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1. INTRODUCTION
There is noticeable progress in the microscopic

description of nuclear reactions, continuum spectra
and widths of nuclear resonant states. In particular, we
mention the Lorentz Integral Transform method [1, 2]
which was mainly utilized within the Hyperspherical
Harmonics approach and was generalized [3] for the
use in combination with the No-Core Shell Model
(NCSM), the Continuum Shell Model [4], the first
attempts to study scattering of nucleons by nuclei
within the Quantum Monte Carlo approach [5], the
Gamow Shell Model including the ab initio No-Core
Gamow Shell Model (NCGSM) [6]. The main
achievement in modern ab initio theory of nuclear
reactions is a description of various reactions with light
nuclei within a combination of NCSM with Resonat-
ing Group Method (RGM, see reviews [2, 7, 8]).

In this contribution, we formulate a simple method
for calculating low-energy phase shifts and for extract-
ing resonant energies  and widths Γ directly from
the shell model eigenstates without additional com-
plexities like introducing additional Berggren basis
states as in NCGSM or additional RGM calculations
as in the combined NCSM/RGM approach. The
method is based on the J-matrix formalism in scatter-
ing theory [9]. The J-matrix approach utilizes a diag-
onalization of the Hamiltonian in one of two bases:
the so-called Laguerre basis that is of a particular
interest for atomic physics applications and the oscil-
lator basis that is appropriate for nuclear physics. The
version of the J-matrix formalism with the oscillator
basis is also sometimes referred to as an Algebraic Ver-
sion of RGM [10] or as a HORSE (Harmonic Oscilla-

tor Representation of Scattering Equations) method
[11]. We use the latter nomenclature in what follows.

The proposed method is applied to the analysis of
resonant states in scattering of nucleons by α particle
based on ab initio calculations of 5He and 5Li nuclei
within NCSM [8] with the JISP16  interaction [12].

2. HORSE AND SS HORSE FORMALISMS

We start with a short description of the HORSE
formalism in the case of scattering in a partial wave
with the orbital momentum  in a system of two parti-

cles with reduced mass  interacting via

potential . The relative motion wave function is
expanded in infinite series of oscillator functions with
the oscillator frequency  labeled by the principal
quantum number  or by the oscillator
quanta .

The kinetic energy matrix in the oscillator basis is
tridiagonal, its non-zero matrix elements  and

 are increasing linearly with . On the other
hand, the potential energy matrix elements  are
decreasing with N and/or . Therefore a reasonable
approximation is to neglect the potential energy
matrix elements  with respect to  if  or

. In other words, we split the complete infinite
oscillator basis space into two subspaces: the ‘internal’
subspace P spanned by oscillator functions with

 where the complete Hamiltonian 
is used and ‘external’ subspace  spanned by oscillator
functions with  corresponding to the free
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motion where the Hamiltonian includes only the
kinetic energy.

The eigenvectors of the infinite Hamiltonian
matrix including only kinetic energy matrix elements
in the  space and both potential and kinetic energy
matrix elements in the  space can be found if the
eigenenergies  and eigenvectors  of the Ham-
iltonian submatrix in the  space are known.  and

 fit the set of linear equations

(1)

Here  is the dimensionality of the
P space. All scattering observables at any energy E can
be extracted from the eigenvectors of this infinite
Hamiltonian matrix. For example, the scattering
phase shifts  can be calculated as [11]

(2)

where

(3)

and  and  are the regular and irregular
solutions of the free Hamiltonian in the oscillator rep-
resentation which analytical expressions can be found
in Ref. [11].

The HORSE formalism can be used in combina-
tion with any approach utilizing the oscillator basis
expansion. In particular, it can be used to generalize
the nuclear shell model for applications to the contin-
uum spectrum. In this case, the  space should be
associated with the many-body shell model basis space
while the  space is to be used to “open” a particular
channel in the many-body system. The standard matrix
equation defining the shell model eigenstates should be
used as the -space set of linear equations (1) where
the relative motion wave function components in the
oscillator basis  should be replaced by many-
body oscillator shell-model components 
characterized by a given value of the total angular
momentum J and an additional set of quantum num-
bers  which distinguish many-body oscillator states
with the same  and J. The summation in Eq. (1)
should run over all possible states with different 
thus increasing drastically the P space dimensionality
d. This increase of the P space dimensionality is how-
ever just a manifestation of the increase of basis space
in a many-body system and is implemented in modern
shell model codes. A more significant limitation for
applications is the same increase of the number of
summed terms in Eq. (3) where the last oscillator
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components of the relative motion eigenfunctions
 should be replaced by the many-body oscillator

components  with the maximal total oscil-
lator quanta in the P space  projected onto a desired
channel Γ. Note, Eq. (3) requires summation over all
shell model eigenstates  with a given value of the
total angular momentum J while the modern shell
model codes usually are designed to calculate only a
few lowest eigenstates. The high-lying eigenstates 
can contribute even to low-energy phase shifts since
the increase of the denominator in Eq. (3) can be
accompanied for some states by an increase of the
numerator.

To overcome these difficulties, we propose a Sin-
gle-State (SS) HORSE formalism. The conventional
wisdom says that a shell model eigenstate  defines
all the properties of a nearby resonant state. So, let us
calculate the phase shift  at this energy. From
Eqs. (2), (3) we obtain a very simple expression:

(4)

Note, we get rid not only of the need to sum over a
huge number of eigenstates as in Eq. (3) but also from
the shell model wave function component 
defining the desired channel. Hence Eq. (4) can be
used for scattering channels of any type. In the case of

low-energy scattering when ,

one can use asymptotic expressions for  and
 at large  [13] to obtain

(5)

where  and  are spherical Bessel and Neu-
mann functions. Equation (5) exhibits a scaling prop-
erty of low-energy scattering: the phase shift  at
shell model eigenenergies  does not depend on
the shell model parameters  and  individually but
only on their combination s.

The shell model calculations are usually performed
for sets of  and  values. Within the SS HORSE
formalism, we can calculate the phase shift  at
the respective set of eigenenergies 
covering some energy interval. Next we can extrapo-
late the phase shift on a larger energy interval using
accurate parametrizations of  at low energies.

3. LOW-ENERGY PHASE SHIFT 
PARAMETRIZATION

The scattering -matrix as a function of momen-
tum  is known [14] to have the following symmetry
property:

(6)
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Since , the phase shift  is an odd func-
tion of k and its expansion in Taylor series of 
includes only odd powers of :

(7)

More, since  in the limit ,  in the
case of p-wave scattering,  in the case of
d-wave scattering, etc.

If the -matrix has a pole associated with a bound
state at the imaginary momentum  or a pole
associated with a low-energy resonance at the complex
momentum , it can be expressed as

(8)

where  is a smooth function of k and the pole term
 in the case of a bound state ( ) or a resonant

state  is [14]

(9)

The respective phase shift

(10)

where the pole contribution  takes the form

(11)

Here  in the expression for  appears due to the

Levinson theorem [14],  is the bound

state energy while the resonance energy  and its
width  are

(12)

In applications to the non-resonant  scattering

in the  state, we therefore are using the following

parametrization of the phase shift:
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The bound state pole contribution here is associated
with the so-called Pauli-forbidden state. There are

resonances in the  scattering in the  and  states;

hence we parametrize the phase shifts as

(14)

This form guarantees that  in the limit of
 [see Eq. (7) and discussion below it].

4. APPLICATION TO Nα SCATTERING

We calculate the Nα scattering phase shifts and res-
onant parameters using the results of the NCSM cal-
culations of 5He and 5Li nuclei with the JISP16 NN
interaction. However, we should note here that we
first carefully verified the computational algorithm
described below supposing α as a structureless particle
and using phenomenological Nα potentials. In this
case, the scattering phase shifts and resonant pole
locations can be calculated numerically. Our SS
HORSE approach was found to be very accurate.

The NCSM model space is conventionally trun-
cated using , the maximal excitation oscillator
quanta. This NCSM model space should be associated
with the  space of the SS HORSE method which is
defined using total oscillator quanta in the many-body
system, , which is entering the above SS HORSE
formulas. In the case of 5He and 5Li nuclei,

. Note, even  values should be used

to calculate the natural parity states  and  in these

nuclei while the unnatural parity state  is obtained in

the NCSM calculations with odd  values. In par-
ticular, we perform here the NCSM calculations with

 for  and  states and with

 for  state. We pick up for further

scattering calculations the lowest NCSM eigenener-

gies  in 5He and 5Li with ,  and ;

note, all these  since they are defined
regarding to the 5-nucleon decay threshold. The SS
HORSE method requires however positive eigenener-
gies  defined in respect to the  threshold. We
obtain these eigenenergies as  where

 is the 4He ground state energy obtained in NCSM
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and  states and with excitation quanta  in

the case of unnatural parity  states of 5He and 5Li.

After defining eigenenergies , we note that not
all of them can be used for phase shift calculations due
to convergence patterns of eigenstates in the harmonic
oscillator basis. Our SS HORSE formalism results in
relations for phase shifts similar to those obtained in
Ref. [15]. Using the nomenclature of Ref. [15], we
should use only eigenenergies  which are not influ-
enced by infra-red corrections. As an example, we dis-
cuss the selection of eigenenergies  in the case of 

scattering in the  state. The 5He calculations were

performed with  ranging from 10 to 40 MeV in steps
of 2.5 MeV and, as was mentioned above, with

 using the code MFDn [16]. The obtained
 values are depicted in the left panels of Fig. 1. Due

to the scaling property (5), we expect all eigenenergies
 as function of the scaling parameter s to lie on a sin-

gle curve. We see however deviations from such a curve
on the left upper panel of Fig. 1 that occur for each set
of  obtained with a given  below some critical

 value. This critical  value decreases with
increasing . More instructive are the phase shifts

 obtained by Eq. (4) which are also expected to
form a single curve. The deviations from this curve are
seen in the upper right panel of Fig. 1 to be more pro-
nounced. For the calculation of the phase shifts and
resonant parameters, we select the  values which
form approximately single curves on upper panels of
Fig. 1. This selection is illustrated by lower panels of
Fig. 1.

The resonant  scattering phase shifts in the 

and  states are described by Eq. (14). We need to fit

the parameters a, b and d of this equation. The reso-
nance energy  and width  can then be obtained by
Eq. (12). From Eqs. (4) and (14) we derive the follow-

ing relation for resonant  scattering in the  and 

states:

(15)

We assign some values to the parameters a, b and d
and solve this equation to find  for each desired
combination of  and  values (note,  enters
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definition of functions  and  see, e.g.,
Ref. [11]). The resulting set of  is compared with the
set of selected eigenvalues obtained from NCSM and
we minimize the rms deviation between these two sets
to find the optimal values of the parameters a, b and d.
The behavior of  as functions of  dictated by
Eq. (15) with the fitted optimal parameters a, b and d
for various  values is depicted by curves on the
lower left panel of Fig. 1. It is seen that these curves
accurately describe the selected eigenvalues from the
shaded area. The phase shifts  obtained by
Eq. (14) with fitted parameters are shown in the lower
right panel of Fig. 1. It is seen that our theoretical pre-
dictions are in a reasonable correspondence with the
results of phase shift analysis of experimental scatter-
ing data of Ref. [17].

A wider  resonance and non-resonant  scat-

tering phase shifts in the  state are described in the

same manner (see Fig. 2). The only difference in the

case of the  scattering is that instead of Eq. (15), we

are using

(16)

which can be easily obtained from Eqs. (4) and (13).
The phase shift analysis of experimental data is also
reasonably described in these cases.

The formalism presented in Refs. [11, 18] can be
used to generalize the SS HORSE approach to charged
particle scattering. This generalization yields a more
complicated formula for the SS HORSE phase shifts
than Eq. (4) and to other relations derived from it like
Eqs. (15) and (16). However, a modified scaling prop-
erty (5) can also be obtained in this case and we can
use generally the same fitting algorithm for the param-
eters describing the phase shifts.

Resonance energies  and widths  obtained
using Eq. (12) are presented in the table. We show in
the table not only the results obtained from NCSM
calculations with  ranging from 4 to 16 but also
from calculations with  which demonstrate
that the resonant parameters only slightly change
when the fit is performed using the NCSM results
restricted to an essentially smaller model space. This is
very encouraging for future applications to heavier
nuclear systems. Our results are in a good agreement
with R-matrix analysis of experimental data of
Ref. [19].
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Fig. 1.   scattering in the  state. Left: eigenenergies  obtained with various  vs scaling parameter  (upper panel) and

vs  (lower panel). The shaded area shows the  values selected for the SS HORSE analysis. The lines were obtained by
Eq. (15) with fitted parameters. Right: the phase shift  obtained by Eq. (4) vs the  c. m. energy. The symbols on the upper
panels shows the phase shifts obtained from all  values while the lower panel depicts the phase shifts generated by the selected

 values. The line was obtained by Eq. (14) with fitted parameters. The experimental phase shifts are taken from Ref. [17].
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4A ≥

α

J

P
J

R

J

S R

Energies  and widths  (in MeV) of 5He and 5Li resonant states

0.93 1.01 1.84 5.49 2.05 1.35 3.29 4.70

0.97 1.07 1.82 5.61 2.72 1.27 3.83 4.57

-matrix [19] 0.80 0.65 2.07 5.57 1.69 1.23 3.18 6.60

rE Γ

5 3He
2

−⎛ ⎞
⎜ ⎟
⎝ ⎠

5 1He
2

−⎛ ⎞
⎜ ⎟
⎝ ⎠

5 3Li
2

−⎛ ⎞
⎜ ⎟
⎝ ⎠

5 1Li
2

−⎛ ⎞
⎜ ⎟
⎝ ⎠

rE Γ rE Γ rE Γ rE Γ

max 4 16N = −

max 4 6N = −
R


