ω

4 + · · · ,

αi =
{

1 for i ∈ {j1, . . . , jn−m+1}
0 for i ∈ {i1, . . . , im},

deg r(ω) = max
(

2j1

{
j1 + 1

2

}
, . . . , 2jn−m+1

{
jn−m+1 + 1

2

})
,

deg q(ω) = max
(

2j1

{
j1
2

}
, . . . , 2jn−m+1

{
jn−m+1

2

})
− 1,

(3)

and {·} is the fractional part of a number. In this notation, p (jω, b0) = g0(ω) + jωh0(ω).

Theorem 2. Let Assumptions 1 and 2 be valid. Then the following conditions are sufficient for
the robust instability of the family (2):

(1◦) the polynomial p (s, b0) has no pure imaginary roots ;
(2◦) b0

n−m+1 > γ if jn−m+1 = n;
(3◦) b0

1 > γ;
(4◦) the hodograph z (ω, b0) does not meet the square with vertices (±γ,±γ) as ω varies from 0

to ∞.
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Proof. Note that if we represent the value of an arbitrary polynomial in the family (2) at the
point jω in the form

p(jω, b) = g(ω) + jωh(ω), g(ω) = a0 − a2ω
2 + a4ω

4 − · · · ,
h(ω) = a1 − a3ω

2 + a5ω
4 − · · · ,

then the inequalities
g(ω) ≤ g(ω) ≤ ḡ(ω), h(ω) ≤ h(ω) ≤ h̄(ω)

are satisfied for ω ≥ 0, where

g(ω) =
(
a0

0 − α0γ
)
−
(
a0

2 + α2γ
)
ω2 +

(
a0

4 − α4γ
)
ω4 − · · · ,

ḡ(ω) =
(
a0

0 + α0γ
)
−
(
a0

2 − α2γ
)
ω2 +

(
a0

4 + α4γ
)
ω4 − · · · ,

h(ω) =
(
a0

1 − α1γ
)
−
(
a0

3 + α3γ
)
ω2 +

(
a0

5 − α5γ
)
ω4 − · · · ,

h̄(ω) =
(
a0

1 + α1γ
)
−
(
a0

3 − α3γ
)
ω2 +

(
a0

5 + α5γ
)
ω4 − · · ·

Therefore, for each ω, the polynomial p(jω, b) can vary in the rectangle with vertices

z1 = g(ω) + jωh(ω), z2 = g(ω) + jωh̄(ω),

z3 = ḡ(ω) + jωh̄(ω), z4 = ḡ(ω) + jωh(ω).

Therefore, the range of the family (2) for each ω is the rectangle

I
(
ω;B

(
b0
))

= {z = x+ jy : |x− g0(ω)| ≤ γr(ω), |y − ωh0(ω)| ≤ γωq(ω)} .

Further, note that the fact that the hodograph z (ω, b0) does not meet with the square with vertices
(±γ,±γ) is equivalent to the system of inequalities

|x0(ω)| > γ, |y0(ω)| > γ,

|x0(ω)| > γ, |y0(ω)| ≤ γ,
|x0(ω)| ≤ γ, |y0(ω)| > γ for all ω ≥ 0,

(4)

since g0(0) = b0
1 > γ. Furthermore, the condition 0 ∈ I (B (b0)) is equivalent to the existence of

an ω∗ > 0 such that 0 ∈ I (ω∗;B (b0)). [One has 0 6∈ I (0;B (b0)), since otherwise the inequality
|g0(0)| < γ would be valid, while g0(0) = b0

1 > γ by assumption.] But then ω∗ satisfies the condition

|g0 (ω∗)| ≤ γr (ω∗) , |h0 (ω∗)| ≤ γq (ω∗) ,

or
|x0 (ω∗)| ≤ γ, |y0 (ω∗)| ≤ γ.

Consequently, condition (4) is equivalent to 0 6∈ I (B (b0)). But then the family (2) is robustly
unstable by Theorem 1. The proof of the theorem is complete.

A LOWER BOUND FOR THE INSTABILITY RADIUS

For a given set
(i1, . . . , im; q1, . . . , qm) ,

by S and U we denote the set of points in Rn−m+1 corresponding to stable and unstable polynomials
of the set Pn (i1, . . . , im; q1, . . . , qm), respectively. The instability radius of an unstable polynomial
p(s, b) is defined as RU (b) = infc∈S ‖b− c‖.

Theorem 2 not only establishes sufficient conditions for the robust instability of the family (2)
but also permits one to estimate the instability radius RU (b0) of the polynomial p (s, b0) with
positive coefficients.
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Let Assumption 1 be valid. For the polynomial p (s, b0), we consider the function

ψ(ω) = max
{
|x0(ω)| , |y0(ω)|

}
defined for ω ≥ 0. [The functions x0(ω) and y0(ω) are given by (3).] By ω1, . . . , ωk we denote all
positive roots of the equations

g0(ω)q(ω)− h0(ω)r(ω) = 0, g0(ω)q(ω) + h0(ω)r(ω) = 0, (5a)
g′0(ω)r(ω)− g0(ω)r′(ω) = 0, h′0(ω)q(ω)− h0(ω)q′(ω) = 0. (5b)

We set
Φ
(
b0
)

= min
1≤i≤k

ψ (ωi) . (6)

Theorem 3. Let the polynomial

p
(
s, b0

)
= a0

0 + a0
1s+ · · · + a0

ns
n (7)

with positive coefficients, which belongs to the set Pn (i1, . . . , im; q1, . . . , qm) under Assumption 1, be
unstable and have no pure imaginary roots. Then the estimate

RU
(
b0
)
≥ γ

(
b0
)

(8)

is valid, where
γ
(
b0
)

= min
{
a0

0, a
0
0 + δn,jn−m+1

(
a0
n − a0

0

)
,Φ
(
b0
)}

(9)

and δij is the Kronecker delta.

Proof. Theorem 2 provides the following lower bound for the instability radius of the polyno-
mial p (s, b0) :

RU
(
b0
)
≥ min

{
γ∗, a0

0 + δn,jn−m+1

(
a0
n − a0

0

)
, a0

0

}
, (10)

where γ∗ is the size (half-length of the side) of the maximum square {|x| ≤ γ∗, |y| ≤ γ∗} inscribed
in the Tsypkin–Polyak hodograph z (ω, b0) for the polynomial p (s, b0).

On the complex plane, we introduce a metric as follows:

% (z1, z2) = max {|Re z1 − Re z2| , | Im z1 − Im z2|} .

Then γ∗ can be found as the distance from the origin to the nearest point z(ω) of the hodograph;
i.e., γ∗ = min0≤ω≤∞ %(0, z(ω)).

Since z(ω) = x(ω) + iy(ω), it follows that finding γ∗ can be reduced to the minimization of
the function ψ(ω) = max {|x0(ω)| , |y0(ω)|} on the interval [0,∞). Note that the function ψ(ω) is
positive and differentiable everywhere possibly except for the points such that |x0(ω)| = |y0(ω)|.
Therefore,

min
0≤ω<∞

ψ(ω) = min {ψ(0), ψ(∞), ψ (ω1) , . . . , ψ (ωk)} ,

where ψ(∞) = limω→∞ ψ(ω) and ω1, . . . , ωk are roots of Eq. (5). One of the following two conditions
is satisfied at the points ωi :

(1◦) x0(ω) = y0(ω) or x0(ω) = −y0(ω) [i.e., |x0(ω)| = |y0(ω)|];
(2◦) x′0(ω) = 0 or y′0(ω) = 0.
The first case corresponds to Eq. (5a) and the second case, to Eq. (5b).
Note that

ψ(∞) = lim
ω→∞

ψ(ω) =∞ if n− 1, n ∈ {i1, . . . , im} ;

otherwise, ψ(∞) = max
{
a0
n, a

0
n−1

}
. Now, by taking into account the relation ψ(0) = max {a0

0, a
0
1}

and formula (6), we obtain the estimate (8), which completes the proof.
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Now suppose that Assumption 1 is not satisfied for the set Pn (i1, . . . , im; q1, . . . , qm). Then the
following cases are possible:

(1◦) i1 = 0, and the set {i1, . . . , im} does not contain the entire set of odd or even indices;
(2◦) i1 = 1, and the set {i1, . . . , im} does not contain the entire set of odd indices;
(3◦) the set {i1, . . . , im} contains the set of all even indices;
(4◦) i1 = 0, and the set {i1, . . . , im} contains the set of all odd indices;
(5◦) i1 = 1, and the set {i1, . . . , im} contains the set of all odd indices.

Theorem 4. Let a polynomial (7) with positive coefficients belong to the set

Pn (i1, . . . , im; q1, . . . , qm) ,

be unstable, and have no pure imaginary roots. Furthermore, suppose that the set {i1, . . . , im}
satisfies one of conditions (1◦)–(5◦). Then the estimate (8) is valid, where

γ
(
b0
)

= min
{

Φ
(
b0
)

+ δn,jn−m+1

(
a0
n − Φ

(
b0
))
,Φ
(
b0
)}

in case (1◦); γ (b0) has the form (9) in case (2◦);

γ
(
b0
)

= min
{∣∣∣∣h0 (ω1)

q (ω1)

∣∣∣∣ , . . . , ∣∣∣∣h0 (ωl)
q (ωl)

∣∣∣∣ , ∣∣∣∣h0 (ω1)
q (ω1)

∣∣∣∣+ δn,jn−m+1

(
a0
n −

∣∣∣∣h0 (ω1)
q (ω1)

∣∣∣∣)} , (11)

where ω1, . . . , ωl are the positive real roots of the polynomial g0(ω), and if the polynomial g0(ω) has
no real roots, then

γ
(
b0
)

=
{
∞ for n ∈ {i1, . . . , im}
a0
n for n 6∈ {i1, . . . , im}

(12)

in case (3◦);

γ
(
b0
)

= min
{∣∣∣∣g0 (ω1)

r (ω1)

∣∣∣∣ , . . . , ∣∣∣∣g0 (ωt)
r (ωt)

∣∣∣∣ , ∣∣∣∣g0 (ω1)
r (ω1)

∣∣∣∣+ δn,jn−m+1

(
a0
n −

∣∣∣∣g0 (ω1)
r (ω1)

∣∣∣∣)} ,
where ω1, . . . , ωt are the positive real roots of the polynomial h0(ω), and if the polynomial h0(ω) has
no real roots, then γ (b0) is given by (12) in case (4◦);

γ
(
b0
)

= min
{∣∣∣∣g0 (ω1)

r (ω1)

∣∣∣∣ , . . . , ∣∣∣∣g0 (ωv)
r (ωv)

∣∣∣∣ , ∣∣∣∣g0 (ω1)
r (ω1)

∣∣∣∣+ δn,jn−m+1

(
a0
n −

∣∣∣∣g0 (ω1)
r (ω1)

∣∣∣∣) , a0
0

}
,

where ω1, . . . , ωv are the positive roots of the polynomial h0(ω) in case (5◦).

Proof. We perform the proof for each of the above-mentioned cases (1◦)–(5◦).
In case (1◦), the robust instability of the interval family (2) is provided by items (1◦), (2◦),

and (4◦) of Theorem 2, since the coefficient a0
0 is fixed. It is only necessary to verify the condition

0 6∈ I (0;B (b0)). Indeed,

I
(
0;B

(
b0
))

= {z = x+ jy : |x− g0(0)| ≤ 0, |y| ≤ 0} .

In this case, 0 ∈ I (0;B (b0)) if and only if g0(0) = 0; but g0(0) = a0
0 > 0. Therefore, 0 6∈ I (0;B (b0)).

By taking into account the proof of Theorem 3 and the fact that, in this case, the hodograph z (ω, b0)
is defined for ω > 0, we have the desired assertion.

In case (2◦), the robust instability of the interval family (2) is provided by assumptions (1◦)–(4◦)
of Theorem 2. Just as in case (1◦) it is necessary only to verify the condition 0 6∈ I (0;B (b0)). In-
deed, I (0;B (b0)) = {z = x+ jy : |x− g0(0)| ≤ γ, |y| ≤ 0}. In this case, we have 0 ∈ I (0;B (b0))
if and only if |g0(0)| ≤ γ; but g0(0) = a0

0 = b0
1 > γ. Therefore, 0 6∈ I (0;B (b0)), and consequently,

just as in case (1◦), we have the desired assertion.
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In case (3◦), the set I (B (b0)) for the interval family (2) with ω > 0 is a segment:

I
(
ω;B

(
b0
))

= {z = x+ jy : |x− g0(ω)| ≤ 0, |y − ωh0(ω)| ≤ γωq(ω)} .

If ω = 0, then the set I (0;B (b0)) is a singleton. Then the condition 0 ∈ I (ω;B (b0)) with ω > 0
is equivalent to the system

|g0(ω)| = 0, |h0(ω)/q(ω)| ≤ γ. (13)

The inclusion 0 ∈ I (0;B (b0)) is valid if and only if g0(0) = 0; but g0(0) = a0
0 > 0. Consequently,

0 6∈ I (0;B (b0)). Therefore, if γ < γ (b0) is given by (11), where ω1, . . . , ωl are the positive real roots
of the polynomial g0(ω), then the interval family (2) is robustly instable by Theorem 1. Note that
the polynomials g0(ω) and h0(ω) cannot have common roots, since, by assumption, the polynomial
p (s, b0) has no pure imaginary roots.

If the polynomial g0(ω) has no real roots, then condition (13) fails for any ω > 0; consequently,
relation (12) is valid.

In case (4◦), the set I (B (b0)) for the interval family (2) with ω > 0 is the segment

I
(
ω;B

(
b0
))

= {z = x+ jy : |x− g0(ω)| ≤ γr(ω), |y − ωh0(ω)| ≤ 0} .

If ω = 0, then the set I (0;B (b0)) is a singleton. Then the condition 0 ∈ I (ω;B (b0)) with ω > 0
is equivalent to the system

|h0(ω)| = 0, |g0(ω)/r(ω)| ≤ γ,
and, just as in case (3◦), we obtain 0 6∈ I (0;B (b0)).

The subsequent consideration of this case is similar to that of case (3◦) with h0, q, g0, and ωl
replaced by g0, r, h0, and ωt, respectively.

Case (5◦) can be considered by analogy with case (4◦). The proof of the theorem is complete.

THE INSTABILITY RADII FOR A CLASS OF POLYNOMIALS

The following theorem shows that our estimate for the instability radii is attained for some sets
of polynomials.

Theorem 5. Let the assumptions of Theorem 3 be valid, and, in addition, let

γ
(
b0
)

= ψ (ω∗) < min
{
a0

0, a
0
0 + δn,jn−m+1

(
a0
n − a0

0

)}
,

where ω∗ = arg min (ψ (ωi)) , i.e., ψ (ω∗) = Φ (b0) , and moreover,
(1◦) x (ω∗) = y (ω∗) > 0;
(2◦) there exists an ε∗ > 0 such that

∆0≤ω<∞ arg
(
z(ω)−

(
γ
(
b0
)

+ ε
)

(1 + i)
)

= πn/2,

0 < min
{
a0

0, a
0
0 + δn,jn−m+1

(
a0
n − a0

0

)}
− γ

(
b0
)
− ε

for each ε ∈ (0, ε∗).
Then RU (b0) = γ (b0).

Proof. Consider the polynomial

p
(
s, b̃
)

=
(
a0

0 − α0γ
(
b0
))

+
(
a0

1 − α1γ
(
b0
))
s+

(
a0

2 + α2γ
(
b0
))
s2

+
(
a0

3 + α3γ
(
b0
))
s3 + · · · +

(
a0

4k − α4kγ
(
b0
))
s4k

+
(
a0

4k+1 − α4k+1γ
(
b0
))
s4k+1 +

(
a0

4k+2 + α4k+2γ
(
b0
))
s4k+2

+
(
a0

4k+3 + α4k+3γ
(
b0
))
s4k+3 + · · ·
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It follows from the assumptions of the theorem that the hodograph z
(
ω, b̃

)
can be obtained from

the hodograph z (ω, b0) by the parallel translation along the bisector of the first quadrant by the
vector {−γ (b0) ,−γ (b0)}. The hodograph z

(
ω, b̃

)
satisfies the relations

Re z
(
ω, b̃
)

= Re z
(
ω, b0

)
− γ

(
b0
)
, Re z

(
ω, b̃
)

= Re z
(
ω, b0

)
− γ

(
b0
)
.

Let us show that b̃ ∈ ∂S [i.e., the polynomial p
(
s, b̃
)

belongs to the boundary of the domain of
stable polynomials]. Indeed, we set γ̃ = γ (b0) + ε [where ε > 0 is the arbitrary sufficiently small
number occurring in assumption (2◦) of the theorem] and consider the polynomial

p (s, b∗) =
(
a0

0 − α0γ̃
)

+
(
a0

1 − α1γ̃
)
s+

(
a0

2 + α2γ̃
)
s2 +

(
a0

3 + α3γ̃
)
s3 + · · ·

+
(
a0

4k − α4kγ̃
)
s4k +

(
a0

4k+1 − α4k+1γ̃
)
s4k+1 +

(
a0

4k+2 + α4k+2γ̃
)
s4k+2

+
(
a0

4k+3 + α4k+3γ̃
)
s4k+3 + · · ·

The hodograph z (ω, b∗) satisfies the relations

Re z (ω, b∗) = Re z
(
ω, b0

)
− γ

(
b0
)
− ε, Re z (ω, b∗) = Re z

(
ω, b0

)
− γ

(
b0
)
− ε.

The hodograph z (ω, b∗) lies in some quadrant of the complex plane if and only if the Mikhailov
hodograph p (iω, b∗) lies in the same quadrant. This, together with the Mikhailov criterion [4, p. 106]
and assumption (2◦) of the theorem, implies that the polynomial p (s, b∗) is stable. Since ε > 0 is
an arbitrarily small number, we have p

(
s, b̃
)
∈ ∂S. But since %

(
b0, b̃

)
= γ (b0) ≤ R (b0), it follows

that γ (b0) = R (b0), and the proof of the theorem is complete.

AN UPPER BOUND FOR THE INSTABILITY RADII

The following theorem permits one to find an upper bound for the instability radius of polyno-
mials (7) in the set Pn

(
n; 1;Rn+

)
[i.e., a0

i > 0, i = 0, 1, . . . , n − 1, a0
n = 1, and b0 = (b0

1, . . . , b
0
n) =

(a0
0, . . . , a

0
n−1 ∈ Rn+)].

By η (b0) we denote the maximum real part of the roots of the polynomial p (s, b0); i.e., η (b0) =
max Re si, i = 1, . . . , n, where the si are the roots of the polynomial p (s, b0).

Theorem 6. Let p (s, b0) ∈ Pn

(
n; 1;Rn+

)
be an unstable polynomial ; moreover, let η (b0) > 0.

Then the instability radius of this polynomial can be estimated as

RU
(
b0
)
≤ max

{∣∣∣∣p(i) (η (b0) , b0)
i!

− a0
i

∣∣∣∣} , i = 0, 1, . . . , n− 1,

where p(i) (η (b0) , b0) is the value of the ith derivative of the polynomial p (s, b0) with respect to s at
the point s = η (b0).

Proof. We apply the transformation s = λ+ η (b0) to the polynomial (7). Then we obtain

p̃
(
λ, b̃
)

= p
(
λ+ η

(
b0
)
, b0
)

= ã0 + ã1λ+ · · · + ãn−1λ
n−1 + λn,

where

ãi =
1
i!
dip (s, b0)

dsi

∣∣∣∣
s=η(b0)

.

Since the transformation s = λ+η (b0) corresponds to the shift of the imaginary axis to the right by
η (b0) and the transformed polynomial p̃

(
λ, b̃
)

has roots lying on the imaginary axis and possibly
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in the left half-plane, we find that the polynomial p̃
(
λ, b̃
)

belongs to the boundary ∂S of stable
polynomials. Consequently, RU (b0) ≤ %

(
b0, b̃

)
, but

%
(
b0, b̃

)
= max

{∣∣p(i)
(
η
(
b0
)
, b0
)
/i!− a0

i

∣∣} , i = 0, 1, . . . , n− 1.

The proof of the theorem is complete.
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