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Abstract. We consider Cauchy problem for ordinary differential equation with
solution possessing a sequence of multiple poles. We propose the generalized reciprocal
function method. It reduces calculation of a multiple pole to retrieval of a simple
zero of accordingly chosen function. Advantages of this approach are illustrated on
a numerical examples. We propose two representative test problems which constitute
interest for verification of other numerical methods for problems with poles.
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1. Introduction

There are a number of important applied problems in which the solution
has multiple singularities. In such problems, it is required to find a chain of
sequentially located singularities. Similar problems are often found in the
theory of special functions (elliptic functions, gamma function, etc.).

Numerical methods are widely used to compile tables of special functions [1]
and for standard direct calculation programs [2]. Standard schemes (for
example, Runge–Kutta schemes) allow one to calculate smooth sections of the
solution with good accuracy. However, near the singularity, the error of such
schemes increases catastrophically. Direct continuation of the solution beyond
the pole, as a rule, is impossible. Therefore, the solution is continued beyond
the pole with some artificial techniques. Continuation through a number
of poles is an even greater problem and requires the development of special
procedures.
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The literature describes methods based on the Pade approximation [3]–[5]
and on the approximation of the solution by chain fractions [6]. Abramov and
Yukhno proposed a special replacement for an unknown function that trans-
lates the solution into a non-singular one, see [7] and the bibliography there.
However, these methods are applicable only for calculating the transcenden-
tal Painleves, for which there is a lot of a priori information. In addition, the
coefficients of the Pade approximation are calculated from the coefficients of
the Taylor series, and to find the latter, you need to solve the original prob-
lem with some difference scheme. The problems that arise along this path
are described above.

In [8], we have constructed the reciprocal function method which for the
first time allowed to perform highly accurate calculations through a sequence
of first-order poles. However, for poles of order 𝑘 > 1, accuracy sharply
deteriorated. The reason was as follows: the reciprocal function had a zero of
order 𝑘 > 1. Calculation of such zero is an ill-conditioned problem conjuncted
with considerable loss of accuracy.

In the present work, we propose the generalized reciprocal function method
which overcomes the mentioned difficulty. It provides high accuracy in
computation of a sequence of poles with multiplicity 𝑘 > 1 if the differential
equation is autonomous.

2. Generalized reciprocal function

2.1. Method.

Let us write down the Cauchy problem for an ordinary differential equation
of the first order

𝑑𝑢/𝑑𝑡 = 𝑓(𝑢, 𝑡), 𝑢(0) = 𝑢0. (1)

Its solution is assumed to have a sequence of poles at points 𝑡∗
𝑚 of integer

orders 𝑘𝑚. The orders of the different poles may not be the same. At the
same time, we assume that the solution does not have special points of other
types.

Let us introduce some fine enough mesh 𝑡𝑛. Let us choose some one-step
method of numerical integration. A large number of such methods is given
in the monographs [9], [10]. One can detect approach to the nearest pole by
rapid increase of the numerical solution 𝑢𝑛. However, this does not allow us
to determine the position of the pole with sufficient accuracy, calculate the
solution in its vicinity, and continue the solution beyond the pole.

To overcome this difficulty in the case of first-order poles, we proposed
the reciprocal function method [8]. Let adjusting parameter 𝑈 > 0 be
introduced. If the condition |𝑢𝑛| > 𝑈 is met, then the calculation proceeds

from the function 𝑢(𝑡) to the reciprocal function 𝑣(𝑡) = [𝑢(𝑡)]−1. It satisfies
the following equation:

𝑑𝑣/𝑑𝑡 = −𝑣2𝑓(𝑣−1, 𝑡). (2)

The initial condition at the transition point is assumed to be 𝑣𝑛 = (𝑢𝑛)−1.
Note that such a transition at any mesh node is possible only when using
one-step schemes (for example, explicit Runge–Kutta methods).
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The pole of the original function 𝑢(𝑡) of multiplicity 𝑘 corresponds to the
zero of the reciprocal function 𝑣(𝑡) of the same multiplicity. For 𝑘 = 1, this
is a simple zero, in which the solution of the equation (2) does not present
any problem. This is illustrated by examples of numerical calculations in [8].
In this case, the solution is calculated with good accuracy in the vicinity of
the pole and continues beyond it. This makes it possible to perform through
calculations of the sequence of poles of the first order with good accuracy.

However, for multiplicity 𝑘 > 1, the zero 𝑣(𝑡) turns out to be a special
point of the equation (2). At this point, the reciprocal function itself and all
its derivatives up to the (𝑘 − 1)th inclusive turn to zero. Numerical solution
through this feature leads to a strong decrease in accuracy and even failure
of the calculation. The solution cannot be confidently continued even beyond
the first pole.

To overcome this difficulty, we propose to introduce a generalized reciprocal
function 𝑤(𝑡). Suppose the multiplicity of the nearest pole 𝑘 is known. Then
for an 𝑘, we can put

𝑤(𝑡) = [𝑣(𝑡)]1/𝑘. (3)

This expression has 𝑘 complex branches. We choose the only real one from
them. The generalized reciprocal function satisfies the following differential
equation:

𝑑𝑤/𝑑𝑡 = −𝑘−1𝑤1+𝑘𝑓(𝑤−𝑘, 𝑡). (4)

For it, this zero turns out to be simple, and its calculation does not cause
fundamental difficulties. After passing this zero, one can return to calculation
of the 𝑢(𝑡) function.

2.2. Multiplicity determination.

Sometimes, from a theoretical study of the Cauchy problem, it is possible
to determine a priori the multiplicities of the poles 𝑘𝑚. In general case, one
has to find 𝑘𝑚 a posteriori in the course of calculation. To do this, we propose
the following procedure.

Near the pole, the following relation holds: 𝑣(𝑡) ≈ 𝐴(𝑡∗ − 𝑡)𝑘. Then in two

adjacent nodes, 𝑣𝑛 ≈ 𝐴(𝑡∗ − 𝑡𝑛)𝑘, 𝑣𝑛+1 ≈ 𝐴(𝑡∗ − 𝑡𝑛+1)𝑘, 𝑓𝑛 =, 𝑓𝑛+1. This is
an over-determined system in unknowns 𝐴, 𝑡∗, 𝑘. Excluding 𝐴 and 𝑡∗, one
obtains

𝑘 ≈ [1 −
ln(𝑓𝑛𝑓−1

𝑛+1)
ln(𝑣𝑛𝑣−1

𝑛+1)
]

−1

. (5)

If the resulting 𝑘 is close enough to some integer on several sequential mesh
steps, this integer number can be taken as the pole multiplicity.

Note that in order to apply the formula (5), the following conditions are
necessary (although not sufficient):

𝑣𝑛𝑣𝑛+1 > 0, 𝑓𝑛𝑓𝑛+1 > 0, 𝑣𝑛𝑓𝑛 < 0, |𝑣𝑛| > |𝑣𝑛+1|. (6)
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2.3. Test problem

Let us construct Cauchy problem with the following exact solution:

𝑢(𝑡) = sin 𝑡 cos−𝑘 𝑡. (7)

This function has poles at 𝑡∗
𝑚 = 0.5𝜋 + 𝜋𝑚. Its derivative equals

𝑑𝑢/𝑑𝑡 = cos1−𝑘 𝑡 + 𝑘 sin2 𝑡 cos−𝑘−1 𝑡. (8)

In the intervals between neighboring poles, the derivative preserves the
sign. For odd 𝑘, the derivative is always positive, and for even 𝑘, its signs
are opposite in neighboring intervals separated by a pole. Therefore, in both
cases, the solution (7) and has no special points other than poles.

The equation (8) is of no interest to be considered as Cauchy problem, since
the solution is reduced to quadrature calculation. However, in the case of an
odd 𝑘 ⩾ 1, the solution (7) and equation (8) can be converted to the form

𝑢(𝑡) = tg 𝑡(1 + tg2𝑡)(𝑘−1)/2, (9)

𝑑𝑢/𝑑𝑡 = (1 + 𝑘 tg2𝑡)(1 + tg2𝑡)(𝑘−1)/2. (10)

Let us consider (9) as equation in tg 𝑡 and express tg 𝑡 in terms of 𝑢. Next,
we substitute the obtained expression into (10) and obtain autonomous form
of the equation.

Practically, explicit relations expressed in elementary functions can be
derived only in two cases. The first one corresponding to 𝑘 = 1 is trivial

𝑢(𝑡) = tg 𝑡, 𝑑𝑢/𝑑𝑡 = 1 + 𝑢2. (11)

This example was used in [8] as a test for simple pole.
The second case with 𝑘 = 3 is non-trivial

𝑢(𝑡) = tg 𝑡 + tg3𝑡,
𝑑𝑢/𝑑𝑡 = (1 + 𝜉(𝑢)2)(1 + 3𝜉(𝑢)2),

𝜉(𝑢) = −2 ⋅ 3−0.5sign(𝑢)sh 𝜑(𝑢), 𝜑(𝑢) = 3−1arcsh(0.5 ⋅ 31.5|𝑢|).
(12)

This test is used in the present work.

2.4. Numerical example

Calculation of the test (12) was performed on the segment 0 ⩽ 𝑡 ⩽ 15
containing 5 poles of the third order. The calculation was performed on
a sequence of uniform meshes using an explicit Runge–Kutta scheme of the
fourth order of accuracy (ERK4). The first grid had a step of 𝜏 = 0.15, the
remaining grids were obtained by successive decreasing of all steps by the
factor of 2 from mesh to mesh. Figure 1 compares the numerical solution
on the first grid (markers) with the exact one (solid line). The vertical lines
show the asymptotes of the exact solution. Even with such a large step, one
can see good agreement between the numerical solution and the exact one.
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Figure 1. Calculation of the test (12) with step 𝜏 = 0.15 using the ERK4 scheme.

The notations are given in the text

Figure 2 shows the solution error in mean-squared analogue of the Hausdorff
metrics [11] as function of the mesh step. The plot is given in double
logarithmic scale. The calculated points lie on a straight line with a slope
of −4. This corresponds to the power-law nature of convergence with the
theoretical order of accuracy 𝑝 = 4. One can see that the error reaches
round-off errors ∼ 10−14 (which is only 100 times greater than the error of

a single rounding equal 10−16) at 𝑁 ≈ 105 of grid nodes. This indicates
high accuracy and reliability of the method. The position of the poles is
determined by interpolation of 𝑤𝑛 at two points to the right and left of zero.
This procedure is described in [8]. The error of the fifth pole position is shown
in figure 2 with triangles.

Figure 2. Dependence of the error of the solution and the fifth pole position on the step size

for the test (12). The notations are given in the text
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3. Non-autonomous problems

3.1. Difficulties

For illustration, we used a test in which the differential equation was
autonomous. However, in applied problems we also have to deal with non-
autonomous equations. For such problems, the reliability of numerical methods
deteriorates. In the vicinity of the pole, the calculated profile 𝑣𝑛 may look
like an alternating “saw”, which does not allow to determine the position of
zero. Let’s explain the reason of this phenomenon.

Take, for example, the non-autonomous equation (8). The zero of the
grid solution 𝑣𝑛, understood in the sense of different signs of this value in
neighboring nodes, does not coincide with the exact pole. At the same time,
the sign of the right side (8) that depends only on 𝑡 is determined by the
position of the exact pole. The value 𝑣𝑛 changes sign when passing through the
“mesh” pole, and the right part does so when passing through the exact pole.
This lack of synchronization can lead to an unpredictable sign of increment of
the value 𝑣𝑛 at the next step. The higher is the pole multiplicity the stronger
is this effect.

These effects usually reveal on insufficiently fine meshes. To overcome
these difficulties, we recommend to choose fine enough mesh. Increasing digit
capacity is also a helpful strategy.

3.2. Even multiplicity

For a pole of even multiplicity, the Cauchy problem can be non-autonomous

only. In fact, near the pole 𝑢 ≈ 𝐴(𝑡 − 𝑡∗)−𝑘, and 𝑑𝑢/𝑑𝑡 ≈ −𝑘𝐴(𝑡∗ − 𝑡)−𝑘−1.
For even 𝑘, 𝑑𝑢/𝑑𝑡 has different signs on different sides of the pole. Therefore,
it cannot be an unambiguous function of 𝑓(𝑢). Thus, any problems for an
even 𝑘 face all the difficulties that are typical for non-autonomous problems.
The ways to overcome them are also indicated above.

3.3. Example

Consider the following non-autonomous problem

𝑑𝑢/𝑑𝑡 = (0.5 + √0.25 + 𝑢2 + 2𝑢2) cos 𝑡, 𝑢(0) = 0. (13)

The exact solution is as follows:

𝑢(𝑡) = sin 𝑡 cos−2 𝑡. (14)

It has poles of the order 𝑘 = 2 at 𝑡∗
𝑚 = 𝜋/2 + 𝜋𝑚.

Calculations were performed using the ERK4 scheme. Figure 3 shows the
numerical solution for 𝜏 = and the exact solution (the notation corresponds
to figure 1). One can see that the numerical calculation through 5 poles
is successful, although the visual difference at the end of the calculation is
somewhat greater than for the autonomous problem in figure 1.

Figure 4 shows the dependence of the error of the solution itself and the
one of the fifth pole position on the mesh step. The notations correspond to
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figure 2. One can see that the calculated points are slightly scattered around
the average line. This is a manifestation of the difficulties associated with
solving non-autonomous problems. However, the average slope of the straight
line corresponds to the theoretical order of accuracy 𝑝 = 4, and very high
accuracy is achieved on moderate meshes, close to unit rounding errors.

Figure 3. Calculation of the test (13) with step 𝜏 = 0.15 using the ERK4 scheme.

The notations correspond to figure 1

Figure 4. Dependence of the error of the solution and the fifth pole position on the step size

for the test (13). The notations correspond to figure 2
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3.4. Note

The same exact solution may correspond to different non-autonomous
problem formulations. For example, the function (14) is the exact solution of
a differential equation

𝑑𝑢/𝑑𝑡 = cos−1 𝑡 + 2 sin2 𝑡 cos−3 𝑡. (15)

However, all attempts to calculate this equation using various quadrature
formulas were unsuccessful due to “blow up” of the calculation.

Therefore, the tests (12) and (13) constructed here are of value themselves.
Solutions have sequences of poles of the specified orders, special points of other
types are absent, and the influence of non-autonomy is minimized. These
problems are recommended for validation of other methods of calculation
through poles.
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Аннотация. Рассмотрена задачи Коши для обыкновенного дифференциального
уравнения с решением, обладающим последовательностью кратных полюсов це-
лого порядка. Предложен обобщённый метод обратной функции, который сводит
вычисление кратного полюса к расчёту простого нуля соответственно выбранной
функции. Преимущества такого подхода проиллюстрированы на численных при-
мерах. Предложены сложные тестовые задачи, которые представляют интерес
для проверки других численных методов для задач с полюсами.

Ключевые слова: задача Коши, сингулярности, продолжение за полюс, крат-
ные полюсы


