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Microphase Separation in Random Multiblock Copolymers

E. N. Govorun,? A. V. Chertovich

Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991
Russia

Microphase separation in random multiblock copolymers is studie{ Wnean-ﬁeld theory
assuming that long blocks of a copolymer are strongly segregated, er& short blocks are able to
penetrate into ‘“alien” domains and exchange between the doﬁ&w\a interfacial layer. A
bidisperse copolymer with blocks of only two sizes (lon El_l’-l\ ort)1s considered as a model of
multiblock copolymers with high polydispersity in the bleck siz§, Short blocks of the copolymer
play an important role in microphase separation. Figt\,theh)penetration into the “alien” domains
leads to the formation of joint long blocks in their o dé'r'ﬁains. Second, short blocks localized at
the interface considerably change the in rfacxion. The possibility of penetration of short

—

blocks into the “alien” domains is con d by'the product yNg, (y is the Flory-Huggins interaction
™

parameter, Ny, is the short block lew ot very large yNq, the domain size is larger than that
for a regular copolymer consist@e\same long blocks as in the considered random copolymer.

At a fixed mean block size, omain size grows with an increase in the block size dispersity, the

rate of the growth beihig d}pe t of the more detailed parameters of the block size distribution.
(/ 4
ON

I. INTRO UE;:\\\

Recéntly/a gréat progress in methods for the synthesis of random multiblock copolymers has

been| achieved®® Such properties of new materials as enhanced mechanical stability,””

. and high proton conductivity”* promise a variety of practical applications. These

ustainabili
ropertiCs are due to the microphase separation in random multiblock copolymers and, in particular,

re related to the appearance of bicontinuous phases.

9 Author to whom correspondence should be addressed. Electronic mail: govorun@polly.phys.msu.ru.
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Random multiblock copolymers are polydisperse in macromolecule length and/or block size.
Phe polydispersity effect on the microphase separation attracts an increased attention last decade.'
" New types of polymer components and architectures are tested to produce small-size patterns of

different geometries.”® > So-called high-y materials (with strongly incompatible components) offer

the possibility of diblock copolymer sub-10 nm patterning, however, a d@ij‘the block length
definitely means a loss in mechanical properties. Multiblock copo m% couldthelp to overcome
this disadvantage, combining small domain sizes with good mechanieal properties.

Regular and random multiblock copolymers are thoroug Dveaﬁgated in terms of the weak

-
segregation theory beginning form the classical works, &’ whéj‘e he stability of homogeneous
melts was analyzed and the period of critical ﬂuctuat&w found depending on a particular chain
structure of AB copolymers. Then, the rr&/liléd- phase diagram was calculated for
monodisperse multiblock copolymers consis}nao arkov stochastic sequences of A and B
30 < - ) N . 8

blocks.” Various aspects of polydispe 1% ock copolymers are studied up to now.” In general,
a dispersity in composition leads t&iase\iﬁ the structure period.

In the strong segregation%l ophase separation for regular block copolymers was
analyzed using different a aches.”%°°'? Besides, the generalized method of the self-consistent
field theory was dev 0p:<,‘\jvm\ permitted calculating phase diagrams for the wider parameter
£
locke co

nﬂ)rmations in detail and finding a bridge/loop ratio in the strong

range, describinf/b
segregation i i‘%‘%\fraction of “bridges” is not small that is important for understanding melt

£
ol ‘sp{rsity effect on the microphase separation was previously investigated for diblock
omg;)«ith the self-consistent field approach and in the strong segregation limit.*> For
tibl(}k copolymers, this effect was not studied before in the strong segregation theory. Highly
lydisperse random multiblock copolymers possess both short and long blocks. The

incompatibility yN-parameter for short blocks could be not large enough for segregation from
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l s I Pbl ycks of another type. The possibility of pulling out the short blocks from their domains is ignored

PUinShingi the self-consistent field approach.

The investigations of random multiblock copolymer melts in computer simulations exhibited
rough lamellae or bicontinuous-like structures with the period being very slightly dependent of the
incompatibility parameter.'”® For random multiblock copolymers obtainéd via interchain exchange
reactions® and for the specially created block size distribution (patt @E@,lg a considerable
amount of “alien” monomer units in lamellae was found in the computer'simulations. Besides, an
enhanced concentration of short blocks at the interface can be pragted. The experimental data

_—
on the content of “alien” components in polystyrene an olybUSadl ne domains gave the weight

-

fractions from several to more than 10 per cent for alternating and random multiblock copolymers
composed of quite long precursors.” \ -

In the present paper, we suggest a moﬁ%ﬂcrophase separation in random multiblock
copolymers taking into account the ability of'short blocks to penetrate into "alien" domains. We

l(}k AB-copolymers with the bimodal block size

consider a special type of rand mulgi

distribution. That is, the macro %nsist of alternating sequences of A and B blocks, every
block being short or longswith a certain probability independently of the other block types. The
monomer unit seque e;(q%\bopolymers are determined by the long/short block ratio and two
block lengths. B%ag'%ﬁ;{e parameters, the value of the block size dispersity (or polydispersity

index) can @Kd. For the sake of simplicity, a symmetric copolymer composition
£

corresponding to‘aJamellar melt structure is considered.
ong b kg of A and B types are assumed to be incompatible enough for their strong
gregation in different domains, while short blocks can exchange between the interface and “alien”
ainss If a short block adjacent to two long blocks penetrates into an “alien” domain, then a joint
}oé‘h composed of two long blocks separated by a short one is confined in that domain with the
ends of the joint block localized at the interface. Such joint blocks are not stretched or even

unstretched in comparison with usual single long blocks. The elastic free energy of not stretched
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l s I Pbl ycks is calculated analytically as a correction to the free energy of homopolymer chains in a

PUinShin:gr main due to the chain end localization at the surface. This method is similar to the calculation of
the conformational energy of copolymer blocks with both ends localized at a globule surface.” To
describe a melt structure, we generalize the strong segregation theory approach®’ taking into
account the influence of the short block location on the interaction ener‘z interfacial tension, and
conformational free energy. 3

With our simple model of random multiblock copolymers, e going to answer the
following general questions: 1) what factors control the penetration.gof short blocks into “alien”

—
domains and what could be the value of their volume fraction, ii)sho the domain size depends on

the block size dispersity and Flory-Huggins paramet&

.)
Il. THE MODEL S

We consider a melt of a randgm multiblock AB copolymer consisting of long and short

blocks. A block of any type conﬂ\jh ‘monomer units with the probability ps or of Nieng
monomer units (Njong/New>>1) 'Wo ability piong=1-psn, the sizes of neighbor blocks being
not correlated. For both andinono er units, their volumes and sizes along a chain are equal to
v and a, respectivelQ mber average block size is equal to N = ProngNiong T PNy, and the
£
{1 4 ]vw _psh+p10ng(Nlong/NSh)2

dispersity, or po y}p{sity index (PDI), to P=—=-= . The monomer unit
Q N (psh +p10ng Nlong/Nsh)2

interacti%c acterized by the Flory Huggins parameter y. The total number of blocks in

- £

every macromolecule is assumed to be large, and therefore the translation entropy of whole
acrom les and their ends should not be taken into account in the free energy of the system.

Theudndividual macromolecules can differ in chain length and block number.

=~
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FIG. 1. Schematic of a segregated melt of the random m tiBT)ck olymer with Ng=1 and
]vlong:6- T—

_—

If the repulsion between A and B monomeyp umits 1s,strtong enough (yNiong>>1), then a
microphase separation takes place. For the sake o 'r;qkpﬁc‘itj)it is assumed that a lamellar structure
of alternating layers containing mostly A or % omer units is formed for the symmetric case of
50:50 composition (Figure 1). Long block are in the layers of their own type, whereas

short blocks can be at the interface, bet hlqers or in “alien” domains. It is assumed that only

solitary short blocks (adjacen@e{g blocks of another type) may penetrate into “alien”

domains and short blocks cannot i the layers of their own type because in that case two

adjacent blocks would b@;lien” layers. That is, a short block with at least one adjacent short
block should alv?% }1 rface.
The volu N)n f short A blocks in B layers, @a, and of short B blocks in A layers, ¢s,

.

are equal{:a\ other, pa=@s=@ (<<1). The layers A and B have the same thickness, L, and the
£

N,
st}’pe is equal to @y, = PshVsh

interf; c_ig\l er thickness is denoted by D 4. The average volume fraction of monomer units of short
gbl.am
5 Dsh Ngh + plongNlong

lock:

. Then, the fraction of short blocks in

\ii&g” layers is equal to p, =@,/@,, - Let A be the thickness of the layer consisting of only short
b

locks located at the interface. From the normalization condition with respect to the number of short

blocks, @wL=@yL+A(1—¢y), so that
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The volume fraction of short blocks in “alien” domains, ¢y, can change from 0 to the
maximum value, @ymax, for which all solitary short blocks (adjacent to two long blocks) are in

“alien” domains. The maximum number fraction of short blocks in “ali?fﬁ domains is equal to the

fraction of solitary blocks, pomax= p12()ng' The maximum volume frac 0@%0 Domax = plzonggpsh

P long ) 22

and correspondingly the thickness A takes the minimal value A, . The dependence

—
of the maximum volume fraction of short blocks in “aliﬂ@&& @omax, 0N the number fraction
of short blocks is presented in Figure 2. The maxirr(&vahi of @ymax corresponds to the number

[ -~
fraction of short blocks ps,=0.45 at Nlong/NshISQd{ to 0.5 if Niong/Nh—>0. At Niong/Now>>1, it

does not exceed several per cent. \
\\

.
0,05 <<:>\\
\\ ]vlong/Nsh =35
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G.*2. Maximum volume fraction of short blocks in “alien” domains, ¢, = Piong@a» VS the

number fraction of short blocks, ps, at Niong/Nw=5 (thin black curve) and Niong/Naw=10 (thick red
curve). Only solitary short blocks (adjacent to two long blocks) may penetrate into “alien” domains.
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l s I P The presence of short blocks at the interface between A and B layers should enlarge the

PUbIIShmgi erfacial layer thickness in comparison with that in a melt of the multiblock copolymer with long
blocks only. We assume that the interfacial thickness, D4, is equal to the sum of the interfacial
thickness in two limiting cases: D, =A+D, where 4 is given by Eq. (1) and D is the interfacial

thickness for a model solution of the multiblock copolymer consistin/a@blong blocks in a
For this s

nonselective solvent at the constant solvent volume fraction equal toq lution, the Flory-
Huggins parameter describing interactions between the solvent ap%xiqg units of both types is
taken to be equal to y. Interactions of the polymer with such LSO nt mimic the volume interactions
between long and ““alien” short blocks in the considered dom&nultiblock copolymer melt. The

characteristic thickness of the interface between agdb dﬁ‘t)‘lains in such solution is equal to (see
L

Appendix A) \

D =D0(l—(p0)1/2/(1—2¢)0), ~ )
where D, = a/ 46y is the interface thi }sﬁn an A and B homopolymer melt.

It can be expected that ew e interfacial thickness D, is determined mainly by the

value of D at weak incompatibility of A and B blocks, 4 << D, since the thickness Dy is quite large

in that case and some part Q blocks are in “alien” domains, which have not very large size L.
£

For strongly in?fnpa e blocks (high z), the interfacial thickness D, is determined by the

thickness A4 ,%%Nince the thickness Dy is small and short blocks are pushed out of “alien”

domainsd ¢y z/O) uite large thickness L.
— V.
CFr ergy of a homogeneous melt
0 é)ntrol whether the microphase separation takes place in a random multiblock copolymer
el?the free energies of the homogeneous melt and the melt with a lamellar structure should be
calculated and compared with each other. The volume fraction of A and B monomer units in such

melt is equal to @, = @g=1/2. It is assumed that short blocks are mobile and several neighboring

7
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l s I Psh ort blocks can move together. The free energy Fj is equal to a sum of the interaction energy and

Publishi nig: nslational entropy contribution of short blocks (in the form of an ideal-gas free energy),
fo _ 5 Py +-20 2 ipi_l n?. 3)
kB TV A Nsh long P sh e

Here V' is the volume of the system, 7 is the thermodynamic temper?ére, kg is the Boltzmann

constant, ¢; is the volume fraction of monomer units belonging t seﬁ)%containing i short
0

blocks, which are adjacent to two long blocks at the edges. The num litary short blocks with

>

two adjacent long blocks is equal to Mpg, plzong , where M is the total number of blocks. The number

—~
of pairs of short blocks is equal to Mp2, plzong and so @T hen g, = ipéﬁ ! plzong(l?sh > Psh = Z ®; -
~) i=1
-

B. Free energy of a layered melt \

We assume that long polymer block args\fg segregated (D<<L), whereas short blocks

are in equilibrium between the layer agd7int acial region. The free energy of the system, F,
.
depends on the volume fraction of s bloeks in the layers, ¢y. It includes several contributions,

F=E+F,+F, \\ )

where E is a sum of the dnteraction energy and translational entropy contribution of short blocks in

“alien” layers, Fe iséthe elastiC\ree energy of long blocks, and Fj is the interface free energy. The

W AY,
first contributio h?gh{
E 5 P 1. %o
1- +———In—. 5
TN( o) Ny e ©)
- £
For cslc ating the elastic free energy of long blocks, it is necessary to take into account that

he con tional constraints for long blocks separated by i solitary short blocks in an “alien”

%y the same as for a joint block of length Ni=Niong+i(NiongtNen). This block is localized in a
S

yer of thickness L with the ends located at its surface. Let py=psppo be the probability to find a

short block located in an “alien” layer. Then, the number of long blocks of length No=Nion, With
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AI Pbc th ends at the interface is equal to Mplong(l—pb)z, the number of joint blocks of length N is equal
Publishing

w M])12Ong pp— pb)2 , and so on. The elastic free energy of blocks, F¢, can be written as

Fell) 1

== 1- pp)? i £ (N, L), 6
kBTV Nplong( pb) l;)(plongpb) fbl( i ) (6)

where fui(V,L) is the elastic free energy of a block consisting of N monzw, which is located

inside of the layer of thickness L with the both ends at its surface. 3

If the thickness L is less or comparable to the charact isﬁj sizewly; =+/N;a of a block of

—~

length N, this block is not stretched and the conformational restrigtions are caused only by the

block end location at the interface. For the calculaticef th Stic free energy of joint blocks in
that case, we consider it as a correction to the free“energy @uch blocks in a homogeneous melt as
was done earlier for the calculation of the w al free energy of a polymer block in a
globule with both ends at the surface.” The elastic. free energy of a block calculated using this
approach is denoted by £ (see Appen h)\T e possibility for a block to take a “loop” (with
both ends at the same surface ofithe layer) or*bridge” (with the ends at the different surfaces of the

SO

layer) conformation is taken into acceunt. For quite high block stretching, we assume that the block

: . 3kyT L : ,
elastic free energy, fQ@Q\th elastic free energy fgS = ; N of Gaussian chains. At the
V. i4
intermediate Va(es\oii

the range Lo<L<Lg¢n, we use a smoothing approximation, fim, for the
dependence 0 &lock elastic free energy, f1, on L, which provides continuous dependences of the

function, é/r‘ldi}s erivatives, of,, /0L, 6> f,,/dL* on L:

-

-~ S L<L
b](Ni"S/): fsmﬂ L0<L<Lsm (7)

S fat-(L=Lg)* 2+ s L> Ly
-
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AI PW] ere  Ly=,/N;a, the value of Ly, 1is taken to be slightly larger than Lo,
Publishing

, 1 . H_ 14} , a
SOV = fo+ foL— L)+ S - + 221 (g v, fy=LL
2 6(Lgy, — L) oL|,_;
0
2
3*f, 0" fas _ 3kgT 1 1( fé'J(L ]
= e = =B Ly =L~ —— | 1+20 | L1, e = fam(Nis Lgy)
0 2 > Jgs 2 9 2 str sm 1" " > Tstr sm\*V¥i>*sm
oL L=1L, oL N;a g 2 gs N L

2 D
- ;S (Lsm _Lstr) . \
The interfacial energy can be represented as the sum’> Q\_‘
—~

F,=(c+0,)S, 5 (®)

where o is the interfacial tension arising from the %ﬁcf—jwrgy of long blocks and interaction
L

energy of monomer units in the interfacial“gegion™and o is the contribution of block end

localization at the interface. These terms :@ form (see Appendix A)
ov _ al-g 2;%\

~ X
o= = +Z(1-2 9
kgTa 12 D, 2, 172%) o @)

and \\
O¢ = Oe,long +o e,sh » ‘\

2
O¢,long _ Mﬁlong In g_‘L }~710ng _ (1 — Py )plong
kgT 1-p long Pb

O-e,shSU _ D (ﬂh{(ﬂl B

keTV ANy

(10)

o L Psh 2 o~ i [P L
+ | &L= |,
J Nsh plonggpsh ( e ﬂDAJ

Ocongd"and O aé the contributions of one-end localization for joint blocks with a long next block
nd.o ort)lock localization, respectively. It is taken into account that V'=SL. The first term in the
e ressi)n for o« describes solitary short blocks in the interfacial layer.
\ “Fhe equilibrium parameters of the system correspond to the free energy minimum with respect

to the volume fraction of short blocks in the layers, ¢y, and the layer thickness, L.

10
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AI P C. Free energy of a regular copolymer layered melt

Publishing To reveal the effect of short blocks, it is illustrative to find the layer thickness and compare the
free energy contributions for the melts of a random multiblock copolymer with long and short
blocks and of a regular copolymer with long blocks of length N only. The free energy of a regular
copolymer melt, Fy,, consists of the elastic free energy of blocks, Fd%g/xﬁdthe interfacial free

energy, Fy, 3

Fr:Fel(reg)+ Fy (1 1)

According to the calculation of the elastic free energy for é%m_‘multiblock copolymer, the
-
elastic free energy for a regular copolymer can be written &5

F el(reg)U _

1
= _fbl (Na L ) .
keTV NP \D
The interfacial free energy can be written as33\\

N
Fy=(0,+0,)S, ﬂzﬁ\ﬁ, 20 Qen S
ksT' v\ 6 kT ernD,
where oy is the interfacial tensi in\mN.( of A and B homopolymers, o, is the contribution of

localizing block junctio ints in the interfacial region of thickness D, =a/ N6y , M, is the

number of block jun ior; poiats avhich is approximately equal to a total number of blocks, M, for
long enough mul l&ﬁ Minimizing the free energy, Frs (Eq. (11)), with respect to the layer
thickness, L; ana)aking into account that ’=MNu=L.S the equilibrium value of the layer thickness
can be folind. 4

i~ 4

Il. RE TS AND DISCUSSIONS

S enetration of short blocks into “alien” layers can be energetically favorable for two reasons,
-

increase in the translational entropy of short blocks and appearance of joint long blocks. The

dependence of the elastic free energy of joint blocks on the layer thickness calculated according to

Eq. (7) and Appendix B is presented in Figure 3. For the value Ls,=1.2L, taken in the
11
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l s I Pca culations, the parameter Ly/Lo was equal to 0.825. The elastic free energy grows slowly (the

Publishing

Acrease is less or comparable with kg7) with the layer thickening from several monomer unit sizes

up to L Ly; = N;a. At L>Ly;, the elastic free energy increases more rapidly and the free energy

gain corresponding to the appearance of a joint block of size N; instead of two blocks of size

No=Niong can exceed several kgT. /

Stk

FIG. 3. The block elastic free energys fi1, in units kg7, vs the layer thickness, L, for joint blocks of
size  N=NiongTi(Niong™Ngh)  at Niong=40, New=4 (Ly; =/N;a, Loo=\Ny,,a~6.3a, Ly~9.2a,
Lozzl 1 361)
£
V.

The “briéWi for not stretched blocks of a fixed length & is proportional to the
number ofsp Qe block conformations in a layer and can be estimated as G./(G,+G;), where
Gi(k,L) a dz(k%) are the statistical weights of loops and bridges, respectively (see Appendix B).

-

The bridge fSactlon decreases with L from 0.5 at L~a to approximately 0.3 at L=L,. The present
(‘):;el dges not permit to analyse a bridge fraction for stretched blocks. However, the fraction of
\b?idiﬁs for a random copolymer with a given mean block length will be much less than that for

olymers with monodisperse blocks of the same length. It is because short blocks mostly form

loops whereas long blocks occupy the middle part of domains and may form bridges of loops. This

12
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l s I P picture is consistent with a very low bridge fraction (several per cent) for pattern-modified random

Publishi ng iltiblock copolymers obtained via layer marking in a homogeneous melt."

In theory, a loop is considered as two linear chains and equal probabilities of bridge and
loop conformations are usually assumed.”> *' The more detailed self-consistent field calculations
predict the bridge fraction 0.4 for stretched monodisperse middle cks.**** Note that the

combinatorial distributions of bridges and loops in the layers are imp0trant for the final structure of

multiblock copolymers with not large numbers of blocks in mN les, as shown for the
o3

copolymers with monodisperse blocks forming usual lamellQ and for the copolymers
-

with long end blocks and many more short middle blocks rmingﬂamellar—in—lamellar structures.**

.)

The change in the elastic behavior of t& mer blocks at L=Lg leads to the different

25

fraetion“ef short blocks in the “alien” domains and of

7

/

character of the dependences of the volume

the layer thickness on the block size and Flomy-Huggins parameter for not stretched (L<Lgp) and

/

4a

stretched blocks (L>L), as shownd{in _Figuies

nd 5. All equilibrium parametes are calculated by

minimizing the free energy F' (10%) with respect to ¢y and L and the free energy F; (Eq.

(11)) with respect to L. l&.{%the ee energy of a homogeneous melt calculated in accordance
with Eq. (3) is larger than the fre¢ energy of a melt with lamellar structure for all considered values
£

of the parameter%\ £

£

- 4
Q S
w <

13
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Publishing 0,02 - —n—N,=4,p, =04

—e—N =8,p =04
—A=N,=8,p, 0.3
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0,00
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FIG. 4. Volume fraction of the solitary short bl ks(i-n “e‘lban” layers, ¢y, vs the Flory-Huggins

parameter, y, for the random multiblock copolymer with Ng=4, ps,=0.4 (black curve with squares),
Na=8, psh=0.4 (red curve with circles), Ng= ,\w lue curve with triangles); the long block
size Niong=40.

‘\\‘\
The volume fraction of short bl W:El ten” domains, ¢y, at small y (at L<Ly) is around

0.8% for Ngy=4 and 1.5% for, Ny r the multiblock copolymers considered in Figure 4.
Approximately one third of solitew%& blocks penetrated in “alien” domains, and a larger value

of volume fraction ¢y ¢ esp}tj to a larger value of the maximum volume fraction @ymax (Fig. 2).

Surprisingly, th?} elfract/io of short blocks slightly increases with y that can be related to the

rapid growth of Nthl kness, whereas the increase of the layer thickness at a fixed y should

lead to thespenetration of more short blocks in the “alien” layers. For larger y (L>Lq), the monomer
£

unit i terac igns bécome to play a more important role in comparison with the entropic factors and

the inerease ih y leads to pushing “alien” short blocks out of the layers toward the interface, so that

ﬁ
g@ses. Longer short blocks are pushed out of “alien” domains at lower values of the Flory-
ggins parameter y, the maximum amount of short blocks in “alien” domains is observed at L=Lg

and it tends to zero at yNg,>10.

14
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l s I P The weight fraction of “alien” monomer units in the polystyrene and polybutadiene domains

Publishing:

s measured for regular and random multiblock copolymers composed of quite long precursors.”
This fraction varies from several to more than 10 per cent and it is larger for alternating multiblock

copolymers than for the random ones, which can be explained from the present work standpoint by

a smaller weight fraction of the shortest (solitary) blocks in the random gnultiblock copolymers. In
computer simulations of the microphase separation in a melt of ra orr%multib ck copolymers of

the special type (pattern-modified)," the observed volume fraction of‘alieny’ blocks was equal to 5-

Qdyu@n be related to the smaller

7%. The lower volume fraction of “alien” blocks in the prese

ultiblock copolymers.

blue curve with triangles); the long block size, Niong=40. The dashed curve
thickness for the regular block copolymer with the block size Niong=40.

—
%luc lower elasticity of unstretched long blocks corresponds to a more rapid growth of the
\lyrer ickness, L, with the Flory-Huggins parameter, y, at L < Lo, than at L > Ly (Figure 5). If a
-
rtain amount of short blocks is in the “alien” layers, then the layer thickness, L (as well as the

interface thickness, D,), increases with the growth of the short block size, Ny, at the fixed number

fraction of short blocks, p«, (black and red curves) and with the growth of this fraction at the fixed
15
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l s I Psh rt block size (blue and red curves). Thus, the layer thickness increases with the short block

Publishi ngf lume fraction, ¢y, at fixed y and Niong.
The layer thickness for the random multiblock copolymers markedly exceeds the layer
thickness for a regular block copolymer with the block size N=Nog (dashed curve). This effect can
be explained by the penetration of short blocks into the “alien” layers (tk/g%‘ joint long blocks

effectively increases) and by the presence of other short block at@e interface. For regular

ok free energy at L,<< JNa is

multiblock copolymers, the scaling dependence of the layer thicknession y«and N can be estimated
from the analysis of Eq. (11) for the free energy. The e a‘s_&

0
approximately equal to fo|(NV,L;) = —ksTIn((G1+ Gr)a)=ksTIn2L./a),

the contribution of a block end

localization at the interface for a regular block ¢ er ‘i%approximately equal to kgTIn(L,/Dy),

0
o
and the main interfacial contribution is equal tw inimizing the corresponding free energy

expression kgTM(In(2L./a)+In(L,/Dy))+ 0o EN&J{ respect to L, gives the estimate of the

equilibrium value w ~
L~0.500Nv=+ 7/24 Na \ (12)
which increases linearly with th%&ength and as ;(1/2 with the Flory-Huggins parameter.

For the rando mgﬁ@ copolymers, the number of joint blocks is 10-20% less than the
£
{sﬁi

total number of I?fg 9& considerable amount of solitary short block is located in the “alien”
layers, since robability that a long block is the part of a joint block is approximately equal to

DPbDlong™ l—}ysh The low elasticity of joint blocks diminishes the overall elastic response and
pro m%{y 1 thickening. At the same time, the short blocks localized at the interface can
onsi blysenlarge the interface thickness, D4, and the interfacial tension, o (the second term in
(9) } proportional to D,). Both factors promote an essential increase in the equilibrium layer

?ic?ﬁess in comparison with that of regular block copolymers. The critical value of (yN).~24

separating the regimes of stretched and unstretched blocks for a regular block copolymer can be

16
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AI Pes imated from Eq. (12) and L,= JNa. For a random block copolymer, the critical value should be
Publishing
scveral times lower.

The analysis of the calculated data leads to the conclusion that the layer thickness at L>Lg is

mainly controlled by the interaction parameter, y, the long block size, Nion, and the mean block

size, N , which is inversely proportional to the total number of polymer 4 s. The dependences of
the layer thickness on Ny for the fixed mean block size but diffe amrt block sizes are very
close (open and solid symbols in Figure 6). The maximum vo mafra ions' of short blocks, @ymax,
and the block size dispersity (or PDI), P, for these sepm@s.ar i?f\erent, nevertheless the layer
thickness is almost the same. Note that we consider the actia] of short blocks less than 0.7,

otherwise, the total volume fraction of short blo b‘ebomes not small and the condition
L

D4 <<,/Njgnga for the strong segregation reg&n be disturbed.

S

N=40

100 120 140 160

long

G. 6 Layer thickness, L, vs the long block size, Niog, at the fixed mean block size, N =40 for
sw=2 (solid symbols) and Ny=8 (open symbols) and for y=0.15 (triangles), 0.4 (squares), and 0.8

ircles). The range of Nioe values corresponds to changing the number fraction of short blocks, pgn,
from 0.05 to 0.65.

17


http://dx.doi.org/10.1063/1.4973933

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |
l SIP The dependences of the layer thickness for the random multiblock copolymers on the

Publishing,

Jispersity in the block size, P=(py, N3 + plongNl%)ng)/ N?, at the same mean block size,

N = PiongNiong T P N =40, and at the fixed size, number fraction, or volume fraction of short

blocks are presented in Figure 7. The layer thickness considerably increases with the dispersity at

fixed Ny, or ¢y, that stems from an increase in the long block size, Niong: t\ﬁx?d\psh, the long block

length increases only slightly with the dispersity that correspond”to\}ght increase in the layer

thickness. ) o~
c3b
=

167 —w—N_ = const
] —v—p_ = const
14 4 sh \
] —0—(ph:coyfs]\\\<//
L J
‘\(I

12

64

4 \ T M T M T
) 1 2 3

y. Dispersity

FIG. 7. Layer h{k\nu{]: or the random multiblock copolymers with the fixed mean block size,

N =40, vs t d@ersity in the block size, D, at the fixed size of short blocks (Ngy,=4, squares), fixed
number fraction of short blocks (ps=0.4, triangles), or fixed volume fraction of short blocks
Flory-Huggins parameter, y = 0.4.

S lobg as the short blocks are present in the “alien” layers, the layer thickness for a random

ultibk%k copolymer is larger than that for a regular multiblock copolymer with the block size
W:Nhng (Figure 8). At larger y, for which all short blocks are pushed out, the layer thickness is less
than that for a regular copolymer. To explain this difference, let us analyze the dependence of the

free energy (4) on the layer thickness, L, at ¢=0 and at a fixed y. The number of long blocks and

18
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l s I Pth ir elastic contribution is only slightly less than that of a regular multiblock copolymer (by the

Publishing

factor plongNlong/]v ). The volume of the interfacial layer is approximately equal to the volume of
short blocks, the interface thickness being proportional to the layer thickness (from Egs. (1) and
(2)), D s=D+A=Dy+L¢q. Then, the interaction contribution into the interfacial energy, Fj, is constant
and the main factor is decreasing the block elastic contribution to the suffaeg tension (the first term
in Eq. (9)) and, correspondingly, the surface free energy due to 11’1@1 larger interfacial layer

thickness, D4 Note that the regular multiblock copolymer withithe block size equal to that of the
random one (N=N rather than N=Njo,) would have a much domain size (the dashed black
curve), because it is controlled by the elasticity of long cks)ather than of blocks of size N

( ]v <Mong)~ ‘)

o
At very large y and Nigyg, the asympto%bp\einde ces for the regular and random multiblock

copolymers can be found neglecting the en ts of block ends and short blocks. In this limit,

\ 3k T L

the block elastic free energy can %ke in the form f,, ~ f = s N 2
a

For a regular
long

multiblock copolymer, the fr& (11) is approximately equal to Fr=MfstoopS, and its

minimum corresponds,t

Aﬁ/ 54)6 le)/lfga (more exactly, Ly—Lq=(y/54)"° leo/jga , if fiy is

£
given by Eq. (7)). For awando multiblock copolymer, all “alien” short blocks are pushed out of the

layers, so th @We free energy (4) can be written as FxMpiqongfest oS, the interfacial tension

the interface energy depends on L as F=cS=const+0.50yV(1/L+O(Dy/L?)). Since V=M N v,

1/6

hen the,equilibrium thickness, Li=Lao/(2(1-@s))"”, is characterized by the same slope (~y

)

\dgu ogarithmic scale (Figure 8).
-

The effect of the block end entropy decreases the equilibrium layer thickness for a regular

) in the

block copolymer because the additional entropy penalty ~In(L/Dy) per block hinders the increase in
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l SIPL (compare the blue curve with diamonds and the dashed black curve). This effect becomes

Publishi n'gﬂ gligible with the increase of y and N (the decrease of the block end number).
The slope of the dependence of the layer thickness, L, on y for the random multiblock
copolymer is less than that for the regular copolymer (at >0.8). This conclusion agrees with the
computer simulation results,'”'® where the very weak dependences of (( tructure period on the

Flory-Huggins parameter were found. The dependences of L on y t dbthe asymptotic law ~ ;(1/ 6

at ¥Niong>1000 only. Considering the dependences of the laye ]xsh& ,'on the long block size
one can predict that they are close to the asymptotical one g@ular multiblock copolymer
from yN=40 and for a random multiblock copolymers f{(‘)r&@; 00.

o

—=—random \x
—e—regular, Mend effect "
./. r'd
lar, N= ) /./'/ _ /.,I
w{’f vl ey

"’ s
/l’.’{

a
3 .,-" -~ -
~ A 7 1
~ s Phd
4 P
-
-
v 1/6
7 ~X
7
/

er thickness, L, vs the Flory-Huggins parameter, y, in the double logarithmic scale for
miultibloek copolymer (black curve with squares, Nionge=40, Ngw=4, ps:=0.4) and for the

(dashéd thin curve). The blue curve with diamonds represents the layer thickness for the

lock’ copolymer with N=Nq,, calculated neglecting the block end entropy effect. The thin

ine givss the asymptotic trend ~"°.

<

IV. CONCLUSIONS
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l s I P In the present work, microphase separation in random multiblock copolymers is studied

PUinShin\& ng the mean-filed theory for the special type of bidisperse random multiblock copolymers with
blocks of only two sizes (long and short). Such copolymer type is a model for random multiblock
copolymers with high dispersity in the block size. By varying the long and short block sizes and
their fractions, the mean block size and block size dispersity can be contrelled.

The strong segregation regime for long blocks is assumed, w, er% solitary short blocks are
able to penetrate into “alien” domains and exchange between the“domams and interfacial layer,

where the other short blocks are concentrated. In compariso Q-sopglymers characterized by a

—
low polydispersity, the main features of the present con 'deratioy relate to the presence of short

blocks. First, the penetration of short blocks into the @en”_%omains leads to the formation of joint
long blocks in their own domains. A very | W%ﬂgﬁee energy of joint blocks, or effective
enlargement of a long block size, promotes ﬂNr of the layer thickness. Second, many short
blocks are localized in the interfacia 12& ich becomes much thicker in comparison with a

similar melt structure for multibl\:o oly}?fers with only long blocks. Correspondingly, the

elastic deformation of long bl%l terface decreases but the interfacial interaction energy

increases.

The possibilit ofg@lock penetration into the “alien” domains is controlled by the
£
u

product yNg, ar?/[he mg fraction of “alien” short blocks does not exceed several per cent in
terms of the e@jt model. As a result, at not very large values of yNy, the domain size for random
multiblo copolymers is larger than that for a regular copolymer consisting of the same long

blocKs, while“at’ quite large values of yNg, it is smaller. The domain size increases with the

olydispeusity index at a fixed mean block length. The calculations were performed for a lamellar
m str}cture, however, the same general features can be expected for other types of microphase
eparation including bicontinuous-like structures.

In experiments, the structure of random multiblock copolymer melts is not strictly periodic,

being characterized by only one or two peaks in their SAXS profiles. Therefore, those materials are
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l s I Pnc t good, for example, for lithography. At the same time, a melt structure is often bicontinuous that

PUbIIShmg important for conducting membranes and can provide high mechanical stability. Besides, the
penetration of small amount of short blocks into “alien” domains could provide the possibility to
obtain sustainable plastics with both phases to be degradable. The recent developments of new

experimental techniques for a synthesis of random multiblock copolymep$ promise new horizons in

their practical applications. 3

"N

APPENDIX A: PARAMETERS OF THE INTERFAC ‘)“*--\

—
The interface free energy for a block copolymer (Wv?h long blocks only) in a strong

. . . 33
segregation regime can be written as L

7 -
Fy=(0,+0,)S, \\ (A1)
%:“\/Z : < (A2)
kg 6
\
oy 1s the interfacial tension in a how r melt, S is the interface area,

o _ My, (M \_M, (¢ (A3)
AN SenD, e D,

b

the localization of block junction points in an interfacial region of

0 /s the number of block junctions, ¢ is the mean volume fraction of

block junctions @r the whole system (the junction point volume is equal to v).

v/ell—}n wn expression for oy (Eq. (A2)) can be obtained, for example, using the
ﬂ

following half-empirical approach. Let @a(x) be the dependence of the volume fraction of A

ﬁ
onomgr units on the coordinate x along an axis perpendicular to the interface. The interfacial

\t31S10 O, =0, + 0, 15 equal to a sum of the elastic energy contribution, o9, and contribution
.

ofi the interaction energy of monomer units, oino. The first term is proportional to the Lifshitz

conformational entropy > and can be written in the form

22
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7100k T):a_zjdx (@A () (gh(x))’
10 B 6 4, (x) 4¢,(x)

], os(x)=1—@a(x). The second term is equal to

0,0 U/ (kT = ;(j dx@, (x)pz(x) . Since the volume fractions ¢ and ¢ change from 0 to 1 in an

interfacial region of thickness D,, the values of the interfacial tension contributions are

approximately equal to

at 1

/\
o0/ (k1) = Z2_DO’ Q (A4)
Q}
o

(A5)

D,
O-mtOU/(kBT) ~ l 0 .
Minimum of the sum of the contributions (A4) an (‘A&u,njespect to Dy corresponds to the

it

expression (A2) for the interfacial tension oy at D,

Now let us take into account that monomer unigs 0f “alien” type are present in all layers. The
expression (A2) can be generalized simg\sKEnT—‘empirical approach described above. Let the
volume fraction of a non-selective oh&\&eﬁﬁal to ¢y in all layers, the Flory-Huggins parameter
of interactions between A or n;x%ﬂer units and the solvent be equal to y in all layers, and
thickness of an interfacial #égion be equal to D. The total interaction energy of such system is equal
to that of a random u&ich copolymer melt with a lamellar structure, where the volume
fraction of “alifn%loc (n the layers is equal to ¢y.

The i eﬁ?%ion, o1, without a contribution of the block end localization is equal to a

sum of the gastl energy contribution, oy, and contribution of the interaction energy, Oini:

£

e volume fraction of long A or B blocks changes from the value of 1-¢y in a layer

ﬂ
O1=@ 11 Oint 1.
f their type to 0 in an “alien” layer. Since the elastic free energy contribution to the surface

tension is linear with respect to the block concentration at a fixed interface thickness, this

N\

ontribution can be written as

a’l-
0w 0 (kT) = "0 (A6)
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Publishing

1-2¢,)>
G0/ aT) = 2 [ dx(0, (511~ 0, ()~ 9, (1~ ) = L4 =220) D,

A7
5 (A7)
Minimum of the sum of the expressions (A6) and (A7) for oy and oy 1, respectively, over D

corresponds to the interface parameters

D=Dy(1-9)"? [(1-20,), 0, = 0,(1—,)*(1-203,). \ (A8)

Thus, the interfacial region thickness increases and the interfacial N reases with the growth
of g, D=Dy(1+1.5¢n), ci=op(1-2.5¢) at gy<<l. The approx1 oﬁ‘(AS) agrees qualitatively with

the results of the self-consistent field analysis of the interfacial c?’aracteristics for a homopolymer

43,44

mixture in the presence of solvent, where the(hango) in the solvent concentration in the

interfacial region is taken into account. \h
In a random multiblock copolymermelt tion of short blocks at the interface should
enlarge an interfacial layer region. Let %al region thickness become equal to a sum of the
.

thickness D (A8) and thickness 4 (1))s.D=A+D. Remind that 4 is equal to the thickness of a
hypothetical layer containing on blocks localized at the interface. Assuming that the elastic
free energy contribution locks and interaction energy contribution to the interfacial tension
depend on the int amal)mb

thickness as described by the expressions (A6) and (A7),

respectively, on calc ¢ the interfacial tension, o, as

oo _a* 1 4a - 2%) Dy A9

kgT 2
Junctionpoints between long blocks and a part of short blocks are localized in the interfacial
egh)n. ontribution of their localization to the interfacial tension (ot jong and o sn, respectively)

rltten similarly to the expression (A3):
\ Oclong T Ocsh »

~ 0 2
Oe long long Piong L ~ _ 2 i (1 4 )plong
In| — , =(1- E ==
kB S ( Ne D, J Plong ( Py )plong = (plongpb ) 1— Plong Pb
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P =@, (P11 - L J Psh 2 ~ i, | P L
ichi = In + pi Dsh ln( )
PublishingkeTV Ny [ e my) Ng °“g§ ; e D,

where Mp is the total number of block ends for long joint blocks beginning at the interface and

long
ending at the junction with a long block (two long blocks of the same type separated by a short block
in an “alien” layer belong to one joint block), the relation V=SL=M ]V/ being taken into account.
Short blocks adjacent in the chain are assumed to be able to move a OI@%}W first term in the

short block contribution describes solitary short blocks (adjacenty to two long blocks),

<
)

APPENDIX B: ELASTIC FREE ENERGY s‘B-LO‘DKS
i f

. i—1_2
@i =Wsh PlongPsh -

L
monomer units in a layer of thickness L,

Let us consider a polymer block consisting o
both ends of the block being localized at&ke. Let L, = Jka be the characteristic spatial
size of the block with a completely rand onformation. If the layer thickness is not large (L<Ly),
then blocks are not stretched Ild%iil lastic free energy can be calculated as an additional

=N

contribution to the free energy of a hgmogeneous melt, as was done for the elastic free energy of

blocks in a polymer globule with both ends at its surface.*’ The elastic free energy of a block

calculated using ?s léach/i

Taking.dnto aceount that both “loop” and “bridge” conformations are possible, the block

&/

s denoted by fi.(k,L).

elastic freefene can be written as

= —In(G,(k,L)a + G, (k,L)a), (B1)

l;-(;re %1 ,L) and G(k,L) are the statistical weights of a “loops” and “bridge”, respectively. The

wsm G, is proportional to the number of conformations of a block with the ends at the layer
rfaces.

To find Gi(k,L) and Go(k,L), it is necessary to calculate the Green function of a block,

G(r,kll‘o), consisting of k statistical segments of length a with the beginning at the point
25


http://dx.doi.org/10.1063/1.4973933

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |
l s I Pro = (x0,0,20) and end at the point r = (x,y,z) of the layer. The Green function describes a random

Publishi n& ick conformation in the layer and satisfies the diffusion-type equation**
0 a’
ﬁG(r,k|r0)=?AG(r,k|ro), r.ryel;, (B2)

where A is a Laplacian with respect to r, V;, is the layer of thickness L. T%initial condition is

G(r,0|ry) =5(r—r,). 5\ (B3)
"

The boundary conditions are

G| _aGl . - (B4)

Ox x=0 ox x=L 3
A zero probability flux at the planes x=0 u x=L (B#) corre s to the condition of a constant
polymer density in the layer. L:.)

The solution of the equation (B2) un N itions (B3) and (B4) can be written as a

product
Glr,k|xy)=G(x,k | x, )G y,\G‘*(z klzo), (BS)
where the Green function G e al to
2 2 2
7zmx X aw mk
G(x,k|xy) = os cos—exp| ——— |. B6

The Green functk/ g& yo) and Gy(z,k| zy) describe a free random walk along the axes y
and z, theyzar en by the expression G,(y,k|y,)= / p( i — (=) }

4

For a™ o(p” conformation, the beginning and end coordinates are x=x,=0, for a “bridge”

onto io-) x0=0, x=L. At k>>(L/a)’, the first term dominates in the sum (B6) and the statistical

3

wel of “loops” and “bridges” can be estimated as G;(k,L) = l(1+2exp(—az7r2k/ 61> )) and

G, (k,L)= 1 2exp( 2k/ 61> )), respectively. At 1<<k<<(L/a)’, the sum can be replaced by
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. ', . an integral and then G(k,L) zl+ 6 ~ 6 . More exactly, the statistical weights of
Publishing L \ka® \ rka?

“loops” and “bridges” for discrete values of block lengths are calculated as

k k
G(k,L)= [dkG(0,k|0) and G,(k,L)= [dkG(L,k|0), respectively,

k-1 k-1 /
1 12L 1 a’*nim* (k-1 a’rnim*k \
G,(k,L)= z+ > z?[exp(— —()j - exp[— e 3

a’r 61°

o0
m=1

2.2 2

© 1\ 22 2.7 2
Gothry= s 12L 3 12 (exp(—a 7m’ (k 1)}_eXp k
L arn”i3 m

The dependences of the block elastic free ene y-(lm fi, on the block size at the fixed

layer thickness and on the layer thickness at a fixéd bloc LSE% are presented in Figures B1 and B2,
S

respectively. The elastic free energies o N loop/(ksT) =In(G1(k,L)a), and “bridges”,

Jor/(ksT) = —In(Ga(k,L)a), are shown as well, Allblock free energies increases with L, fioop and fi.
become almost constant L>L, and Lxx%egpe tively. At k<(L/a)’, the elastic free energy of
f

“bridges” is considerably largerthaxn%t& loops” and these energies become practically equal to

each other for k&>2(L/a)’. The frm “loops” (blocks that begin and end at the same layer
surface) p; and “bridge%that begin and end at the different surfaces of the layer) p, can be
directly calculat ’%/ en functions Gy(k,L) and Ga(k,L), which are proportional to the
n

?
number of ¢ eaj)o\ﬁn,g conformations, p; = G, (k,L) by = G,(k,L)

G,(k,L)+G,(k,L)" **  G(k,L)+G,(k,L)

The “bridge” Araction p, decreses from approximately 0.5 at L~a to 0.3 at L=L.

=
)

N3
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block size, k
FIG. 9. Elastic free energy of a block, fi, in units &\L?ck size, k, at the layer thickness

L=5a and 8a (the black curves). The elastic free encigies of “‘loop” and “bridge” blocks, fioep, and
Jor, are shown by the red and blue curves, respectn\ rves are plotted for L=5a and dashed

ones for L=8a. \
t \

k=25 k=40
—h — A
floop

—_—

Vi
[ —

br

Lia

V.
FIG. 40..To elagtic free energy of a block, fi, in units kg7, vs the layer thickness, L, for blocks of
size k=25 arg (the black curves). The elastic free energies of “loop” and “bridge” blocks, fioop,
d forsare shown by the red and blue curves, respectively. Solid symbols are used for &=25 and

pen ong k=40.
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