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Abstract

In this paper, we discuss the nature of the static and kinetic friction, and of (thermally activated) creep. We focus on boundary lubrication
at high confining pressure (∼1 GPa), as is typical for hard solids, where one or at most two layers of confined molecules separates the
sliding surfaces. We find in most of our Molecular Dynamics (MD) simulations (at low sliding velocity), that the lubricant molecules are
permanently attached or pinned to one of the solid walls. We describe the (flexible) lubricant-wall bonds as springs with bending elasticity.
If the springs are elastically stiff, the system exhibits a very small static friction, and a (low velocity) kinetic friction which increases with
increasing sliding velocity. On the other hand, if the springs are soft enough, strong elastic instabilities occur during sliding, resulting in a
large static friction forceFs, and a kinetic friction forceFk equal to the static friction force at low sliding velocities. In this case rapid slip
events occur at the interface, characterized by velocities much higher and independent of the drive velocityv. In the MD simulations we
observe that, for incommensurate systems (at low temperature),only when the lubrication film undergoes a phase transformation at the
onset of slip do we observe a static friction coefficient which is appreciately larger than the kinetic friction coefficient. We give arguments
for why, at very low sliding velocity (where thermally activated creep occurs), the kinetic friction force may depend linearly on ln(v/v0),
as usually observed experimentally, rather than non-linearly [− ln (v/v0)]2/3 as predicted by a simple theory of activated processes. We
also discuss the role of elasticity at stop and start. We show that for “simple” rubber (at low start velocity), the static friction coefficient
(µs) is equal to the kinetic friction coefficient (µk).

In general, at non-zero temperature, the static friction coefficient is higher than the kinetic friction coefficient because of various thermally
activated relaxation processes, e.g. chain interdiffusion or (thermally activated) formation of capillary bridges. However, there isno single
value of the static friction coefficient, since it depends upon the initial dwell time and on rate of starting. We argue that the correct basis for
the Coulomb friction law, which states that the friction force is proportional to the normal load, isnot the approximate independence of the
friction coefficient on the normal pressure (which often does not hold accurately anyhow), but rather it follows from the fact that for rough
surfaces the area of real contact is proportional to the load, and the pressure distribution in the contact areas is independent of the load.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we consider the static and kinetic friction
and creep, for boundary lubricated surfaces[1,2]. We have
recently presented several computer simulations of bound-
ary lubrication for realistic model systems characterized by
different (realistic) parameters[3–5]. In this paper, we will
attempt to extract a general picture based on these accurate
first principles studies. We hope that as more results of com-
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puter “experiments” accumulate, it will confirm the present
picture. We focus below on boundary lubrication at high
confining pressure (∼1 GPa) as is typical for most practical
sliding systems involving hard materials, e.g. steel. Under
these conditions, at low sliding velocity, one or at most two
layers of confined molecules separates the sliding surfaces.

A typical sliding friction experiment is shown inFig. 1a
where a solid block is pulled by a spring, and the spring force
F(t) is studied as a function of time. In such experiments
it is sometimes observed that the static friction equals the
kinetic friction (seeFig. 1b), while for other systems they
may differ by a factor of 2 or more (seeFig. 1c). It has been
found that the static friction coefficient increases with the
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Fig. 1. (a) A block sliding on a substrate; (b) the friction force as a
function of time for a case where the static friction coefficient equals
the kinetic friction coefficient; (c) the friction force as a function of time
for a case where the static friction coefficient is larger than the kinetic
friction coefficient.

time of stationary (or static) contact, usually according to
the logarithmic law[6]: µs ≈ µ0+a log(1+ t/τ). Similarly,
the kinetic friction coefficient usually depends on the sliding
velocity (for low velocities) asµk ≈ µ1 + b log(1 + v/v0),
wherev0 is a reference velocity. The time and velocity de-
pendence ofµs andµk are most likely due to thermally
activated processes as will be discussed below.

Macroscopic sliding systems usually involve a large range
of length scales which all must be considered when dis-
cussing the origin of the friction force. Thus, even when a
block slides steadily under boundary lubrication conditions
(no macroscopic stick–slip motion), rapid stick–slip motion
must occur at some shorter length scale, otherwise the fric-
tion force would not be (nearly) velocity independent as ob-
served in most cases. We illustrate this situation inFig. 2
which shows a block sliding on a substrate. The contact be-
tween the block and the substrate occurs at randomly dis-
tributed macrocontactareas, with a typical diameter of a
few micrometers[7]. However, when a macrocontact area
is magnified one often observes that only partial contact oc-
cur. At high enough magnification the solids are in direct
contact, but are usually separated by a few monolayers of
(weakly adsorbed) organic molecules, either from an inten-
tionally added lubricant or simply organic contamination
from the atmosphere, or of other origin. During steady slid-

Fig. 2. A block sliding on a substrate. The contact between the block
and the substrate occurs in randomly distributedmacrocontactareas with
a typical diameter of a few micrometers. However, when a macrocontact
area is magnified one observes that only partial contact occur. At high
enough magnification the solids are in direct contact, but are usually
separated by a few monolayers of organic molecules, either from an
intentionally added lubricant or simply organic contamination from the
atmosphere or of other origin.

ing, stick–slip motion usually occurs at some short length
scale. The short-distance stick–slip motion depends on the
elasticity of the solid walls and on the interaction potentials
between the contamination layer and the solid wall atoms.
At low sliding velocities, a wide distribution of local stresses
occurs in the lubrication film and in the surrounded solid
walls at the contacting interface; the different grey-scales of
the lubrication film in the inset inFig. 2 indicate the lateral
sizes of the regions where the shear stress is (approximately)
constant—we denote these regions asstress domains, or,
when the surrounding solid walls are included,stress blocks.
During sliding at low velocities the stress blocks perform
stick–slip motion, where individual stress blocks usually slip
in a spatially and temporally irregular manner[8]. At finite
temperatures, thermal activation will allow a stress block to
depin before the shear stress has reached the value neces-
sary for depinning at zero temperature. This gives rise to
thermally activated creep and various types of relaxation
processes.

In this paper, we start by discussing the motion of indi-
vidual molecules (or molecular groups) at the interface, fol-
lowed by a study of collective effects in lubrication films
(based on Molecular Dynamics studies). We then consider
the dynamics of stress blocks at zero temperature, followed
by a discussion about thermally activated motion of stress
blocks (creep and relaxation). Finally, we briefly discuss
stick–slip and steady sliding of the macroscopic block in
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Fig. 1, which depend on the spring constantks and pulling
velocity vs of the external spring inFig. 1.

2. The molecular level: basic principles

In this section, we briefly review some material which
form a necessary background for what follows[9–11]. Con-
sider the sliding system shown inFig. 3. A particle with
massm is connected via a spring, with bending force con-
stantk, to a block or drive. The particle experiences the cor-
rugated substrate potentialU(q). The equation of motion for
the particle is

mq̈ = k(x− q)− U ′(q)−mγ1q̇−mγ2(q̇− ẋ). (1)

The friction forces−mγ1q̇ and−mγ2(q̇− ẋ) originate from
the coupling of the particle to the substrate and block ex-
citations, e.g. from excitation of phonons and (for metals)
electron-hole pairs. These damping processes have been
studied in great detail in the context of vibrational dynamics
of adsorbed molecules, but the macroscopic friction is rather
insensitive toγ1 andγ2, and we will not consider them any
further in this paper. Let us define the total potential

V(q, x) = U(q)+ k(x− q)2

2
. (2)

We first study the equilibrium positions of the particle as a
function ofx. Assume for simplicity that

U(q) = U0 cos

(
2πq

a

)
,

so that the substrate forceF(q) = −U ′(q) = U0(2π/a)
sin(2πq/a). At equilibrium q̈ = q̇ = 0, ẋ = 0 and(1) gives

U0

(
2π

a

)
sin

(
2πq

a

)
= k(q− x) (3)

or

F(q) = k(q− x).

Now, it is easy to show that this equation will have exactly
one solution (i.e. one stable position for the particle) when

Fig. 3. A particle (massm, coordinateq) connected to a block (or drive)
(coordinatex) by a spring with the (bending) force constantk. The particle
moves in a corrugated substrate potentialU(q).

Fig. 4. (Top) Stable positions of the particle for two different positions
(a) and (b) of the drive; (bottom) graphical solution ofEq. (3) for the
two drive-positions shown in top. For the caseκ < 1.

the largest slope (as a function ofq) of the substrate force
F(q) is smaller than the slopek of the spring-forcek(q−x).
In the present case the maximum ofF ′(q) equalsU0(2π/a)2,
so that whenκ = U0/ε < 1, where theelastic energyε =
ka2/4π2, there will be only one stable position for the par-
ticle. This case is illustrated inFig. 4. Here the top part of
the figure shows the position of the particle in the potential
energy surfaceU(q) for two different positions (a) and (b)
of the drive. In the bottom part of the figure we show the
graphical solution to(3) for these two different cases. The
tilted straight lines represent the right hand side ofEq. (3)
and the crossing points with the curve-U ′(q) give the sta-
ble positions for the particle. It is clear that in the present
caseκ < 1, and only one stable positionq = f(x) occurs
for the particle for each positionx of the drive. In this case,
as the drive moves slowly forward (velocityv), the parti-
cle will also move slowly with a (time-dependent) velocity
q̇ = f ′(x)v, proportional tov.

Let us now assume thatκ > 1. In this case,Eq. (3) has
more than one solution. This is illustrated inFig. 5. In (a) we
show the positions of the particle for the case when the drive
is located right above a maxima of the potentialU(q). The
graphical solution to(3) now gives three solutions denoted
by A, B and C in the figure. Positions A and C are both
stable while position B is unstable—any small deviation of
the particle from the position B will result in the particle
moving to positions A or C. It is easy to show that position B
is unstable since∂2V/∂q2 < 0 at this point (while the second
derivative is positive at points A and C). When the drive is
displaced to the right, the solutions A and B approach each
other and in (b) we show a “critical” case where the drive
has been displaced to the right so much that points A and B
merge into a single point (denoted by A in the figure). Note
that now the slopek of the spring-force line is the same as the
slope of the substrate force curve at point A, i.e.F ′(qA) = k.
Any further displacement of the drive to the right will remove
the solution A. Physically, this corresponds to an instability
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Fig. 5. (a) Particle positions (top) and graphical solution toEq. (3)
(bottom) when the drive is located above a maxima ofU(q); (b) the same
as (a) but with the drive displaced to the right by such an amount that
the system iscritical (see text for details). We have assumedκ > 1.

transition where, in a very rapid event, the particle jumps
from position A to position C. During this transition energy
is “dissipated” to the block and the substrate (as described
by the damping terms proportional toγ1 andγ2 in Eq. (1)).
It is clear that during slow movement of the drive, sayx =
vt, the motion of the particle will include very rapid events
where it moves from one position to another—the velocities
attained by the particle in the rapid slip events are much
higher than (and independent of) the velocityv of the drive.

Let us now consider the influence of temperature on the
sliding process. It is clear that if the velocityv of the drive
is small, when the system is close to the critical state, the
particle can jump (because of a thermal fluctuation) above
the small remaining barrier instead of being driven over it
by the motion of the drive. To study this process, let us first
note that, at the critical state (where we denote the drive
position byxc and the particle position byqc) (point A in
Fig. 5(b)), we have

∂V

∂q
(xc, qc) = 0,

∂2V

∂q2
(xc, qc) = 0. (4)

Fig. 6. The potential energyVx(q) as a function ofq for the critical state
x = xc (dashed curve) and forx close toxc (solid curve).

The first condition is always satisfied at equilibrium, and
just states that the total force on the particle must vanish.
The second condition is characteristic of thecritical state
and follows from the fact that at point A inFig. 5bthe slope
of the substrate force curve equals the slopek of the spring
force line. Thus, if we expandV(x, q) around(xc, qc), we
get:

V(x, q)≈ a+ b(x− xc)+ c(x− xc)(q− qc)

+ d(q− qc)
3 + · · · . (5)

Note that(4) implies that there can be no term proportional
to ∼(q − qc)

2 in the expansion(5). Now, let us consider
V(x, q) ≡ Vx(q) for a fixedx (close toxc) as a function of
q. Fig. 6 shows this function forx = xc (dashed line) and
for x slightly smaller thanxc (solid line). Forx < xc, Vx(q)
exhibits a potential well separated by anenergy barrierto
a state of lower potential energy. The height of the barrier
is the difference betweenV(x, q) evaluated forq = q+ and
q = q−, whereq± are the solutions of∂V/∂q = 0, which
gives

q± − qc = ±
( c

3d

)1/2
(xc − x)1/2.

Thus, the barrier height

�E = V(x, q+)− V(x, q−) ≈ 8

3

(
c3

3d

)1/2

(xc − x)3/2.

If we assume that the drive moves with the constant velocity
v and writex = xc + vt (t < 0), we get the time dependent
barrier

�E(t) ≈ A(−vt)3/2,
whereA is time independent. Using(2) one can show that

A = 32

3

U0

a3/2

π3/2

κ
(κ2 − 1)−1/4.

Note that the barrier�E(t) vanishes fort = 0 (critical state),
but the particle will in general jump over the barrier by
thermal excitation at an earlier timet < 0. We can calculate
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the probability that the system is in stateA by solving the
rate equation

dP

dt
= −wP,

where the jump rate according to Kramer theory of activated
processes is of the form

w = νe−β�E, (6)

whereβ = (1/kB)T (wherekB is the Boltzmann constant
andT the temperature) and whereν is a prefactor which we
assume independent of time. Thus (witht < 0),

P(t) = exp

(
−

∫ t

−∞
dt′w(t′)

)
. (7)

On the average, the particle will jump over the barrier at
time t = −τ where

τ =
∫ 0

−∞
dt P ′(t)t.

Let us introduceP = 1 − Q so thatQ → 0 ast → −∞.
Substituting this in(7) and performing a partial integration
gives

τ =
∫ 0

−∞
dt Q(t)

or

τ =
∫ 0

−∞
dt

[
1 − exp

(
−

∫ t

−∞
dt′w(t′)

)]
. (8)

In Appendix A, we show that in the limit of very small
sliding velocityv � v0

vτ ≈ (βA)−2/3
[
− ln

(
v

v0

)]2/3

, (9)

where

v0 = 2
3ν(βA)

−2/3.

In the limit of overdamped motion, where the particle jumps
from one well to the next nearby, and for a very weak spring
k, it is very easy to estimate the velocity dependence of
the sliding friction. We first note that, at zero temperature,
during the time period−τ < t < 0 the spring force equals
≈kxc. At finite temperatures the atom has jumped to the next
well so that the spring force is≈k(xc − a). The total time
it takes for the drive to move the distancea is t0 = a/v.
Thus, if F0 is the (time averaged) kinetic friction force in
the absence of thermal excitation (i.e. forT = 0 K) then at
non-zero temperatures

F(v) = F0 − τ

t0
kxc + τ

t0
k(xc − a) = F0 − kvτ

or using(9)

F(v) = F0 − k(βA)−2/3
[
− ln

(
v

v0

)]2/3

. (10)

Fig. 7. Friction forceFk as a function of the sliding velocity for a silicon
tip in contact with a NaCl(1 0 0) surface. Measurements at two different
applied loadsFN = 0.65 and 0.44 nN. From[12].

This result has been derived earlier in[10,11] and may be
relevant to Friction Force Microscopy (FFM) studies with a
sharp tip[12]. However, a recent FFM measurements with a
silicon tip sliding on a NaCl(1 0 0) surface seams to be better
described by a linear dependence of the friction force on the
logarithm of the sliding velocity, seeFig. 7. In Section 5,
we will argue whyF(v) may depend linearly on ln(v) in
some cases, but the argument we present is only valid if the
contact area is large enough, which does not seam to be the
case in the present FFM application.

Let us now consider the simple model systems shown in
Fig. 8. Assume first thatT = 0 K. Fig. 8aillustrate a case
where molecular groups (e.g. chain molecules) are perma-
nently (chemically) attached to the top solid (the “block”)
with flexible bonds, which we treat as springs with bending
elasticity. The solid block and the substrate are assumed to
be rigid, and we assume an incommensurate system. From
the discussion above it follows that if the springs are elas-
tically stiff, so thatκ < 1, then this system exhibits a van-
ishing static friction, and a (low velocity) kinetic friction
which increases linearly with the sliding velocityv. In this
case the velocities of the molecular groups at the interface,
although time-dependent, will be proportional tov. On the
other hand, if the springs are soft enough (compared to the

Fig. 8. Two simple sliding friction models discussed in the text.
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amplitude of the corrugated substrate potential, here repre-
sented by a cosine potential) so thatκ > 1, elastic insta-
bilities will occur during sliding, resulting in a finite static
friction force Fs, and a kinetic friction forceFk equal to
the static friction force at low sliding velocities. In this case
very rapid slip events will occur at the interface, character-
ized by velocities much higher andindependentof the drive
velocity v. For T = 0 K no motion is possible ifF < Fs,
but for T > 0 K the model inFig. 8a(with κ > 1) exhibits
[− ln (v/v0)]2/3-creep motion (seeEq. (10)).

Fig. 8billustrates a case of a disordered atomic (or molec-
ular) lubrication film between two incommensurate rigid
solid walls. We assume a low concentration of lubricant
molecules so that we can neglect the interaction between
them. Here again two types of motion are possible: either
the velocities of the lubrication molecules are of order the
drive velocityv for all times, in which case the static friction
coefficient vanish, or else rapid events occur at the interface,
characterized by slip velocities much higher thanv (and in-
dependent ofv), which result in a non-zero static friction
coefficient. In the latter case one finds again that atT = 0 K
the static friction coefficient equals the low-velocity kinetic
friction coefficient.

The model inFig. 8bis more general than that inFig. 8a,
and, in fact, the latter model can be considered as a limiting
case of model (b). This is easy to show if we assume that
the barrier for lateral displacement of the lubrication atoms
is much larger on the surface of the block than on the sub-
strate. In this case the lubricant atoms will be pinned in the
atomic potential wells at the bottom surface of the block,
and only perform displacements within these wells. If we
assume that these wells are harmonic, the restoring forces
can be represented by bending springs as inFig. 8a. De-
pending on the magnitude of the curvature of the potential
wells,κ > 1 or< 1. If κ > 1, elastic instabilities will occur
during sliding, where the atoms slip rapidly from one sub-
strate potential well to another. That is, the lubricant layer
forms asoft compliant layerat the interface, making elas-
tic instabilities possible. This will (atT = 0 K) result in
a non-zero static friction force, and a kinetic friction force
which equals the static friction force. On the other hand, if
κ < 1, no elastic instability will occur, and the static fric-
tion force will vanish, while the kinetic friction coefficient
increases linearly with increasing drive velocityv. We point
out that the pinning of the monolayer lubricant film to one of
the solid walls during sliding at low velocity is observed in
most computer simulations we have performed, and should
therefore be very general.

3. The molecular level: numerical results

Fig. 9 shows the result of a Molecular Dynamics (MD)
computer simulation, where a block is pulled on a sub-
strate with a spring. The interface is lubricated with about
1/3-monolayer of CH4, which forms incommensurate is-

Fig. 9. Results of MD computer simulations, where a block is pulled on a
substrate with a spring. The motion starts att = 0 at which point the spring
has its natural length. The interfacial shear stress (divided by the nominal
contact pressure) is shown as a function of the distance (in Å) the spring
has been pulled. In the calculations we have used: temperatureT = 10 K,
pull velocity of springvs = 10 m/s, spring constantks = 30 N/m, nominal
contact pressureP0 = 108 Pa, block massM = 106 a.u., and the elastic
modulus of the solid wallsE = 7.7 × 109 Pa.

lands between the solid walls, seeFig. 10(note that the CH4
molecules form a hexagonal structure). The motion starts at
t = 0 at which point the driving spring has its natural length.
The interfacial shear stress (divided by the nominal con-
tact pressure), averaged over the contact area, is shown as a
function of the distance (in Å) the spring has been pulled.
In the calculations the temperatureT = 10 K and the spring
velocity vs = 10 m/s. Note that steady sliding is observed
and that the kinetic friction is (nearly) the same as the static
friction. In the present case the solid walls are elastically
relatively soft and deform (in part, because of the applied
pressure and in part because of the adhesional interaction
between the solid walls) in such a way as to make wall-wall
contact between the CH4 islands (seeAppendix B); this is
the reason why the friction coefficient is rather high in spite
of the incommensurate nature of the CH4 islands.

We note that the near equality of the static and kinetic fric-
tion force,Fs ≈ Fk, which seems to hold (approximately)

Fig. 10. Snapshot picture of a part of the contact area showing the
lubrication film consisting of CH4 molecules confined between two flat
solid walls, with the block and substrate atoms removed. Note that the
CH4 molecules (locally) form a hexagonal structure which remains during
sliding. However, the CH4 islands deform and change their shapes during
sliding, and different islands move with different velocities which change
in a stochastic manner in time. WithE = 7.7 × 109 Pa, T = 10 K,
ks = 30 N/m, vs = 10 m/s andP = 108 Pa.
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Fig. 11. Snapshot picture of the central region of the monolayer lubrication
film. (Top) Top view without the block and substrate atoms; (bottom)
side view of a wider region of the contact area and with the interfacial
substrate and block atoms included. During slip the molecular chains
C16H34 exhibit small displacements, but no net slip relative to the block,
and after slip the system remains in a virtually identical state as before
slip [5].

for incommensurate systems at low temperature, has been
observed several times earlier, e.g. in the MD calculations
of Matsukawa and Fukuyama, who studied a generalized
Frenkel–Kontorova model[13]. As another illustration of
the same effect, we show inFig. 11a case where a mono-
layer of C16H34 is trapped at the interface between two iron
surfaces[5]. In this case the monolayer film is pinned to
the block and during slip the chain molecules only perform
small local displacements relative to the block. That is, dur-
ing elastic loading (at low driving speed) the molecules first
perform small slow displacements in their local binding po-
tential wells, followed by rapid displacements (with veloc-
ities independent of the drive velocity) during slip. We do
not observe any qualitative change in the structure of the lu-
brication film between the stick-state and the slip-state, and
the computer simulations (seeFig. 12) show that the kinetic
friction (nearly) equals the static friction.

We have found (at low temperature) that for (nearly) in-
commensurate systems,only when the lubrication film un-
dergoes a phase transformation at the onset of slip do we
observe a static friction coefficient which is appreciately
larger than the kinetic friction coefficient. One such exam-
ple is illustrated inFig. 13where a monolayer of Xe atoms
is confined at the interface between two curved elastic solids
[4]. In this case the monolayer goes from a domain wall su-
per structure at stick to an incommensurate solid structure
during slip, and the static friction coefficient was found to
be approximately five times higher than the low-velocity ki-
netic friction coefficient.

Another dynamical phase transition, which sometimes is
observed at the transition from stick to slip, is a transition

Fig. 12. The friction coefficientµ = F/FN when a block is pulled on a
substrate lubricated with a monolayer of molecular chains C16H34 (see
Fig. 11). Results are shown for two different spring velocities. Note that
the kinetic friction coefficient (nearly) equals the static friction coefficient.

from a solid-like state to a liquid-like state[14–16]. Here
again it is observed that the static friction is much larger than
the kinetic friction. At this point we note that Popov[17] has
presented a simple analytical model to describe this case.
The model predicts that if no phase transformation occurs

Fig. 13. Snapshot pictures of the central region of the lubrication film (a)
at stick and (b) during slip. The Xe-lubricant film undergoes a dynamical
phase transition at the onset of slip[4].
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at the onset of slip (i.e. the sliding state is also solid-like),
thenµs is typically very close toµk, while a large change
occur when the lubricant film shear melts at the onset of
slip. However, the model assumes that the melting transfor-
mation is continuous, and it is not clear that this is the case
in practice. The theory developed in[17] introduces an order
parameterφ which is related to the shear modulus,G, of the
lubricant, viaG = φ2. In the solid pinned stateG > 0 while
in the fluid stateG = 0. Thus,φ vanishes in the fluid state.
Assuming a continuous transition one gets, in the absence of
an applied shear stress, the free energy to fourth-order inφ:

F = Aφ2 + Bφ4,

whereA andB are two constants. For temperatures close to
the melting transitionA = α(T−Tc), whereTc is the melting
temperature. In the crystalline pinned state the lubricant film
experiences a periodic potential

U = U0 cosk0u,

wherek0 = 2π/a (wherea is the lattice constant) and where
u is the displacement of the lubricant film from the equi-
librium position. Note that the shear modulusG = U0k

2
0d,

whered is the film thickness, so thatU0 = φ2/k2
0d. When

a shear stress is applied we have the total free energy

F = Aφ2 + Bφ4 + φ2

k2
0d

2
cosk0u.

This free energy can be considered as an effective potential
from which, using standard methods, one can derive equa-
tions of motion for the variablesφ andu. From these equa-
tions it can be shown that, if no shear melting occur at the
onset of slip, in most cases the kinetic frictional shear stress
is nearly equal to the static frictional shear stress. On the
other hand, if shear melting occurs, thenσk ≈ 0 at low slid-
ing velocity. This discussion focuses only on the lubrica-
tion film and does not take into account the elasticity of the
solid walls. Including the elasticity will modify the picture
as outlined inSection 4.

Calculations have shown that, roughly speaking, if the
strength of the interatomic interaction within the lubricant
layer is larger than the strength of the interaction potential
with the solid walls, the solid-sliding regime is observed;
otherwise the lubricant melts at the onset of sliding[18].

4. The stress-block level: zero temperature

During sliding a low speed, a very wide distribution of
shear stresses is likely to occur in the macrocontact areas.
The shear stress will be approximately constants over units
which we denote asstress domainsor stress blocks(see
Fig. 14) [8]. The stress blocks in the contact area move
forwards as coherent units, but (in most cases) the different
blocks move in a stochastic (in time) and random (in space)
manner.

Fig. 14. (a) During sliding at very low velocity the adsorbate layer forms
solid pinned domains. Associated with each domain is a stress field in
the substrate and block; (b) a mechanical model used to describe the
sliding properties of the interface in (a). The straight lines between the
blocks, and between the blocks and the drive, denote springs with elastic
properties depending on the elastic modulus of the solids.

The lateral sizeR of a stress block can be estimated as
follows. If a shear forceF = µsP0R

2 (whereP0 is the
contact pressure) act within the area∼R2 on the surface
of a semi-infinite solid, it will give rise to a displacement
of the stressed area byu ≈ F/RE, whereE is the elastic
modulus of the solid. We get the size of a stress domain by
putting u ≈ a, wherea is a lattice constant. Thus, we get
R ≈ (E/µsP0)a. Since typicallyE/P0 ≈ 100 andµs = 0.1
this givesR ≈ 1000a. Since the diameter of a macrocontact
area may be a few micrometer, it is clear that it may consist
of ∼1000 stress domains.

During sliding at very low velocity the lubricant layer
forms solid pinned domains, seeFig. 14a. Associated with
each domain is a stress field in the substrate and block.
Fig. 14b shows a mechanical model used to describe the
sliding properties of the interface in (a). The straight lines
between the stress blocks, and between the stress blocks
and the drive, denote springs with elastic properties depend-
ing on the elastic modulus of the solids. We note, how-
ever, that most solids in the macrocontact areas may be
elastically softer than in the bulk, and the springs in the
figure should take this effect into account. Otherwise, one
may suspect that sliding on a micron scale might occur
in a coherent way, e.g. through depinning waves involv-
ing several blocks which would sweep across the junction
[8,6].

Assume that at timet = 0 the blocks inFig. 14are dis-
tributed regularly (equally spaced) on the surface in such a
way that the forces in the springs connected to the drive are
all the same, so that the shear stress is constant at the in-
terface. Calculations show that after a short sliding distance
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the block positions becomes nearly random giving rise to a
wide distributionP(σ) of stresses at the interface[8]. Thus,
we may say that the uniform stress state isunstable, and
after a short sliding distance it converge towards a func-
tion P∗(σ) which is independent of the sliding velocity for
small sliding velocities. The kinetic frictional stress is given
by [8]

σk =
∫ σa

−σa

dσ σP∗(σ)

and at zero temperature the static frictional shear stress will
be equal (or near equal) to the kinetic frictional shear stress;
in a simple mean field treatment[8] they are both (at zero
temperature) equal toσa/2. Thus, within this modelthe
static friction will differ from the kinetic friction only at
nonzero temperatures. In the latter case thermal excitation
over the pinning barrier becomes important which result in
creep motion, relaxation and memory effects in the friction
dynamics (the friction at timet depend on the sliding ve-
locity ẋ(t′) for all earlier timest′ ≤ t). In particular, at infi-
nite long time of stationary contact (at zero applied pulling
force) the stress at the interface will vanish everywhere (i.e.
the stress distributionP(σ) = δ(σ)), so that the static fric-
tional shear stress is equal toσa, i.e. about twice the kinetic
friction.

We note that computer simulations of sliding friction,
such as those presented inSection 3, are usually limited to
systems which are smaller than, or of order of, the stress
blocks. Thus, they cannot directly be used to interpret exper-
imental data for macroscopic systems. However, they may
(in simple cases) be used to construct friction laws for the
motion of the individual stress blocks, which enter as an in-
put in computer simulations of the dynamics of the stress
blocks, such as the calculations presented in[8] (which
where based on the 1D model shown inFig. 14), or more
realistic 2D or 3D models[19]. For example, if it is found
that the lubrication film fluidizes at the onset of slip, then
it may be reasonable to assume that a stress block return
to the pinned state first when the local stress reaches zero.
However, in most casesslow interfacial processes (such as
interdiffusion, seeSection 7) occur, and these cannot be
obtained from MD computer simulations, but may be cru-
cial for friction dynamics at macroscopic length and time
scales.

5. The stress-block level: thermally activated creep and
relaxation

We have shown in the last section that without thermally
activated processes, the static friction equals the kinetic fric-
tion, and no memory effects occur in the sliding dynamics.
Thus, understanding the influence of temperature on mo-
tion of the the stress blocks is crucial for an understanding
of friction dynamics. We have shown in[8] that many ex-
perimental observations can be very simply explained from

studies of stress block dynamics at finite temperatures. Here
we would like to make some comments related to creep.

In Section 2, we briefly discussed thermally acti-
vated creep and showed that a simple model predicted a
[− ln (v/v0)]2/3 velocity dependence of the kinetic fric-
tion coefficient at low velocities. However, most studies of
practical sliding systems find instead a linear dependence
on ln(v/v0) (see, e.g.[6]). In this section, we will discuss
possible origins of this discrepancy.

The discussion of creep inSection 2was based on the
assumption that there exist a point(xc, qc) where the barrier
vanishes and where the equation

∂2V

∂q2
= 0

is satisfied. Using(2) this implies that

∂2U

∂q2
= −k. (11)

Since the spring constantk must be positive, a necessary
condition for a solution to this equation is that∂2U/∂q2 <

0 for some region ofq, i.e. the curveU = U(q) must be
concave for at least someq. This is certainly the case for
the cosine potential used inSection 2. However, as we will
now discuss, the situation in many real applications may be
more complex.

Let us first note again that for boundary lubricated sur-
faces, creep is likely to involve small areas or domains in
the contact area which move forwards as coherent units, but
in a stochastic (in time) and random (in space) manner. In
Sections 1 and 4, we denoted these units asstress domains
or stress blocks(seeFig. 14). In [8] (see also[19]), one of
us has studied creep motion under the assumption that the
stress blocks remain pinned until the local stress reaches a
critical valueσa at which point local slip start and the stress
blocks moves forwards by a small amount, e.g. until the lo-
cal shear stress vanishes. This picture results in a linear de-
pendence of the kinetic friction force on ln(v/v0), and can
also describe other creep and relaxation processes observed
in experiments. The origin of the ln(v/v0)-creep law is that
the barrier height depends linearly on(xc −x) for x close to
xc, rather than∼(xc − x)3/2 as found for the model studied
in Section 2. However, the assumption that no lateral motion
occurs when the local stressσ < σa cannot be strictly true
since some displacement of the lubricant film in its pinning
potential well must occur for any finite shear stress. Let us
discuss this problem more in detail.

Assume first that the transition from stick to slip of the
lubrication film in a stress domain is first-order as for the
system considered inFig. 13. Here the pinned state A is
a domain wall superstructure while the sliding state B is
an incommensurate solid structure. During sliding at low
drive velocity, the system moves on an effective potential
energy surface of the form shown inFig. 15b. Fig. 15a
shows (schematically) the potential energy surfaces when the
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Fig. 15. (a) The potential energy surface of the stick-state (A) and the
slip-state (B); (b) during sliding at low velocity the adsorbate layer flucture
between states A and B. The system experiences the effective potential
Ueff , where the periodicity of the potential is determined by the substrate
lattice constant along the sliding direction.

system does not change its structure: note that the potential
energy surface for the incommensurate state B is very flat as
a result of the small change in the energy as the incommen-
surate system is displaced along the surface. It is clear that
the effective potentialUeff , which is obtained by assuming
that the system follows the lowest potential energy surface
(and hence switch periodically between the states A and B,
as indeed observed in the computer simulations), may have
no point where∂2U/∂q2 < 0. The same argument as above
may apply if the system instead fluctuates between a pinned
solid-like state at stick and a fluid-like state at slip.

At this point it is interesting to note that creep has been
observed and studied for a long time in the context of flux
line lattices and charge density waves[20]. These systems
are usually treated as effective elastic bodies pinned by ran-
domly distributed defects. Above a critical applied force (the
depinning force)Fc, the system slides. At finite temperature
slow creep motion is observed forF < Fc. However, the
lattice does not move as a whole but small volume elements
(analogous to the stress blocks introduced above) of the sys-
tem move forwards in a random and incoherent manner. In
this case it has been shown that even if the interaction with a
pinning center (crystal defect) is assumed to be of the cosine
form as inSection 2, the effective potential experienced by
the moving volume elements (which contains many pinning
centers) is of the “singular” form shown inFig. 16. Thus,
again, the theory described inSection 2cannot be applied
to study the creep motion of flux-line lattices or charge den-
sity wave systems but, in fact, the problem is much more
complex and is not yet fully understood[21–23].

Fig. 16. The “critical” potential resulting from eliminating or “integrating
out” many (short distance) degrees of freedom.

6. Macroscopic block motion: role of elasticity at stop
and start

One of the most important problems in boundary lubrica-
tion is to understand the nature and origin of the transition
from slip to stick and from stick to slip. We have discussed
this problem in several earlier publications[24], and here
we only give a few comments.

First we note that if the sliding block and the substrate are
rigid then the kinetic energy of the block,Mv2/2, must at
stop be converted into elastic energy in the lubrication film
[25], and since the latter cannot be larger thanFsa/2, where
Fs is the static friction force anda the distance the lubricant
film can be sheared before going into the sliding state (a is
typically of order∼1 Å), we get the critical velocityvc ≈
(Fsa/M)1/2. In particular, if only the gravitational force acts
on the block so thatFs = Mgµs we getvc ≈ (gaµs)

1/2 ≈
10�m/s. This explanation for the transition from slip to stick
can alternatively be considered as a block-inertia effect: to
stop the motion of the block over a time period of order
τ1 = a/v requires a force of orderMv/(a/v) = Mv2/a. But
this force must be less thanFs in order for the stick-state
to survive. This gives the same critical velocity as derived
above.

However, all solids have a finite elasticity, and it is there-
fore not necessary to stop the motion of the whole block
abruptly when going from slip to stick but instead it is
enough to initially just stop the motion of the bottom surface
of the block. This will result in a stopping wave propagating
from the bottom surface of the block to the top surface of the
block. This effect of elasticity can, in fact, be seen in the MD
calculations presented inFig. 17. After stop the shear stress
at the interface oscillates in a damped manner with increas-
ing time. This is a result of the abrupt pinning of the bottom
surface of the block at the point of stick, which results in
elastic deformation vibrations of the block (the frequency
of the oscillations is of orderc/L, whereL is the height
of the block andc the transverse sound velocity). Note also
that immediately before “stop”, the center of mass velocity
of the block isv ≈ 2 m/s. At “stop” the corresponding ki-
netic energy must be converted into deformation energy in
the block (the elastic stopping wave). This “spreading out”
of the stopping event in time will reduce the importance of
inertia. In fact, in[24] we have studied this problem in great
detail and shown that, when the elasticity of the block is
taken into account, for macroscopic systems the transition
from slip to stick is in most cases not determined by the
inertia effect described above.

7. Macroscopic block motion: stick–slip and steady
motion

We now finally arrive to the macroscopic block-level. The
fundamental problem here is to understand not only the mag-
nitude of the friction, but also how it depends on the sliding
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Fig. 17. Results of MD computer simulations, where a block is pulled on
a substrate (lubricated by≈1/3 monolayer of CH4) with a weak spring.
Stick–slip motion is observed and the figure shows the results of one slip
event. (a) The interfacial shear stress (divided by the nominal contact
pressure), and (b) the block center of mass velocity, as a function of the
distance (in Å) the spring has been pulled. In the calculations we have
used: temperatureT = 10 K, pull-velocity of springvs = 1 m/s, spring
constantks = 3 N/m, nominal contact pressureP0 = 109 Pa, block mass
M = 106 a.u., and the elastic modulus of the solid wallsE = 7.7×1010 Pa.

history (memory effects) and sliding velocity. In particular,
one is interested in determining the phase boundaries in the
(ks, vs)-plane separating stick–slip motion from steady slid-
ing. This phase boundary, it turns out, depends sensitively
on the nature of the memory effects of the friction force.

The boundary line separating steady sliding from
stick–slip sliding has usually the qualitative form shown
in Fig. 18. In particular, steady sliding always occur if the
springks is stiff enough or the velocityvs high enough. The

Fig. 18. Qualitative form of a typical kinetic phase diagram. In the dotted
area stick–slip motion occur, while steady sliding occur in the rest of the
(ks, vs)-plane.

position of the boundary line depends in general on whether
it is approached from the steady sliding region or from the
stick–slip region (hysteresis effects). We now show that all
friction laws which neglect memory effects fail in describ-
ing the phase boundary inFig. 18. To show this, assume
that the kinetic friction coefficient,µ = µ(v), only depend
on the instantaneous sliding velocityv = ẋ of the block.
Let us consider the equation of motion for the block

Mẍ = ks[vst − x(t)] − F0(ẋ), (12)

whereF0(v) = µ(v)FN. Let us study when the steady sliding
becomes unstable with respect to infinitesimal perturbations.
We write

x = x0 + vst + ξ,

so that to first-order inξ:

Mξ̈ = −ksξ − F ′
0(vs)ξ̇.

Assumingξ ∼ exp(κt) gives

κ2 +
[
F ′

0(vs)

M

]
κ +

(
ks

M

)
= 0.

This equation has two zeros. If the real part of the zeros
are negative then the perturbationξ of the steady motion
will decay with increasing time, i.e. the steady sliding state
is stable with respect tosmall perturbations. On the other
hand, if a zero has a positive real part the steady motion
is unstable. Thus, the linevs = vs(ks) in the (ks, vs)-plane,
separating steady sliding from stick–slip motion, is deter-
mined by Reκ = 0, i.e. byF ′

0(vs) = 0. Note that this con-
dition is independentof ks. Thus, for all models where the
friction force only depends on the instantaneous velocity of
the block thevs = vs(ks) curve will be avertical line in the
(ks, vs)-plane. This is contrary to experimental observations,
where it is found that stick–slip always can be eliminated
by using a stiff enough springks. However, as we will now
show, it follows naturally in models where the static friction
force increases monotonically with the time of stationary
contact.

Let us demonstrate that if the static friction force increases
with the time of stationary contact, steady sliding will occur
if ks is large enough. Assume that after the return to the
pinned state the static friction force depends only on the time
t of stationary contact,Fs = Fs(t). We assume thatFs(0)
equals to the kinetic friction force at low sliding velocity
just before stick (we assume overdamped motion), and that
Fs(t) increases monotonically with the timet of stationary
contact, as shown by the solid line inFig. 19. The dashed
lines in Fig. 19 show thespring force, ksvst, as a function
of the time of stationary contact, for three different cases
1–3. In case 1, the spring force increases faster with time
than the initial linear increase of the static friction force;
hence, the motion of the block will not stop and no stick–slip
motion will occur. If the spring velocityvs is lower than
the critical velocityvc (cases 2 and 3) determined by the
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Fig. 19. (Solid line) The variation of the static friction force with the time
of stationary contact; (dashed lines) the spring force for three different
cases 1, 2 and 3, corresponding to the spring velocitiesv1, v2 and v3,
wherev1 > v2 > v3.

initial slope of theFs(t) curve [ksvc = dFs/dt(t = 0)], the
spring force will be smaller than the static friction force
Fs(t) until t reaches the valuet2 (case 2) ort3 (case 3), at
which point slip starts. In these cases stick–slip motion will
occur.

There are several different mechanisms by which the static
friction force may increase with the time of stationary con-
tact:

(a) Formation of capillary bridges in a humid atmosphere,
seeFig. 20a. The formation of capillary bridges between
non-contact regions between the block and the substrate
is a thermally activated process[26,27].

(b) Increase in the contact area due to time dependent (ther-
mally activated) plastic flow (perpendicular creep), see
Fig. 20b. The contact area increases by the growth of
existing contact areas and the formation of new contact
areas[28]. Experimental data[28] and theory[29] shows
that the contact area increases logarithmically with the
time t of stationary contact,A(t) = A(0)+a ln (1+t/τ).

(c) Chain interdiffusion for polymers, or for solids covered
by grafted monolayer films, seeFig. 21. Large inter-

Fig. 20. Mechanisms which give rise to a strengthening of the static
friction with the time of stationary contact. (a) Formation of capillary
bridges. The formation of capillary bridges between non-contact regions
is a thermally activated process; (b) increase in the contact area due to
time dependent (thermally activated) plastic flow (perpendicular creep).
The contact area increases by the growth of existing contact areas and
the formation of new contact areas.

Fig. 21. Two solid surfaces with grafted monolayer films. (a) After “short”
contact time; (b) after “long” contact time. Large interdiffusion is only
possible if the separation between the chains is large enough and the
temperature high enough.

diffusion is only possible if the separation between the
chains is large enough and the temperature high enough.

(d) Shear stress relaxation at the interface. As discussed in
Sections 4 and 5, at “stop” immediately after sliding
there will be a wide distribution of local stresses at the
sliding interface. With increasing time this distribution
relaxes towards aδ(σ)-distribution for which the static
friction is maximal[8].

The last process (d) operates for all sliding interfaces,
while the other processes (a)–(c) may, or may not, contribute
depending on the nature of contacting surfaces. Thus, for
example, time dependent plastic flow occurs in most contact
areas between “natural” surfaces, but for extremely smooth
surfaces no plastic deformation occur and the contact is
purely elastic. This is the case, e.g. in Surface Force Appa-
ratus measurements using smooth mica surfaces. In a recent
work Bureau et al.[6] have been able to study process (d)
in detail by performing experiments on a rough poly(methyl
methacrylate) surface in contact with a very smooth glass
plate. The use of a rough/flat system enables them to take
advantage of quasi-saturation associated with logarithmic
growth of the contact area, by performing experimental runs
of limited duration�t on an interface of “age”T � �t.
Thus, during the time period�t of the measurements, the
contact area stays nearly constant. These important experi-
ments have proved the importance of the relaxation mecha-
nism (d).

Memory effects can be described by replacingF0[ẋ(t)]
in (12) by a friction forceF0[ẋ(t′), t′ ≤ t] which depends
on the velocity of the block̇x(t′) at all earlier timest′ ≤
t. However, in practical applications it has turned out to
be much more convenient (but mathematical equivalent) to
introduce one or morestate variables, θ1(t), θ2(t), . . . , which
obey equations of motion, and to consider the friction force
as a function ofẋ(t) and of θ1(t), θ2(t), . . . . By suitable
choice of the state variables and of the friction lawF0 =
F0[ẋ(t), θ1(t), θ2(t), . . . ], it is possible to take into account
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the processes (a)–(d) above. As an illustration, we consider
a particular useful state variable, namely the “contact age”
variableθ(t). This variable is assumed to satisfy the equation
of motion [30]

θ̇ = 1 − ẋθ

D
.

HereD is the average displacement of the center of mass
of the block (treated as a rigid object) necessary in order
to break a macrocontact area, i.e.D is typically of order a
few micrometers. Note that for stationary contact,ẋ = 0,
we getθ = t, i.e. θ equals the time of stationary contact.
On the other hand, for uniform slidingx = vt we getθ =
D/v, which is the average time a macrocontact area survives
before being broken by the sliding motion. For many natural
systems and for low sliding velocities, the friction force
in (12) is accurately given byF0[ẋ(t), θ(t)] = constant+
A ln θ + B ln ẋ. This type of phenomenological approach to
macroscopic friction dynamics has been very successful both
for “dry” friction [30] and boundary lubrication[31,32].

A Couloumbs friction law state that the friction force is
proportional to the normal load. He et al.[33] have sug-
gested that the explanation for this fact is the (approxima-
tive) independence of the friction coefficient on the normal
pressure, which often is observed at large enough pressure.
However, we do not believe that this is the correct expla-
nation in most practical applications, but rather it follows
from the fact that for rough surfaces the area of real contact
is proportional to the load, and the pressure distribution is
independent of the load[34,35].

8. Rubber friction

Rubber friction differs in many ways from the frictional
properties of most other solids. The reason for this is the very
low elastic modulus of rubber and the high internal friction
exhibited by rubber over a wide frequency region[36,37].

The pioneering studies of Grosch[38] have shown that
rubber friction in many cases is directly related to the in-
ternal friction of the rubber. Thus, experiments with rubber
surfaces sliding on silicon carbide paper and glass surfaces
give friction coefficients with the same temperature depen-
dence as that of the complex elastic modulusE(ω) of the
rubber. This proves that the friction force under most nor-
mal circumstances is directly related to the internal friction
of the rubber, i.e. it is mainly abulk propertyof the rubber
[38].

When rubber slides on a hard rough surface with rough-
ness on the length scalesλ, it will be exposed to fluctu-
ating forces with frequenciesω ∼ v/λ. Since we have a
wide distribution of length scalesλ, we will have a corre-
sponding wide distribution of frequency components in the
Fourier decomposition of the surface stresses acting on the
sliding rubber block. The time-dependent deformations of
the surface region of the rubber block will result in energy

dissipation in the block which gives the major contribution
to the friction force. The contribution to the friction coeffi-
cientµ from surface roughness on the length scaleλ, will
be maximal whenv/λ ≈ 1/τ, where 1/τ is the frequency
where ImE(ω)/|E(ω)| is maximal, which is located in the
transition region between the rubbery region (low frequen-
cies) and the glassy region (high frequencies). We can inter-
pret 1/τ as a characteristic rate of (thermally activated) flips
of molecular segments (configurational changes), which are
responsible for the visco-elastic properties of the rubber.
Since the flipping is a thermally activated process it follows
that τ depends exponentially (or faster) on the temperature
τ ∼ exp(�E/kBT), where�E is the barrier involved in the
transition. In reality, there is a wide distribution of barrier
heights�E and hence of relaxation timesτ, and the tran-
sition from the rubbery region to the glassy region is very
wide, typically extending over three orders of magnitude in
frequency. As a result of the wide distribution of substrate
roughness wavelength and the large width of the loss func-
tion ImE(ω)/|E(ω)|, the kinetic friction coefficient will vary
very slowly with the sliding velocity, and is very large even
at extremely low sliding velocities, e.g. 10−10 m/s. This is
illustrated inFig. 22which shows, for a typical case,µ(v)
over a very large velocity range. The solid line is the result
for a “simple” rubber with a single peak inµ(v), while the
dashed curve is for a case where ImE(ω)/|E(ω)|, and hence
µ(v), has two peaks as would be the case, e.g. in a mixture
of two different rubbers with very different glass transition
temperatures.

Let us now discuss the concept of static friction force for
rubber. If there would be no interfacial pinning processes of
the type described inSections 2 and 3, then, strictly speaking,
the static friction force would vanish. However, because of
the wideµ(v) curve, even very small pull-velocities will
result in a large (apparent) static friction coefficient.

Assume now that the kinetic friction coefficientµk(v) has
the form shown inFig. 22a, solid line, and that we start to
pull the top surface of the rubber block with the speedv0
indicated inFig. 22a. In this case we would observe a static
friction coefficient equal to the kinetic friction,µk(v0), see
solid line inFig. 22b. If there are very low-frequency (long
time) relaxation processes in the rubber (corresponding to
the low-velocity peak inFig. 22a, dashed line), they may
result in a static friction force larger than the kinetic fric-
tion force under most normal sliding friction experiments
[dashed line inFig. 22b]. However, if the sliding velocity
is extremely small [to the left of the low-velocity peak of
µ(v)] the static friction coefficient would again be equal to
the kinetic friction coefficient. Thus, there isno single value
of the static friction coefficient—it depends upon the initial
dwell time and rate of starting.

It has been observed experimentally that when there is no
chain interdiffusion in the contact areas, the friction force
at low sliding velocity (say below 1 mm/s), usually is of the
form shown by the solid line inFig. 1b, so that the static
friction equals the kinetic friction. As an example we show
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Fig. 22. (a) The steady state kinetic friction coefficient (neglecting temper-
ature effects, e.g. by using temperature-frequency shifting in constructing
the curve) for a rubber block sliding on a rough substrate. The dashed
curve indicate a case where there are two maxima inµ(v) corresponding
to two maxima in the mechanical loss function ImE(ω)/|E(ω)|; (b) the
time dependent friction when the upper surface of the rubber block starts
to move at timet = 0 with the speedv0 indicated in (a).

in Fig. 23the friction force for a rubber compounds used for
tires. At t = 0 the upper surface of the rubber block start to
move with the velocity 3.3×10−4 m/s, and the figure shows
the force necessary to keep this constant speed. Note that
µs ≈ µk.

Fig. 23. Friction coefficient observed during sliding of a rubber block on
a hard rough substrate at the nominal contact pressure 0.2 MPa and the
sliding speedv = 3.3 × 10−4 m/s.

Finally, we note that in addition to the contribution to rub-
ber friction from the internal friction of the rubber studied
above, there will in general be another contribution arising
from pinning effects at the interface. Thus, for a clean rub-
ber surface (if that ever exists) in contact with a hard sub-
strate, the rubber molecules at the interface will rearrange
themselves to bind as strongly as possible to the substrate
surface. Because of the lateral (atomistic) corrugation of the
substrate potential this will in general give rise to an energy
barrier towards sliding. However, in many practical situa-
tions this effect seems negligible, or the barriers involved
are so small that they can be rapidly overcome by thermal
fluctuations. If the rubber is in contact with another polymer
surface, e.g. rubber in contact with rubber, chain interdiffu-
sion may also occur at the interface which will give a con-
tribution to the friction force (withµs > µk) [39]. Finally,
since most real surfaces are contaminated with a few mono-
layers of physisorbed organic molecules, the contamination
layer will also contribute to the friction force as discussed
above. However, compared to the large contribution from
the internal friction of the rubber, the latter contribution is
usually negligible.

9. Summary and conclusion

In this paper, we have discussed under which conditions
the static friction is larger than the kinetic friction, and re-
lated it to the nature of thermally activated creep motion.
We have attempted to extract a general picture based on ac-
curate computer simulations, and analytic studies of simple
model systems. We have focused on boundary lubrication
at high confining pressure (∼1 GPa) as is typical for most
practical sliding systems involving hard materials, e.g. steel.
We also discussed the peculiarities of rubber friction, which
is mainly a bulk property of the rubber.

The main results can be summarized as follows. We have
found that in most of our MD computer simulations (at
low sliding velocity), the lubricant molecules tend to be
permanently attached or pinned to one of the solids, e.g.
to the top solid (the “block”). If we describe the (flexi-
ble) lubricant-wall bonds as springs with bending elasticity,
then if the springs are elastically stiff, the system exhibits a
very small static friction, and a (low velocity) kinetic fric-
tion which increases with increasing sliding velocity. On the
other hand, if the springs are soft enough, strong elastic in-
stabilities will occur during sliding resulting in a large static
friction force Fs, and a kinetic friction forceFk equal to
the static friction force at low sliding velocities. In this case
very rapid slip events will occur at the interface, character-
ized by velocities much higher and independent of the drive
velocity v. In computer simulations we have found that (at
low temperature) for (nearly) incommensurate systems,only
when the lubrication film undergoes a phase transformation
at the onset of slip do we observe a static friction coeffi-
cient which is appreciately larger than the kinetic friction
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coefficient. We have given arguments for why, at very low
sliding velocity (for which thermally activated creep occurs),
the kinetic friction force may depend linearly on ln(v/v0),
as usually observed experimentally, rather than non-linearly
[− ln (v/v0)]2/3, as predicted by a simple theory of activated
processes. We have also emphasized the important role of
elasticity at stop and start. We have shown that for “simple”
rubber one may expect (at low start velocity) that the static
friction coefficient would be equal to the kinetic friction co-
efficient.

In general, at non-zero temperature, the static friction co-
efficient will be higher than the kinetic friction coefficient
because of various thermally activated relaxation processes,
e.g. chain interdiffusion or the (thermally activated) forma-
tion of capillary bridges. However, there isno single value of
the static friction coefficient, since it depends upon the initial
dwell time and on the rate of starting. We have argued that
the correct basis for the Coulomb friction law, which states
that the friction force is proportional to the normal load,
is not the approximative independence of the friction coef-
ficient on the normal pressure (which often does not hold
accurately anyhow), but rather it follows from the fact that
for rough surfaces the area of real contact is proportional to
the load, and the pressure distribution in the contact areas is
independent of the load.
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Appendix A

In this appendix we will calculate the timeτ. Substituting
(6) in (8) gives

τ =
∫ 0

−∞
dt

[
1 − exp

(
−ν

∫ t

−∞
dt′e−βA(−vt′)3/2

)]
.

Replacing(βA)2/3(−vt) = y and(βA)2/3(−vt′) = x gives

vτ = (βA)−2/3
∫ ∞

0
dy

[
1 − exp

(
−α

∫ ∞

y

dx e−x3/2
)]

,

(A.1)

where

α = ν

v
(βA)−2/3. (A.2)

Now, note thatα → ∞ asv → 0. As a result, for smallv a
very large range ofy-values (0< y < y∗, wherey∗ will be

determined below) will contribute to the integral overy in
(A.1). Writing x = y(1 + ξ) we get for largey:
∫ ∞

y

dx e−x3/2 = y

∫ ∞

0
dξ e−y3/2(1+ξ)3/2

≈ y

∫ ∞

0
dξ e−y3/2(1+3ξ/2) = 2

3
y−1/2 e−y3/2

.

Now, note that

2
3αy

−1/2 e−y3/2 = 1

gives

y3/2 = ln
(

2
3α

)
+ ln y.

For largeα it is easy to solve this equation by iteration. To
lowest order we get

y ≈
[

ln
(

2
3α

)]2/3 ≡ y∗.

We can now approximate the integral (A1) with

vτ ≈ (βA)−2/3
∫ y∗

0
dy = (βA)−2/3

[
ln

(
2

3
α

)]2/3

or

vτ ≈ (βA)−2/3
[
− ln

(
v

v0

)]2/3

, (A.3)

where

v0 = 2
3ν(βA)

−2/3. (A.4)

Appendix B

In this appendix we present more results for the sliding
of flat surfaces separated by≈1/3 monolayer of CH4. Let
us first briefly return to the system displayed inFig. 10. We
will address the following questions:

1. Why is the friction coefficient so high (µ ≈ 0.1) when
the CH4 molecules form islands which are (nearly) in-
commensurate with the block and the substrate?

2. During sliding we observe that the CH4 islands merge
into larger islands. Why?

The answer to both questions is related to the fact that be-
cause of the relatively low elastic modulus of the solids, the
external pressure and the wall–wall adhesion interaction will
deform the solids so that complete wall–wall contact occurs
between the CH4 islands (seeFig. 24a). In the wall–wall
contact areas, the wall atoms form domain wall super struc-
tures, where the area between the domain walls consist of
(1×1) domains (where the block atoms are in registry with
the substrate atoms). During sliding rapid events occur at
the wall–wall interface, and this rather than the CH4 islands
is likely to be the reason for the relatively high friction co-
efficient.
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Fig. 24. (a) Snapshot picture of the lubricant system shown inFig. 10;
(b) snapshot picture of the lubricant system shown inFig. 26. Vertical
slices (xz-plane, −10 Å < y < 10 Å). Both calculations use the same
model parameters, except that the elastic modulus is a factor 10 higher
in case (b). In case (a) the combination of the external pressure and
the wall–wall adhesion interaction is able to deform the solids so that
complete wall–wall contact occurs between the CH4 islands. In case (b)
the elastic modulus is so high that only a very small “buckling” of the
solid walls into the regions between the CH4 islands occurs.

The elastic deformation of the solid walls around the CH4
islands corresponds to a line energy. The system tries to
minimize the (free energy) by reducing the line energy. This
occurs, e.g. when two islands merge into a single island.
In Fig. 25 we show a sequence of such snapshots which
illustrates the merging of two CH4 islands.

Let us now contrast the results above with results obtained
for a system characterized by exactly the same parameters as
used above, except that the elastic modulus now is 10 times
higher, similar to that of gold.Fig. 26 shows a snapshot
picture of the system which should be compared toFig. 10,
as obtained with a 10 times lower elastic modulus. In the
present case the CH4 molecules form a square lattice (or,
equivalently, ac(2×2) structure relative to the block surface
atoms) which is strongly pinned to the bottom surface of
the block. During sliding there is no change in the structure
of the CH4 islands, and the islands follow the motion of
the block. Because of the relatively high elastic modulus
and strong pinning of the lubricant film to the block, there
is practically no elastic instability happening in the present
system and the sliding friction is extremely low, onlyµk ≈
1.7×10−3 (at 10 m/s sliding velocity). The drastic difference

Fig. 25. A sequence of snapshot pictures during sliding (vs = 10 m/s),
illustrating the merging of two CH4 islands. Each picture shows a vertical
slice (xz-plane,−10 Å < y < 10 Å). The snapshots are separated by equal
time periods.

Fig. 26. Snapshot picture of a part of the contact area showing the
lubrication film consisting of CH4 molecules confined between two flat
solid walls of gold, with the block and substrate atoms removed. Note
that the CH4 molecules (locally) form a commensurate (with respect to
the block) square structure, which is pinned to the bottom surface of the
block. This square structure remains during sliding. The CH4 islands do
not change their shapes during sliding, and different islands move with
the same velocity. WithE = 7.7 × 1010 Pa, T = 10 K, ks = 30 N/m,
vs = 10 m/s andP = 108 Pa.

between the systems inFigs. 10 and 26is related to the
difference in the elastic modulus of the solid walls which
implies a much smaller relaxation of the solid walls into
the regions between the CH4 islands. This is illustrated in
Fig. 24b. In Fig. 24a, the strong bending of the solids into the
regions between the CH4 islands will generate a strong line
force which tends to squeeze together molecules in the CH4
islands as much as possible; this is the reason for the close
packed hexagonal CH4 structure in this case. On the other
hand, the boundary line force is negligible in the case shown
in Fig. 24band the CH4 molecules take the square structure
shown inFig. 26 which maximizes the binding energy to
the solid walls.

The boundary line forces, which are the origin of the
merging of islands (seeFig. 25), and the compactification of
islands (compareFig. 10with Fig. 26), also have other im-
portant manifestations, recently observed in Surface Forces
Apparatus (SFA) measurements[40]. Thus, in one set of
experiments, 2D islands of trapped lubricant fluid were ob-
served after the squeeze-out of most of the lubricant. The
islands slowly drifted towards the periphery of the contact
area where they finally got squeezed out. The drift motion
of the islands results from the Hertzian-like pressure dis-
tribution in the contact area. The line force acting on the
island has a contribution (see[41]) proportional to the per-
pendicular Hertzian pressureP(r), and sinceP(r) is higher
on the inner side (towards the center of the contact area) of
the island, there will be a net force acting on the island in
the direction towards the periphery of the contact area, re-
sulting in a slow drift of the island towards the periphery of
the contact area. SFA measurements have also shown that in
some cases the line tension is so high that it compresses the
monolayer islands into thicker islands, two or more mono-
layers thick (this process reduces the free energy of the sys-
tem). The magnitude of the line tension is also important for
the smoothness of the boundary line during squeeze-out.

Let us finally compare the results obtained above with
results obtained for a system characterized by exactly the
same parameters as used above (withE = 7.7 × 109 Pa,
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T = 10 K, ks = 30 N/m, vs = 10 m/s andP = 108 Pa),
except that the wall–wall interaction is equal to zero. In
this case the CH4 molecules form a square lattice (or a
c(2×2) structure relative to the block surface atoms), which
is strongly pinned to the bottom surface of the block, just
as for the system shown inFig. 26 (which is based on the
same model but with 10 times higher elastic modulus of the
solids and including wall–wall interaction). During sliding
there is no change in the structure of the CH4 islands, and the
islands follow the motion of the block. Now, because of the
absence of the wall–wall adhesion interaction, and because
of the strong pinning of the lubricant film to the block, only
very weak elastic instabilities occur in the present system,
and the sliding friction is very small, onlyµk ≈ 3.8× 10−3

(at 10 m/s sliding velocity). The drastic difference between
the present system and that presented inFig. 10is related to
the zero wall–wall adhesion interaction which (at moderate
external pressure) gives a much smaller relaxation of the
solid walls into the regions between the CH4 islands. Thus,
the side view of the present system is very similar to that
shown inFig. 24b. The very small bending of the solids into
the regions between the CH4 islands (but greater than in
Fig. 24b), generates a weak line force which is not enough
to squeeze the CH4 islands into the high density hexagonal
structure. Furthermore, many small islands (similar to those
shown inFig. 26) remain during sliding (i.e. no merging of
islands). The structure of the islands (the CH4 molecules
form a square lattice structure (orc(2× 2) structure relative
to the block surface atoms)) is the same as inFig. 26since
the line force is not strong enough to compress the islands
(which would result in the CH4 molecules forming the close
packed hexagonal CH4 structure shown inFig. 10).
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