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Abstract

Industrial pollution by potentially toxic elements (PTE) remains a key environmental

threat, resulting in soil and ecosystem degradation. Remediation of the industrial bar-

rens is challenging in polar regions, where plant growth is hampered by severe cli-

matic conditions. High-resolution mapping of soil pollution is needed to support soil

remediation and management projects. The distribution of nickel (Ni) and copper

(Cu) was analyzed in the topsoil within the industrial barren around the Ni and Cu

smelter in Kola Peninsula, Russia using a field-portable XRF analyzer. Bulk Cu and Ni

contents were measured at 84 observation points within the area of two hectares

planned for remediation. The PTE content varied between 0.2 and 9.0 g kg�1 for Cu

and between 0.2 and 21 g kg�1 for Ni. The area was surveyed with unmanned aerial

vehicles and differential global navigation satellite systems to obtain a high-accuracy

digital terrain model for exploring the factors behind the spatial variability. Field

observations were interpolated by regression kriging with different input resolution

of auxiliary data (0.5–1.0–1.5–2.0 m) and different regression models (gradient boo-

sting machines and multiple linear regression). Model performance and validation

showed that 1.0–1.5 m resolution of auxiliary data were the best for projecting Cu

and Ni topsoil contents within the study site. The soil type and topographic wetness

index were the most important variables explaining Cu and Ni content variability.

K E YWORD S

gradient boosting machines, industrial barren area, polar regions, potentially toxic metals,
technogenic soils, unmanned aerial vehicle

1 | INTRODUCTION

Industrial pollution leads to severe environmental circumstances glob-

ally, especially in regions where unfavorable climatic conditions con-

strain ecosystem restoration. In polar regions, long-term intensive soil

pollution by potentially toxic elements (PTE) results in the formation

of industrial barrens - bleak open landscapes (foliage projective cover

less than 10%) evolved around the point sources of industrial

pollution (Kozlov & Zvereva, 2007). A significant part of more than

40 globally recognized industrial barrens was formed due to the activ-

ity of non-ferrous industrial plants and their aerial emissions. The

industrial barren formed because of the influence of the copper-nickel

smelter in the vicinity of Monchegorsk at the Kola Peninsula is one of

the World's largest. The Cu-Ni smelter [Kola Mining and Metallurgical

Company ( MMC), former «Severonickel»] is among the leading global

producers of nickel, copper, and cobalt and, therefore, one of the
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most significant sources of metal emissions in Northern Europe.

Founded in 1938, the MMC plant is active nowadays, and its annual

emissions estimated up to 40 Gg are deposited on vast areas about

300 km distance from the source (Nikanov et al., 2020; Slukovskaya,

Vasenev, et al., 2020). The measures taken in 1999 under the environ-

mental protection strategy reduced the gross emissions of non-

soluble metal compounds to 1608–1780 t for Ni and 877–1096 t Cu

reported during recent years (Nikanov et al., 2020). Nevertheless, soils

at the industrial barren in the impact zone of the plant remain heavily

contaminated by Cu and Ni because of long-term emissions. The con-

tent of PTE in the topsoil can reach extremely high values which are

comparable to the processed Cu/Ni ore (Ni – 0.24%–4.2%, Cu –

0.36%–5.8%) (Kashulina, 2017) and exceed the health thresholds and

background content by 1–3 orders of magnitude (Kashulina, 2018).

Several attempts have already been made to investigate the spatial

distribution and temporal dynamics of the PTE in soils of the industrial

barren at sites located up to 75 km away from the smelter

(Kashulina, 2017, 2018; Lyanguzova et al., 2016), and an exponential

decrease in the contaminants' content with the distance from the pollu-

tion source was reported (Lyanguzova et al., 2016). Although the gen-

eral patterns in spatial–temporal variability of soil pollution at the

industrial barren were described, there are still gaps in quantitative

assessments of local variations related to topography, soil types and

properties. Considering a hilly meso-relief and a complex structure of

soil cover, including Histosols and Podzols, the existing gaps hamper the

accuracy of the PTE maps and limit their value for remediation planning.

High-resolution mapping by conventional soil survey approaches

and soil analysis in chemical laboratories (e.g., by atomic absorption or

ionic coupled plasma spectrometry) is hardly applicable for the area of

industrial barren due to high costs and long time needed for analysis.

Smart technologies of proximal sensing, including remote sensing and

express non-destructive measurements, can provide an alternative

fast and cost-effective solution (Shi et al., 2018). Proximal sensing is

widely used for express analysis and mapping contents of nutrients,

salts or PTEs in soils (Guo et al., 2015; Hong et al., 2019; Nouri

et al., 2018). Portable X-ray fluorescence (pXRF) spectrometry pro-

vides an opportunity to measure the bulk concentration of PTEs in

the field with minimal sample preparation and relatively high accuracy

(Qu et al., 2019; Sacristán et al., 2016; Xia et al., 2019). Unmanned

aerial vehicles (UAV) with multispectral and hyperspectral cameras

enable direct (through spectral properties of polluted soils) and indi-

rect (through the spectral signatures of pollution-induced constrains

for the vegetation growth) (Gholizadeh & Kopačková, 2019) mapping

of the PTE contents in soils (Boente et al., 2020; Tan et al., 2020).

Given the quasi-complete absence of vegetation (ca. 10%) within

industrial barrens (Kozlov & Zvereva, 2007), a high-accuracy digital

terrain model (DTM) can be derived based on photogrammetric

processing of UAV data to analyze the effect of micro- and

meso-topographic features and associated soil patterns on the PTE

distribution. Since the distribution of PTE in soils are geographically

determined and may closely be related to other environmental

variables (proxies), the combination of geostatistical and non-

geostatistical methods can be considered as an optimal approach to

achieve high mapping accuracy (Li & Heap, 2014; Zhu & Lin, 2010).

Non-linear models shall be preferred considering the non-linear inter-

actions between the landscape components. However, the overall

interpolation accuracy would depend on the number of input observa-

tion points and the output resolution of the interpolation grid

(Hengl, 2006).

This paper aimed to: i) assess spatial variations of Cu/Ni topsoil

content at a high spatial resolution based on the remote UAV and

proximal sensing; ii) explore the topographic variables as a potential

proxy for mapping Cu/Ni contents at the industrial barren considering

topographic and soil patterns; iii) test the effect of the input data reso-

lution and different interpolation models on the accuracy of the soil

pollution maps at the industrial barren.

2 | MATERIALS AND METHODS

2.1 | Study site description

The research area is located on the Kola Peninsula north of the Polar

Circle. The regional subArctic climate is considered cold with no dry

season and cold summers (Dfc according to updated Köppen-Geiger

classification, [Beck et al., 2018]). The native vegetation of the area

around Kola MMC before the smelter establishment was dominated

by northern taiga species: Picea abies and Pinus sylvestris (Manninen

et al., 2015). Leptic Albic/Entic Podzol is a dominating soil type in

the area.

The study site (67.9 N, 32.8E) is in the vicinity of Monchegorsk

situated at 1.5 kilometres north of the pollution source within the

impact zone of the smelter (Figure 1). The study site is a two-hectare

area of a typical industrial barren. This area was developed over

decades of industrial pollution resulting in the complete degradation

of the plant cover (Kryuchkov, 1993). Naturally, the territory belongs

to the northern boundary of the northern taiga zone. However, the

studied industrial area was only sparsely vegetated with the domina-

tion of Salix L. sp. and Betula pubescens Ehrh. trees (Koptsik

et al., 2016). The site has a diverse meso-topography, including the

top of the hill, hill slopes, and two local depressions. The prevailing soil

types are Skeletic Leptic Entic Podzol (Arenic, Toxic) (hilltop and

slopes) (further – Podzol) and Dystric Rheic Hemic Histosol (Toxic)

(local depressions) (further - Histosol), according to IUSS World Refer-

ence Base (IUSS Working Group, 2015). A remediation project

implemented on the part of the site in 2003 included covering the

degraded Podzol subsoils by valley peat (Koptsik et al., 2016). It

resulted in forming semi-natural soil, which we identified as Skeletic

Leptic Entic Podzol (Arenic, Organotransportic, Toxic) (further – His-

tosol/Podzol). The identified soil types differed in the capacity to

accumulate the PTE and the ratio of soluble and non-soluble forms of

metals. In the Podzol, Ni was mainly accumulated in non-soluble forms

with the bioavailability of 1.5%, while Cu was predominantly (60%)

available for plants (Slukovskaya et al., 2019). Metal bioavailability in

the Histosol was 19% for Ni and 57% for Cu (Slukovskaya,

Kremenetskaya, et al., 2020).
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2.2 | Field survey

The observation locations were selected based on a random strati-

fied design. The area was subdivided into 20 m by 20 m grids and 1–

2 observation locations inside each grid cell were randomly selected

(84 in total). Bulk concentrations of Cu and Ni in soil surface were

measured in the field using the Olympus Vanta portable X-ray fluo-

rescence analyzer (pXRF). The pXRF analyzer was placed on top of a

clear plastic bag on the desired location (to protect the lens from

contamination) to take measurements within 60 s exposure time.

The pXRF analyzes an area of 10 mm2 and penetrates to a depth of

2 mm (Kalnicky & Singhvi, 2001). The maximal measurement error

did not exceed 3%, according to the internal instrument assessment.

The observation locations were selected randomly but with the aim

to cover all geomorphological units such as slopes, hilltop, small val-

leys and depressions, and various soil types. In addition, soil samples

from 84 locations were taken for the determination of soil carbon

content, pH and bulk density in the laboratory. The soil samples

were grouped by soil type: ‘Podzol’, ’Histosol’ and ‘Histosol/

Podzol’.
The land cover of the site was surveyed with the drone DJI Mavic

2 Pro equipped with Hasselblad 20 MP resolution and �77 degree

viewing angle camera. Overflights were organized through

DroneDeploy© software. Input flight parameters were set to 3 m s�1

speed, 90 m flight altitude, front overlap – 90%, lateral overlap – 85%.

In total, 123 images 5472 � 3648 px covering the entire study site

were taken.

Differential global navigation satellite system (GNSS) survey

within the study area was performed using STONEX© S9III differential

GPS/Glonass in RTK mode. This method allows measuring point coor-

dinates with the plane and vertical accuracies of 1 and 2 cm, respec-

tively. During the survey, we have measured geospatial coordinates

and elevations of each observation point (n = 84) as well as of the

additional ground control points (GCP) for the UAV survey (n = 5) and

of additional points within the study site for better representation of

topography (n = 105).

F IGURE 1 Monchegorsk industrial barren (ESRI© Basemap layers, photo of the author dated to July 2020) [Colour figure can be viewed at
wileyonlinelibrary.com]
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2.3 | Topographic data

Raw UAV survey data were processed within AGISOFTt© Metashape

Professional 1.6.4 software to obtain a high accuracy digital surface

model (DSM). The measured GCPs were incorporated into the project

for improving spatial and vertical accuracy. Vegetation was filtered

using the internal software algorithm. The filtered DSM was further

re-projected into UTM Zone 36 N projection (datum WGS-84), res-

ampled to the spatial resolution of 0.5 m, and exported as GeoTIFF.

This DSM was further improved to obtain a hydrologically correct rep-

resentation of the terrain. From the exported raster, contours were

extracted at 0.2 m intervals, and all contours were manually corrected

and cleaned from artifacts related to misclassified vegetation. An

improved digital terrain model (DTM) was created by interpolating

corrected contours and measured points (preference in the interpola-

tion) using TopoToRaster algorithm with drainage enforcement

(Hutchinson, 1989) within the ESRI© ARC GIS 10.2 software. The

improved DTM was produced at four different spatial resolutions: 0.5,

1.0, 1.5, and 2.0 m, to test how the input resolution influences the

interpolation of Cu and Ni content values, similarly to Florinsky &

Kuryakova (2000). Several topographic variables were obtained:

slopes, aspects, total curvature, flow direction, flow accumulation, and

topographic wetness index (TWI) as derivatives from the DTM. All

topographic variables were calculated within the R environment

(R Core Team, 2017) using packages ‘raster’ (Robert & van

Etten, 2012), ‘dynatopmodel’ (Quinn et al., 1995) and ‘spatialEco’
(Evans, 2020).

2.4 | Environmental variables

In total, we have compiled eight environmental variables that were

further used as predictors within the multiple linear regression (MLR)

and gradient boosting machines (GBM). Most of them are topo-

graphic variables (n = 7): elevation (m), slopes (degrees), aspect

(degrees), total curvature, TWI, flow direction, and flow accumulation.

Total curvature represents the convexity and concavity degree of

topographic patterns, that is, one raster cell relative to the other eight

surrounding raster cells (Zeverbergen & Thorne, 1987). Negative cur-

vature values correspond to concave and positive to convex patterns.

TWI is an index that combines local upslope contributing area and

slope, representing the interconnection between topography and

hydrology (Beven & Kirkby, 1979). It quantifies the potential amount

of surface inflow that can be drained through and accumulated in

each raster cell: higher index values belong to flat depressions

whereas low – to hilltops and steep hill slopes. Flow direction raster

is a numerical clockwise coding of the drainage and is calculated for

each cell according to the difference between the elevation of the

target cell compared to eight neighbouring cells (Jenson &

Domingue, 1988). Flow accumulation is a quantitative assessment of

the cell amount that can potentially be drained through the target cell

(Jenson & Domingue, 1988). Another variable, ‘soil types’, was

mapped by digitizing manually the orthophotographs and using the

field descriptions. Based on the previous soil surveys, these types

were coded as ‘Podzol’, ‘Histosol’, and ‘Histosol/Podzol’. All data
were presented as float values except soil type (factor 1–3) and flow

direction (integer).

2.5 | Statistical processing and regression kriging

We have chosen the regression kriging as an approach for Cu/Ni data

interpolation within the study site. The approach included the multiple

linear/non-linear regression model fitting between dependent vari-

ables (Cu/Ni contents) and independent explanatory variables

followed by the kriging of regression residuals.

Entire Cu/Ni experimental dataset (n = 84) was randomly

divided into two sets: 1) training (80%) and 2) test (20%). Training

data were used within regression kriging (RK) and test dataset – for

quality assessment. Response variables (Cu and Ni contents in the

topsoil) were square-root – transformed prior to the analysis to fulfill

the normality distribution requirement for the linear regression

models.

To explain the deterministic part of variations for Cu and Ni, two

regression modeling approaches were initially chosen: MLR and GBM

available within ‘caret’ package in the R environment (R Core

Team, 2017). Seven-fold cross-validation was applied to both models

to avoid biases. We assessed the regression model's performance

using two criteria: adjusted R2 (R2
adj) and prediction root-mean-

squared error (RMSE). R2
adj was calculated as follows:

1� 1�R2
� �

�½ðn-1Þ=ðn-p-1Þ�,

Where: R2 is calculated as the sum of squares of fitted values

divided by sum of squares of the observed values, n is the number of

observations (n = 68 for the training set), p is the number of predic-

tors used within the model. Model RMSE was calculated as follows:

X
f–oð Þ^2=n

� �
^0:5

h i
,

Where: f is a vector of fitted values and o is a vector of observed

values. Residuals from the final MLR and GBM models (for Cu and

for Ni) were further used in variogram fitting and kriging. Variograms

for MLR and GBM residuals were fitted using the ‘gstat’ package

(Gräler et al., 2016) within the R environment (R Core Team, 2017).

Exponential models were used to fit all variograms. The mean kriging

variance (kriging RMSE) was calculated for each of interpolated ras-

ter and included in the quality metrics assessment at the validation

stage.

At the validation stage, all obtained maps were converted from

square root values into original Cu/Ni content values, and interpo-

lated values were extracted for quality control for each test point

(n = 16). We have assessed the following map quality indexes

(Wadoux & Brus, 2021): mean absolute error (MAE), RMSE, and R2 of

observed (test dataset) and interpolated Cu/Ni content values. The

scheme of the workflow is presented in Figure 2.
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3 | RESULTS

3.1 | Field soil survey and XRF data

The soil survey allowed capturing variability in morphological and

chemical properties, which was mainly explained by the determined

soil types. Podzol profile lacked organic horizon (A) and the major part

of elluvial (E) horizon, removed by intensive water erosion. A shallow

illuvial (Bhs) horizon covered glacial parent materials with many stony

inclusions. The previous remediation project based on covering

degraded Podzol with a peat layer resulted in the formation of the

Histosol/Podzol profile with the organic (RAT) horizon on the top of

the Podzol profile described above. The profile of Histosols located in

depression included two layers of peat, which differed in the level of

organic matter decomposition. The ground water level was indicated

at the 50 cm depth (Figure 3a). Soil formation and morphology

resulted in a significant difference in soil properties. Total topsoil car-

bon content in Histosol was 60% higher than in Histosol/Podzol and

more than four-times higher compared to Podzol (Figure 3b). The

opposite pattern was reported for the bulk density: 1.13 (SD = 0.27)

for Podzol compared to 0.45 (SD = 0.24) for Histosols and 0.62

(SD = 0.26) for Histosol/Podzol. Soil pHH2O ranged within 4.3–4.6

(95% confidence interval) with the minimal values for Histosols

(Figure 3c). Soil factor explained 57% of the variance in carbon con-

tent and bulk density and 15% of the variance in pH (one-way

ANOVA, p <0.05).

In comparison to the background concentrations (0.005–

0.007 g kg�1 according to Kashulina (2017) the topsoil bulk content

of Cu and Ni was 2–3 orders of magnitude higher at all observation

points with the median values of 2.7 and 4.5 g kg�1, respectively.

Standard deviations (SD) were 1.98 and 5.28 g kg�1, respectively.

Training data for the regression (n = 68, Cu: range 0.14–8.72 g kg�1,

median 2.76 g kg�1, SD 1.89 g kg�1; Ni: range 0.18–20.99 g kg�1,

median 4.85 g kg�1, SD 5.18 g kg�1) has a similar value distribution as

the test dataset (n = 16, Cu: range 0.46–9.0 g kg�1, median

2.47 g kg�1, SD 2.37 g kg�1; Ni: range 0.53–17.48 g kg�1, median

4.44 g kg�1, SD 5.85 g kg�1) as well as complete dataset. Square root

transformed test data for Cu and Ni were distributed normally

(Shapiro–Wilk normality test: p = 0.37 for Cu, p = 0.06 for Ni). The

histogram for square root transformed Cu and Ni values is symmetri-

cal with the bi-modal distribution of variables (Figure 4).

The Cu content had also high heterogeneity within samples of

specific soil type: 0.14–3.76 for the Podzol, SD = 1.05; 1.13–5.71 for

the Histosol/Podzol, SD = 1.41; and 2.06–9.04 for the Histosol,

SD = 1.96. The Ni content (g kg�1) was in the range of 0.18–16.83 in

Podzol, SD = 3.81; 1.35–20.29 in Histosol/Podzol, SD = 5.65; and

4.25–21 in the Histosol, SD = 4.08.

3.2 | Environmental variables of the study site

The topography of the study site was presented by different geo-

morphological units. A hilltop covered by relocated peat and

sparsely vegetated (Figure 5), hill slopes of various steepness up to

26� (Table 1), and flat depressions covered predominantly by His-

tosol (Figure 5). The absolute height range is relatively small

(ca. 18 m), varying from 159 to 177 m (Figure 5b, Table 1). The

characteristic feature of the study site is the microtopography –

bedrock outcrops with overhydrated margins that are highly vul-

nerable to chemical weathering due to acidic precipitations in the

vicinity of the smelter.

3.3 | Regression kriging

3.3.1 | Multiple linear regression and gradient
boosting machines

The values of environmental variables for each training sampling point

(n = 68) were sampled from the DTM of four different spatial

F IGURE 2 Workflow scheme
of models' calibration and
validation of final maps
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resolutions (0.5–1.0–1.5–2.0 m). The spatial resolution had a particu-

lar effect on the final MLR and GBM models developed for these four

datasets. All 16 final models (four – MLR and four – GBM for Cu and

Ni, respectively) were statistically significant (p <0.05). The soil type

(difference between soils with high (Histosol, Histosol/Podzol) and

low (Podzol) content of organic matter) was found to be an important

variable explaining the considerable proportion of Cu and Ni variance

in all models. Models have differed according to the list of other sta-

tistically significant topographic variables, and the overall percentage

of the model's variance. The differences have been observed between

models built for Cu and Ni at the same resolution DTM. In general, a

higher R2
adj was estimated for Cu compared to Ni (Table 2).

3.3.2 | Mapping Cu and Ni content in the topsoil

Based on the obtained MLR and GBM models and fitted variograms, we

created 16 maps of Cu and Ni contents (eight for each PTE) and have

integrated all the maps into a single raster file as several raster bands.

Raster statistics and calculated metrics for test points (n = 16) are sum-

marized in Table 3. Best validation metrics with optimal value ranges

were obtained for Cu and Ni raster maps based on regression kriging

with MLR/GBM models calculated for 1.0 and 1.5 m resolution DTM

(Table 3). In general, MLR models significantly overestimated the upper

limit of Cu and Ni contents of the study site, shifting it down with the

decrease of raster resolution, but these overestimations did not exceed

0.3% of the total number of pixels and can be considered as outliers in

our case. On the contrary, GBM models have shown very robust con-

tent ranges across all raster resolutions: Cu median content varied from

2.5 to 3.0 g kg�1, and for Ni, these ranges were between 5.6 and

8.2 g kg�1 (Table 3). Surprisingly, MLR models have shown better valida-

tion metrics compared to GBM: R2 and RMSE of 0.7 and 1.41 versus

0.6 and 1.6 for Cu based on 1.5 m resolution; 0.43 and 4.29 versus 0.29

0.0

0.5

1.0

1.5

1.0 1.5 2.0

Content g kg−1 (sqrt−transformed)

D
en

si
ty

Parameter
Cu
Ni

F IGURE 4 Histogram distributions of the response variables
(Cu and Ni contents in the topsoil [square root transformed]) [Colour
figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Soil profiles and
chemical properties [Colour figure
can be viewed at
wileyonlinelibrary.com]
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and 4.77 for Ni-based on 1.0 m resolution. GBM based RK provided a

smoother picture of Cu/Ni distribution maps (Figure 6b,d) compared to

MLR based RK (Figure 6a,c). Although both models inherited the spatial

structure of main predictors (soil type and TWI), GBM has been shown

to perform better at the margins of different soil types and within these

soil units. Validation metrics (Table 3) did not show any significant

patterns of how raster resolution influences the quality of produced

maps: R2, RMSE and MAE varied in the same range both for Cu and

Ni. And it is hard to conclude the best choice of raster resolution based

on obtained validation metrics. Given the model performance analysis

(Table 2) and validation metrics for Cu, we consider the input resolution

of 1.5 m as optimal for such an area and sampling density.

F IGURE 5 Topographic representation of the study area and field-measured Cu and Ni content: (a) yellow circles: Cu content, g kg�1,
background: orthophoto of the study site exported from AGISOFT Metashape professional© software; (b) Rose circles: Ni content, g kg�1,
background: absolute heights of the study site (m asl) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Summary table of prepared environmental variables

Variable, unit Rangea Meana Data type Instrument

Elevation, m 159.4–177.1 164.3 float UAV processing

Slopes, degrees 0–26.5 6.7 float R raster (Robert & van Etten, 2012)

Aspect, degrees 0–360 140.4 float -

Curvature �0.1–0.7 0 float R spatialEco (Evans, 2020)

TWI 4.0–16.2 6.7 float log(flowacc/tan[slope/180]) (Beven & Kirkby, 1979)

Flow direction 1–128 24.4 int R raster (Robert & van Etten, 2012)

Flow accumulation (flowacc) 2.2–5528.4 63.2 float R dynatopmodel (Quinn et al., 1995)

Soils Histosol (1) – 29% factor Manual delineation from orthophoto + field descriptions

Histosol/Podzol (2) – 14%

Podzol (3) – 57%

aRange are calculated based on 1.5 m DTM; for other resolutions, ranges may insignificantly deviate.

DVORNIKOV ET AL. 7
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The topographic factor mainly explained high spatial variability in

Cu and Ni contents within soil types captured by an intensive soil survey

with pXRF. For example, the GBM model built upon 1.5 m resolution

data showed a significant effect of TWI below 7.0 on Cu and Ni con-

tent. However, no influence was observed for the TWI above this value.

4 | DISCUSSION

4.1 | Distribution of Cu and Ni in the topsoil of the
industrial barren impact area

The pollution mapping of the research area revealed high PTE con-

tents (median Cu – 2.5 g kg�1, Ni – 7.6 g kg�1), which is in good

coherence with the previous studies, reporting the content of Cu and

Ni peaking to 6 and 9 g kg�1, respectively (Kashulina, 2017). The

outcomes are also comparable to the PTE contents reported for the

heavily polluted 3 km buffer zone (Cu: 1.3–3.5 g kg�1, Ni: 2.5–

4.2 g kg�1) (Evdokimova et al., 2011). Similar studies in the vicinity of

the Sudbury smelters (Canada) also showed soil pollution by Cu and

Ni, but in lower contents (max 1.3 g kg�1 for Cu and 0.9 for Ni)

(Dudka et al., 1995). The high correlation between Cu and Ni

(R = 0.86) has also been found in samples from sites located in Sud-

bury, but the spatial gradient from the pollution source was not signif-

icant (Dudka et al., 1995).

Although the absolute values obtained by pXRF might deviate from

the standard ICP-measurement, the revealed spatial patterns are robust

(Qu et al., 2019). Besides, higher deviations are often shown for the

small PTE contents close to detection limits, whereas for the highly pol-

luted soil the pXRF results are relevantly accurate (Xia et al., 2019).

Soil variability has a substantial impact on the spatial patterns of

PTE distribution both directly (e.g., via soil organic matter content, soil

TABLE 2 Performance of obtained
MLR and GBM models

Resolution, m

Adjusted R2 RMSE

MLR GBM MLR GBM

Cu Ni Cu Ni Cu Ni Cu Ni

0.5 0.51 0.48 0.69 0.43 0.38 0.70 0.19 0.61

1.0 0.56 0.39 0.56 0.34 0.36 0.76 0.29 0.66

1.5 0.56 0.43 0.76 0.55 0.36 0.74 0.16 0.54

2.0 0.50 0.45 0.72 0.49 0.38 0.72 0.18 0.58

Note: bold marked are best metrics among all models.

TABLE 3 Summary of raster maps

Resolution, m Model

Content, g kg�1 Metrics (validation), n = 16

Min Max Med Kriging RMSE R2 MAE RMSE

Cu

0.5 MLR 0.0 124.0 2.0 0.16 0.55 1.23 1.57

GBM 0.1 7.9 2.5 0.03 0.38 1.37 1.82

1.0 MLR 0.0 12.5 2.3 0.13 0.48 1.23 1.69

GBM 0.2 6.7 2.5 0.08 0.35 1.30 1.87

1.5 MLR 0.0 16.4 2.6 0.14 0.70 0.89 1.41

GBM 0.1 7.8 2.9 0.03 0.60 1.10 1.60

2.0 MLR 0.5 12.9 2.6 0.14 0.54 1.31 1.64

GBM 0.1 8.3 3.0 0.03 0.37 1.44 1.86

Ni

0.5 MLR 0.0 455.3 5.1 0.51 0.39 3.40 4.42

GBM 0.2 21.5 5.8 0.36 0.23 3.80 5.01

1.0 MLR 0.0 22.1 5.2 0.52 0.43 3.37 4.29

GBM 0.2 17.5 5.6 0.40 0.29 3.68 4.77

1.5 MLR 0.6 30.8 6.0 0.58 0.28 3.55 4.94

GBM 0.4 20.9 8.2 0.28 0.14 4.11 5.60

2.0 MLR 0.7 48.7 5.4 0.56 0.26 3.72 4.92

GBM 0.2 22.0 7.0 0.34 0.24 3.68 5.04

Note: predictions of Cu and Ni content, as bold outlined are best metrics. The statistics is calculated for

135,432, 33,488, 14,766, 8137 pixels (resolution 0.5, 1, 1.5, 2 m respectively).
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F IGURE 6 Content of Cu and Ni in the
topsoil (g kg�1): (a),(b) Cu, (c),(d) Ni and important
variables explaining its' spatial difference: (e) soil
types, (f) TWI. Maps were obtained by regression
kriging (MLR model input (a),(c) and GBM
(b),(d) based on 1.5 m resolution dataset) [Colour
figure can be viewed at wileyonlinelibrary.com]
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moisture and buffer capacity) and indirectly (e.g., via soil catenas fol-

lowing the meso-topographic forms). In the research site, soil pollution

decreased in a row: Histosol > Histosol/Podzol > Podzol. Topsoil

organic matter content was the main influencing factor, which is also

confirmed by a significant positive correlation with Cu and Ni con-

tents (Paltseva et al., In press). Contents of Cu and Ni in Histosol/

Podzol were lower than in Histosol due to its location on a flat hilltop

and only 18-years of exposure to the smelter's emissions. Soil organic

matter contributes to the metal accumulation by cation exchange,

sorption, chelation, and complexing and overall to the increase of soil

cation exchange capacity (Antoniadis et al., 2017; Lasota et al., 2020).

The higher Cu content in the Histosol in comparison with the Podzol

is explained both by the higher organic matter content and the low

topographic position of Histosol. In Podzol, Ni was also likely

absorbed by the clay particles. As a result, the Ni content range in

Podzol was nearly the same as in the Histosol and Histosol/Podzol

(Lyanguzova et al., 2015; Slukovskaya, Kremenetskaya, et al., 2020;

Slukovskaya, Vasenev, et al., 2020; Vodyanitsky, 2008). Besides, His-

tosol and Histosol/Podzol are less exposed to erosion compared to

the Podzol due to higher water holding capacity and a denser vegeta-

tion cover. High soil moisture in the Histosol could affect the accuracy

of the pXRF measurements. However, unlikely this effect was consid-

erable. The previous studies (Paltseva et al., In press; Xia et al., 2019)

showed that water content had an impact on detecting low concen-

trations of PTEs (below 0.1 g kg�1), whereas for the very high concen-

trations found at the industrial barren it is unlikely that this effect can

be significant.

Since we have observed the influence of TWI in the range of 5.5–

7.0, Cu and Ni distributions were mainly driven by topography at the

hilltops and relatively steep slopes, whereas in depressions and gentle

slopes with high accumulation potential, the soil type was the domi-

nating factor. Traditionally, TWI is a widely used predictor in digital

soil mapping, but it is rather used at the regional scale for the PTE

mapping than at the local scale comparable to our research site (Cao

et al., 2017; Wu et al., 2020). In one of the local scale studies, the

influence of TWI on topsoil Cu and Ni contents was found insignifi-

cant, at least for the 5 m resolution DEM and low metal contents

(Duan et al., 2015). Based on the spatial patterns of Cu/Ni contents

described in the literature and based on the outcomes of our models,

the relevance of TWI as a predictor for the PTE mapping can be lim-

ited by 1) application to polluted areas: saturation point can highlight

pathways of lateral element transport (Kashulina, 2017); 2) calculation

based on optimal DTM resolution (Hengl, 2006) (lower DTM resolu-

tion smooths the differences among pixels, and exhaustive DTM reso-

lution may also result in minimizing its importance [Florinsky &

Kuryakova, 2000]). We suggest paying particular attention to the ini-

tial DTM resolution. At the finest resolution (0.5 m), TWI had not

played a considerable role and was replaced by curvature in our

models. The lowest curvature values (concave patterns) corresponded

to the higher Cu and Ni contents, but the reverse relationship could

only be traced for curvature values between �0.02 and 0.02, rep-

resenting flat terrain. Other changes in Cu and Ni contents were

explained by soil type at this resolution level (0.5 m). In general, GBM

models calculated for all DTM resolutions (0.5–1.0–1.5–2 m) revealed

the same effect of soil type and topography on the content of Cu and

Ni in topsoil: significant difference between Podzol (low content) and

Histosol/ Histosol/Podzol (high content) enhanced by topographic

patterns with the highest contents at locations where lateral accumu-

lation is expected.

4.2 | Applicability of regression kriging for
mapping PTE content in soils with a limited
sample size

Field data limitation is a challenge to implement the kriging. However,

the minimal sample size depends on the research area and purpose of

the study (Hartemink et al., 2008). For example, global and regional

maps are usually based on thousands of samples (e.g., Stoorvogel

et al., 2017; Xie et al., 2011), whereas at the regional and local scale a

hundred is a more typical sample size (Richter et al., 2020;

Romzaykina et al., 2021). Soil pollution assessment also likely requires

a smaller dataset than, for example, precise agriculture (Roberton

et al., 2020). Our study was focused on the catchment area of a total

of two ha, resulting in over 40 samples per ha, which is comparable to

many digital soil mapping studies (von Steiger et al., 1996; Zhang &

Yang, 2020) and considerably higher than recommended for the con-

ventional soil survey at the polluted sites in Russia (Savich &

Gataulin, 2010).

The spatial relationships between PTE and environmental predic-

tors quantified for the study can be further extrapolated to the entire

impact zone (up to 3 km away from the smelter) (Evdokimova

et al., 2011) using the UAV-based DTM & RK approach. In general,

topographic variables have been widely used for mapping soil parame-

ters as independent input variables (Agyeman et al., 2021; Florinsky

et al., 2002; Minasny & McBratney, 2016; Moore et al., 1991). Indeed,

within-catchment processes, including lateral transport pathways of

water and sediments, can closely be related to topography and its

derivatives of a different order (Moore et al., 1991). The mapping is

generally based on finding statistically significant relationships

between the soil parameters and additional topographic variables.

Nevertheless, the choice of the optimal output raster resolution/or

input auxiliary maps is crucial in such tasks (Florinsky &

Kuryakova, 2000; Hengl, 2006). With the decrease of input DTM spa-

tial resolution the predictive power of a particulate terrain parameter/

environmental variable can be lost (Thompson & Moore, 1996) or the

correlation between them can turn from logically negative to illogically

positive (Florinsky & Kuryakova, 2000). These cases can be observed

if the small-scale variability of the response variable surpasses the var-

iability of explanatory variable (i.e., resampling to lower raster resolu-

tion would lead to inadequate relations between response and

explanatory variables). Since the study site can be characterized as

catchment-scale, we have tested the application of hydrologically cor-

rect DTMs with various resolutions (0.5–1.0–1.5–2 m) obtained by
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interpolation of cleaned UAV-derived contours (Hutchinson, 1989),

trying to avoid any uncertainties caused by DTM input resolution. The

decision of this resolution range is based on the i) finest possible reso-

lution of UAV-derived data given the vertical accuracy (0.5 m); ii) the

optimal output interpolation resolution (1.5 m) calculated given the

initial inspection density for the study site, as described in

Hengl (2006). In our research, we considered the input DTM and out-

put interpolation resolution of 1.5 m as optimal, given the initial

models' performance and calculated metrics at the validation stage for

Cu (MLR-based interpolation) (Table 3). The best validation metrics

were estimated for interpolated Cu and Ni maps based on 1.0 and

1.5 m datasets MLR/GBM RK: the highest correlation between inter-

polated and observed content values (n = 16) and the lowest MAE

and RMSE values (Table 3). In general, the interpolation results for Cu

can be considered as satisfactory and marginally satisfactory for Ni

(Lado et al., 2008).

At all levels of resolution, we have obtained the similar relation-

ships between Cu/Ni content and soil type and TWI (1.0–1.5–2.0 m)/

curvature (0.5 m), suggesting that at all these levels, the obtained non-

linear (and linear) regression models are stable and robust. Perhaps,

the application of coarser-resolution input DTM would lead to inade-

quate Cu/Ni content – topography relations within a specific soil type

(e.g., higher content observed at pixels with lower TWI) as it is

described in Florinsky & Kuryakova (2000).

The spatial interpolation approach in this study is considered as

combined (i.e. statistical regression + geostatistics) (Li & Heap, 2014;

Zhu & Lin, 2010). The observed influence patterns of soil type and

TWI on Cu and Ni content suggest that simple geostatistical methods

(e.g., ordinary kriging) cannot be used for tracing the spatial dynamic

of these soil parameters in our case. In fact, Cu/Ni content in the top-

soil of industrial barren is closely related to auxiliary data, which are

important for understanding relationships between soil properties and

other environmental variables that can be considered for further

remediation measures (Lado et al., 2008). The disadvantage of MLR

models within regression kriging, observed in this study, is the predic-

tion uncertainties caused by an overestimation of interpolated param-

eters (Table 3) and the mapping issues reflected in sharp changes in

PTE concentrations at the margins of soil units, which is incorrect

from the geographical point of view (Figure 6a,c). Herewith, the vali-

dation metrics of MLR-based maps are comparable or even better

than GBM-based interpolations (Table 3). The GBM models have a

certain advantage over MLR since it can deal with non-linearities

between dependent and explanatory variables (Elith et al., 2008).

Despite the simple geostatistical methods (ordinary kriging) still prevail

in studies devoted to mapping PTE in soils (Agyeman et al., 2021), the

application of GBM (stand-alone and within regression kriging) shows

promising results in this field and, in conjunction with other machine

learning methods, deserves special attention (Li & Heap, 2014).

This study has shown that the fine-scale auxiliary data obtained

from the UAV survey (topography, soil types) can successfully be used

in RK of Cu and Ni content in topsoil. The obtained maps of Cu and

Ni distribution can further be extended for the larger areas and might

be helpful for the planning of remediation procedures at these heavily

polluted areas.

5 | CONCLUSIONS

High-resolution maps of the potentially toxic element contents in the

industrial barren topsoils in the Russian SubArctic were obtained by

integrating remote sensing and soil proximal sensing. The UAV-

derived soil/terrain parameters, including soil type, topographic wet-

ness index, curvature and slopes explained 55% to 76% of the total

variance in Cu and Ni content based on gradient boosting machines.

Compared to Podzol, Histosol had significantly higher concentrations

of Cu and Ni due to sorption by organic matter and accumulation due

to soil erosion and low position in relief. The spatial distribution of Cu

and Ni within the soil types was mainly driven by the lateral transport

processes and therefore was explained by the topographic wetness

index. Interpolation of the obtained spatial relationships by the regres-

sion kriging allowed comparing different input models (multiple linear

regression and gradient boosting machines) as well as resolution levels

of the input data. The most accurate mapping of Cu and Ni contents

was achieved by applying a 1.5 m resolution dataset. The tested

methodology is foreseen to have a future-wide implementation in

semi-automated/fully automated mapping of soil pollution. UAV sur-

vey over the larger area or analysis of available high-resolution DEM

(e.g., ArcticDEM) could allow further extrapolation of the potentially

toxic element contents for the whole industrial barren to support the

prospective remediation projects.

ACKNOWLEDGMENTS

Soil survey and analysis were supported by the Russian Foundation

for Basic Research - Project #19-29-05187. Remote sensing and

modeling were supported by Russian Science Foundation - Project

#19-77-300-12. Data analysis (Y.Dvornikov, M.Slukovskaya, A.

Yaroslavtsev, D.Sarzhanov) and paper preparation (Y.Dvornikov, M.

Slukovskaya) were supported by the RUDN University Strategic Aca-

demic Leadership Program.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Conceptualization, Vyacheslav Vasenev and Yury Dvornikov; method-

ology, Yury Dvornikov and Joulia Meshalkina; software, Alexey

Yaroslavtsev; validation, Yury Dvornikov, Marina Slukovskaya; formal

analysis, Yury Dvornikov; investigation, Yury Dvornikov, Marina

Slukovskaya, Alexey Ryazanov, Dmitrii Sarzhanov, Alexey

Yaroslavtsev, Vyacheslav Vasenev; resources, Alexey Yaroslavtsev,

Vyacheslav Vasenev; data curation, Alexey Ryazanov, Dmitrii Sar-

zhanov, Yury Dvornikov, Marina Slukovskaya; writing—original draft

preparation, Yury Dvornikov, Marina Slukovskaya; writing—review

and editing, Yury Dvornikov, Marina Slukovskaya; supervision,

Vyacheslav Vasenev; project administration, Vyacheslav Vasenev;

funding acquisition, Vyacheslav Vasenev.

DATA AVAILABILITY STATEMENT

The data that support the findings of the study are available upon

request from the corresponding author.

DVORNIKOV ET AL. 11



ORCID

Yury Dvornikov https://orcid.org/0000-0003-3491-4487

Marina Slukovskaya https://orcid.org/0000-0002-5406-5569

Alexey Yaroslavtsev https://orcid.org/0000-0003-4115-3233

Joulia Meshalkina https://orcid.org/0000-0003-1513-2439

Dmitrii Sarzhanov https://orcid.org/0000-0002-1627-2487

Vyacheslav Vasenev https://orcid.org/0000-0003-0286-3021

REFERENCES

Agyeman, P. C., Ahado, S. K., Borůvka, L., Biney, J. K. M.,
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