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Microphase separation in random multiblock copolymers is studied with mean-field theory 

assuming that long blocks of a copolymer are strongly segregated, whereas short blocks are able to 

penetrate into “alien” domains and exchange between the domains and interfacial layer. A 

bidisperse copolymer with blocks of only two sizes (long and short) is considered as a model of 

multiblock copolymers with high polydispersity in the block size. Short blocks of the copolymer 

play an important role in microphase separation. First, their penetration into the “alien” domains 

leads to the formation of joint long blocks in their own domains. Second, short blocks localized at 

the interface considerably change the interfacial tension. The possibility of penetration of short 

blocks into the “alien” domains is controlled by the product Nsh ( is the Flory-Huggins interaction 

parameter, Nsh is the short block length). At not very large Nsh, the domain size is larger than that 

for a regular copolymer consisting of the same long blocks as in the considered random copolymer. 

At a fixed mean block size, the domain size grows with an increase in the block size dispersity, the 

rate of the growth being dependent of the more detailed parameters of the block size distribution. 

 

I. INTRODUCTION 

Recently, a great progress in methods for the synthesis of random multiblock copolymers has 

been achieved.1–8 Such properties of new materials as enhanced mechanical stability,2–4 

sustainability,3–5  and high proton conductivity7,8 promise a variety of practical applications. These 

properties are due to the microphase separation in random multiblock copolymers and, in particular, 

are related to the appearance of bicontinuous phases. 
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Random multiblock copolymers are polydisperse in macromolecule length and/or block size. 

The polydispersity effect on the microphase separation attracts an increased attention last decade.1–

19 New types of polymer components and architectures are tested to produce small-size patterns of 

different geometries.20–25 So-called high-χ materials (with strongly incompatible components) offer 

the possibility of diblock copolymer sub-10 nm patterning, however, a decrease in the block length 

definitely means a loss in mechanical properties. Multiblock copolymers could help to overcome 

this disadvantage, combining small domain sizes with good mechanical properties. 

Regular and random multiblock copolymers are thoroughly investigated in terms of the weak 

segregation theory beginning form the classical works,26–29 where the stability of homogeneous 

melts was analyzed and the period of critical fluctuations was found depending on a particular chain 

structure of AB copolymers. Then, the more detailed phase diagram was calculated for 

monodisperse multiblock copolymers consisting of Markov stochastic sequences of A and B 

blocks.30 Various aspects of polydispersity of block copolymers are studied up to now.8 In general, 

a dispersity in composition leads to an increase in the structure period. 

In the strong segregation theory, microphase separation for regular block copolymers was 

analyzed using different approaches.22–25,31–33 Besides, the generalized method of the self-consistent 

field theory was developed, which permitted calculating phase diagrams for the wider parameter 

range, describing block conformations in detail and finding a bridge/loop ratio in the strong 

segregation limit.34,35 The fraction of “bridges” is not small that is important for understanding melt 

structure and mechanical properties.35–39 

The polydispersity effect on the microphase separation was previously investigated for diblock 

copolymers with the self-consistent field approach and in the strong segregation limit.2 For 

multiblock copolymers, this effect was not studied before in the strong segregation theory. Highly 

polydisperse random multiblock copolymers possess both short and long blocks. The 

incompatibility N-parameter for short blocks could be not large enough for segregation from 
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blocks of another type. The possibility of pulling out the short blocks from their domains is ignored 

in the self-consistent field approach. 

The investigations of random multiblock copolymer melts in computer simulations exhibited 

rough lamellae or bicontinuous-like structures with the period being very slightly dependent of the 

incompatibility parameter.17-18 For random multiblock copolymers obtained via interchain exchange 

reactions40 and for the specially created block size distribution (pattern-modified),19 a considerable 

amount of “alien” monomer units in lamellae was found in the computer simulations. Besides, an 

enhanced concentration of short blocks at the interface can be also expected. The experimental data 

on the content of “alien” components in polystyrene and polybutadiene domains gave the weight 

fractions from several to more than 10 per cent for alternating and random multiblock copolymers 

composed of quite long precursors.2 

In the present paper, we suggest a model of microphase separation in random multiblock 

copolymers taking into account the ability of short blocks to penetrate into "alien" domains. We 

consider a special type of random multiblock AB-copolymers with the bimodal block size 

distribution. That is, the macromolecules consist of alternating sequences of A and B blocks, every 

block being short or long with a certain probability independently of the other block types. The 

monomer unit sequences of such copolymers are determined by the long/short block ratio and two 

block lengths. By varying these parameters, the value of the block size dispersity (or polydispersity 

index) can be controlled. For the sake of simplicity, a symmetric copolymer composition 

corresponding to a lamellar melt structure is considered. 

Long blocks of A and B types are assumed to be incompatible enough for their strong 

segregation in different domains, while short blocks can exchange between the interface and “alien” 

domains. If a short block adjacent to two long blocks penetrates into an “alien” domain, then a joint 

block composed of two long blocks separated by a short one is confined in that domain with the 

ends of the joint block localized at the interface. Such joint blocks are not stretched or even 

unstretched in comparison with usual single long blocks. The elastic free energy of not stretched 
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blocks is calculated analytically as a correction to the free energy of homopolymer chains in a 

domain due to the chain end localization at the surface. This method is similar to the calculation of 

the conformational energy of copolymer blocks with both ends localized at a globule surface.41 To 

describe a melt structure, we generalize the strong segregation theory approach27 taking into 

account the influence of the short block location on the interaction energy, interfacial tension, and 

conformational free energy. 

With our simple model of random multiblock copolymers, we are going to answer the 

following general questions: i) what factors control the penetration of short blocks into “alien” 

domains and what could be the value of their volume fraction, ii) how the domain size depends on 

the block size dispersity and Flory-Huggins parameter. 

 

II. THE MODEL 

We consider a melt of a random multiblock AB copolymer consisting of long and short 

blocks. A block of any type consists of Nsh monomer units with the probability psh or of Nlong 

monomer units (Nlong/Nsh>>1) with the probability plong=1psh, the sizes of neighbor blocks being 

not correlated. For both A and B monomer units, their volumes and sizes along a chain are equal to 

 and a, respectively. The number average block size is equal to shshlonglong NpNpN   and the 

dispersity, or polydispersity index (PDI), to Đ=
2

shlonglongsh

2
shlonglongsh

)(

)(

NNpp

NNpp

N

Nw




 . The monomer unit 

interactions are characterized by the Flory Huggins parameter . The total number of blocks in 

every macromolecule is assumed to be large, and therefore the translation entropy of whole 

macromolecules and their ends should not be taken into account in the free energy of the system. 

The individual macromolecules can differ in chain length and block number. 
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FIG. 1. Schematic of a segregated melt of the random multiblock copolymer with Nsh=1 and 
Nlong=6. 

 

If the repulsion between A and B monomer units is strong enough (Nlong >>1), then a 

microphase separation takes place. For the sake of simplicity, it is assumed that a lamellar structure 

of alternating layers containing mostly A or B monomer units is formed for the symmetric case of 

50:50 composition (Figure 1). Long blocks A and B are in the layers of their own type, whereas 

short blocks can be at the interface between layers or in “alien” domains. It is assumed that only 

solitary short blocks (adjacent to two long blocks of another type) may penetrate into “alien” 

domains and short blocks cannot stay in the layers of their own type because in that case two 

adjacent blocks would be in the “alien” layers. That is, a short block with at least one adjacent short 

block should always be at the interface. 

The volume fraction of short A blocks in B layers, A, and of short B blocks in A layers, B, 

are equal to each other, A=B=0 (0<<1). The layers A and B have the same thickness, L, and the 

interfacial layer thickness is denoted by D. The average volume fraction of monomer units of short 

blocks of any type is equal to 
longlongshsh

shsh
sh NpNp

Np


 . Then, the fraction of short blocks in 

“alien” layers is equal to sh00 p . Let  be the thickness of the layer consisting of only short 

blocks located at the interface. From the normalization condition with respect to the number of short 

blocks, shL=0L+(10), so that 
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0

0sh
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



 L .          (1) 

The volume fraction of short blocks in “alien” domains, 0, can change from 0 to the 

maximum value, 0max, for which all solitary short blocks (adjacent to two long blocks) are in 

“alien” domains. The maximum number fraction of short blocks in “alien” domains is equal to the 

fraction of solitary blocks, p0max= 2
longp . The maximum volume fraction is equal to sh

2
longmax0  p  

and correspondingly the thickness  takes the minimal value min=
sh

2
long

sh
2
long

1

)1(




p

p
L




. The dependence 

of the maximum volume fraction of short blocks in “alien” domains, 0max, on the number fraction 

of short blocks is presented in Figure 2. The maximum value of 0max corresponds to the number 

fraction of short blocks psh0.45 at Nlong/Nsh=5 and tends to 0.5 if Nlong/Nsh. At Nlong/Nsh>>1, it 

does not exceed several per cent. 
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FIG. 2. Maximum volume fraction of short blocks in “alien” domains, sh
2
longmax0  p , vs the 

number fraction of short blocks, psh, at Nlong/Nsh=5 (thin black curve) and Nlong/Nsh=10 (thick red 
curve). Only solitary short blocks (adjacent to two long blocks) may penetrate into ”alien” domains. 
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The presence of short blocks at the interface between A and B layers should enlarge the 

interfacial layer thickness in comparison with that in a melt of the multiblock copolymer with long 

blocks only. We assume that the interfacial thickness, D, is equal to the sum of the interfacial 

thickness in two limiting cases: D=+D, where  is given by Eq. (1) and D is the interfacial 

thickness for a model solution of the multiblock copolymer consisting of only long blocks in a 

nonselective solvent at the constant solvent volume fraction equal to 0. For this solution, the Flory-

Huggins parameter describing interactions between the solvent and monomer units of both types is 

taken to be equal to . Interactions of the polymer with such solvent mimic the volume interactions 

between long and “alien” short blocks in the considered random multiblock copolymer melt. The 

characteristic thickness of the interface between A and B domains in such solution is equal to (see 

Appendix A) 

)21()1( 0
21

00   DD ,         (2) 

where 60 aD   is the  interface thickness in an A and B homopolymer melt. 

 It can be expected that the value of the interfacial thickness D is determined mainly by the 

value of D at weak incompatibility of A and B blocks,  << D, since the thickness D0 is quite large 

in that case and some part of short blocks are in “alien” domains, which have not very large size L. 

For strongly incompatible blocks (high ), the interfacial thickness D is determined by the 

thickness  (1),  >> D, since the thickness D0 is small and short blocks are pushed out of “alien” 

domains (0  0) of quite large thickness L. 

 

A. Free energy of a homogeneous melt 

To control whether the microphase separation takes place in a random multiblock copolymer 

melt, the free energies of the homogeneous melt and the melt with a lamellar structure should be 

calculated and compared with each other. The volume fraction of A and B monomer units in such 

melt is equal to BA   =1/2. It is assumed that short blocks are mobile and several neighboring 

http://dx.doi.org/10.1063/1.4973933


8 
 

short blocks can move together. The free energy F0 is equal to a sum of the interaction energy and 

translational entropy contribution of short blocks (in the form of an ideal-gas free energy), 







1

1
sh

2
long

sh

sh
BA

B

0 ln
i

ii

e
pp

NTVk

F 
.       (3) 

Here V is the volume of the system, T is the thermodynamic temperature, kB is the Boltzmann 

constant, i is the volume fraction of monomer units belonging to sequences containing i short 

blocks, which are adjacent to two long blocks at the edges. The number of solitary short blocks with 

two adjacent long blocks is equal to 2
longsh pMp , where M is the total number of blocks. The number 

of pairs of short blocks is equal to 2
long

2
sh pMp  and so on. Then, sh

2
long

1
sh  pipi

i
 , 






1
sh

i
i . 

B. Free energy of a layered melt 

We assume that long polymer blocks are strongly segregated (D<<L), whereas short blocks 

are in equilibrium between the layers and interfacial region. The free energy of the system, F, 

depends on the volume fraction of short blocks in the layers, 0. It includes several contributions, 

sel FFEF  ,          (4) 

where E is a sum of the interaction energy and translational entropy contribution of short blocks in 

”alien” layers, Fel is the elastic free energy of long blocks, and Fs is the interface free energy. The 

first contribution has the form 

eNTVk

E 0

sh

0
00

B
ln)1(



 .        (5) 

For calculating the elastic free energy of long blocks, it is necessary to take into account that 

the conformational constraints for long blocks separated by i solitary short blocks in an ”alien” 

layer are the same as for a joint block of length Ni=Nlong+i(Nlong+Nsh). This block is localized in a 

layer of thickness L with the ends located at its surface. Let pb=pshp0 be the probability to find a 

short block located in an “alien” layer. Then, the number of long blocks of length N0=Nlong with 
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both ends at the interface is equal to Mplong(1pb)
2, the number of joint blocks of length N1 is equal 

to 2
bb

2
long )1( ppMp  , and so on. The elastic free energy of blocks, Fel, can be written as 







0
blblong

2
blong

B

el ),()()1(
1

i
i

i LNfpppp
NTVk

F 
,     (6) 

where fbl(N,L) is the elastic free energy of a block consisting of N monomer units, which is located 

inside of the layer of thickness L with the both ends at its surface. 

If the thickness L is less or comparable to the characteristic size aNL ii 0  of a block of 

length Ni, this block is not stretched and the conformational restrictions are caused only by the 

block end location at the interface. For the calculation of the elastic free energy of joint blocks in 

that case, we consider it as a correction to the free energy of such blocks in a homogeneous melt as 

was done earlier for the calculation of the conformational free energy of a polymer block in a 

globule with both ends at the surface.41 The elastic free energy of a block calculated using this 

approach is denoted by fL (see Appendix B). The possibility for a block to take a “loop” (with 

both ends at the same surface of the layer) or “bridge” (with the ends at the different surfaces of the 

layer) conformation is taken into account. For quite high block stretching, we assume that the block 

elastic free energy, fbl, tends to the elastic free energy 
2

2
B

gs 2

3

aN

LTk
f

i

  of Gaussian chains. At the 

intermediate values of L in the range L0<L<Lsm, we use a smoothing approximation, fsm, for the 

dependence of the block elastic free energy, fbl, on L, which provides continuous dependences of the 

function, fbl, and its derivatives, Lf  bl , 2
bl

2 Lf   on L: 











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where aNL i0 , the value of Lsm is taken to be slightly larger than L0, 

3
0

0sm

0gs2
00000sm )(

)(6
)(

2

1
)(),( LL

LL

ff
LLfLLffLNf i 




 , f0=fL(Ni,L0), 
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The interfacial energy can be represented as the sum33 

SF )( es   ,           (8) 

where  is the interfacial tension arising from the elastic energy of long blocks and interaction 

energy of monomer units in the interfacial region and e is the contribution of block end 

localization at the interface. These terms are taken in the form (see Appendix A) 

,)21(
2
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
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        (9) 

and 

e =e,long + e,sh           (10) 
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, 

e,long and e,sh are the contributions of one-end localization for joint blocks with a long next block 

and of short block localization, respectively. It is taken into account that V=SL. The first term in the 

expression for e,sh describes solitary short blocks in the interfacial layer. 

The equilibrium parameters of the system correspond to the free energy minimum with respect 

to the volume fraction of short blocks in the layers, 0, and the layer thickness, L. 
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C. Free energy of a regular copolymer layered melt 

To reveal the effect of short blocks, it is illustrative to find the layer thickness and compare the 

free energy contributions for the melts of a random multiblock copolymer with long and short 

blocks and of a regular copolymer with long blocks of length N only. The free energy of a regular 

copolymer melt, Freg, consists of the elastic free energy of blocks, Fel(reg), and the interfacial free 

energy, Fs0, 

Fr=Fel(reg)+ Fs0           (11) 

According to the calculation of the elastic free energy for a random multiblock copolymer, the 

elastic free energy for a regular copolymer can be written as 

),(
1

rbl
B

el(reg) LNf
NTVk

F



. 

The interfacial free energy can be written as33 

SF )( e00s0   ,  
6B

0 


 a

Tk
 , 










0

rr

B

e0 ln
DSe

M

S

M

Tk 


, 

where 0 is the interfacial tension in a melt of A and B homopolymers, 0e  is the contribution of 

localizing block junction points in the interfacial region of thickness 60 aD  , Mr is the 

number of block junction points which is approximately equal to a total number of blocks, M, for 

long enough multiblock chains. Minimizing the free energy, Freg (Eq. (11)), with respect to the layer 

thickness, Lr, and taking into account that V=MN=LrS the equilibrium value of the layer thickness 

can be found. 

 

III. RESULTS AND DISCUSSIONS 

Penetration of short blocks into “alien” layers can be energetically favorable for two reasons, 

an increase in the translational entropy of short blocks and appearance of joint long blocks. The 

dependence of the elastic free energy of joint blocks on the layer thickness calculated according to 

Eq. (7) and Appendix B is presented in Figure 3. For the value Lsm=1.2L0 taken in the 
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calculations, the parameter Lstr/L0 was equal to 0.825. The elastic free energy grows slowly (the 

increase is less or comparable with kBT) with the layer thickening from several monomer unit sizes 

up to L aNL ii 0 . At L>L0i, the elastic free energy increases more rapidly and the free energy 

gain corresponding to the appearance of a joint block of size N1 instead of two blocks of size 

N0=Nlong can exceed several kBT. 
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 N
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FIG. 3. The block elastic free energy, fbl, in units kBT, vs the layer thickness, L, for joint blocks of 

size Ni=Nlong+i(Nlong+Nsh) at Nlong=40, Nsh=4 ( aNL ii 0 , L00= aN long 6.3a, L019.2a, 

L0211.3a). 
 

The “bridge” fraction for not stretched blocks of a fixed length k is proportional to the 

number of possible block conformations in a layer and can be estimated as G2/(G1+G2), where 

G1(k,L) and G2(k,L) are the statistical weights of loops and bridges, respectively (see Appendix B). 

The bridge fraction decreases with L from 0.5 at L~a to approximately 0.3 at L=L0. The present 

model does not permit to analyse a bridge fraction for stretched blocks. However, the fraction of 

bridges for a random copolymer with a given mean block length will be much less than that for 

copolymers with monodisperse blocks of the same length. It is because short blocks mostly form 

loops whereas long blocks occupy the middle part of domains and may form bridges of loops. This 
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picture is consistent with a very low bridge fraction (several per cent) for pattern-modified random 

multiblock copolymers obtained via layer marking in a homogeneous melt.19  

In theory, a loop is considered as two linear chains and equal probabilities of bridge and 

loop conformations are usually assumed.22–25,31 The more detailed self-consistent field calculations 

predict the bridge fraction 0.4 for stretched monodisperse middle blocks.34,35 Note that the 

combinatorial distributions of bridges and loops in the layers are impotrant for the final structure of 

multiblock copolymers with not large numbers of blocks in macromolecules, as shown for the 

copolymers with monodisperse blocks forming usual lamellar structure31 and for the copolymers 

with long end blocks and many more short middle blocks forming lamellar-in-lamellar structures.22–

25 

The change in the elastic behavior of the copolymer blocks at L=L00 leads to the different 

character of the dependences of the volume fraction of short blocks in the “alien” domains and of 

the layer thickness on the block size and Flory-Huggins parameter for not stretched (L<L00) and 

stretched blocks (L>L00), as shown in Figures 4 and 5. All equilibrium parametes are calculated by 

minimizing the free energy F (Eqs. (4)-(10)) with respect to 0 and L and the free energy Fr (Eq. 

(11)) with respect to Lr. Note that the free energy of a homogeneous melt calculated in accordance 

with Eq. (3) is larger than the free energy of a melt with lamellar structure for all considered values 

of the parameters. 
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FIG. 4. Volume fraction of the solitary short blocks in “alien” layers, 0, vs the Flory-Huggins 
parameter, , for the random multiblock copolymer with Nsh=4, psh=0.4 (black curve with squares), 
Nsh=8, psh=0.4 (red curve with circles), Nsh=8, psh=0.3 (blue curve with triangles); the long block 
size Nlong=40. 

 

The volume fraction of short blocks in “alien” domains, 0, at small  (at L<L00) is around 

0.8% for Nsh=4 and 1.5% for Nsh=8 for the multiblock copolymers considered in Figure 4. 

Approximately one third of solitary short blocks penetrated in “alien” domains, and a larger value 

of volume fraction 0 corresponds to a larger value of the maximum volume fraction 0max (Fig. 2). 

Surprisingly, the volume fraction of short blocks slightly increases with  that can be related to the 

rapid growth of the layer thickness, whereas the increase of the layer thickness at a fixed  should 

lead to the penetration of more short blocks in the “alien” layers. For larger  (L>L00), the monomer 

unit interactions become to play a more important role in comparison with the entropic factors and 

the increase in  leads to pushing “alien” short blocks out of the layers toward the interface, so that 

0 decreases. Longer short blocks are pushed out of “alien” domains at lower values of the Flory-

Huggins parameter , the maximum amount of short blocks in “alien” domains is observed at LL00 

and it tends to zero at Nsh>10. 

http://dx.doi.org/10.1063/1.4973933


15 
 

The weight fraction of “alien” monomer units in the polystyrene and polybutadiene domains 

was measured for regular and random multiblock copolymers composed of quite long precursors.2 

This fraction varies from several to more than 10 per cent and it is larger for alternating multiblock 

copolymers than for the random ones, which can be explained from the present work standpoint by 

a smaller weight fraction of the shortest (solitary) blocks in the random multiblock copolymers. In 

computer simulations of the microphase separation in a melt of random multiblock copolymers of 

the special type (pattern-modified),19 the observed volume fraction of “alien” blocks was equal to 5-

7%. The lower volume fraction of “alien” blocks in the present study can be related to the smaller 

volume fraction of short (solitary) blocks in the considered bidisperse multiblock copolymers. 
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FIG. 5. Layer thickness, L, vs the Flory-Huggins parameter, , for the random multiblock 
copolymers with Nsh=4, psh=0.4 (black curve with squares), Nsh=8, psh=0.4 (red curve with circles), 
and Nsh=8, psh=0.3 (blue curve with triangles); the long block size, Nlong=40. The dashed curve 
describes the layer thickness for the regular block copolymer with the block size Nlong=40. 

 

Much lower elasticity of unstretched long blocks corresponds to a more rapid growth of the 

layer thickness, L, with the Flory-Huggins parameter, , at L < L00 than at L > L00 (Figure 5). If a 

certain amount of short blocks is in the “alien” layers, then the layer thickness, L (as well as the 

interface thickness, D), increases with the growth of the short block size, Nsh, at the fixed number 

fraction of short blocks, psh, (black and red curves) and with the growth of this fraction at the fixed 
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short block size (blue and red curves). Thus, the layer thickness increases with the short block 

volume fraction, sh, at fixed  and Nlong. 

The layer thickness for the random multiblock copolymers markedly exceeds the layer 

thickness for a regular block copolymer with the block size N=Nlong (dashed curve). This effect can 

be explained by the penetration of short blocks into the “alien” layers (the size of joint long blocks 

effectively increases) and by the presence of other short blocks at the interface. For regular 

multiblock copolymers, the scaling dependence of the layer thickness on  and N can be estimated 

from the analysis of Eq. (11) for the free energy. The elastic block free energy at Lr<< aN  is 

approximately equal to fbl(N,Lr)  –kBTln((G1+ G2)a)kBTln(2Lr/a), the contribution of a block end 

localization at the interface for a regular block copolymer is approximately equal to kBTln(Lr/D0), 

and the main interfacial contribution is equal to 0V/Lr. Minimizing the corresponding free energy 

expression kBTM(ln(2Lr/a)+ln(Lr/D0))+0V/Lr with respect to Lr gives the estimate of the 

equilibrium value 

Lr0.50N= 24 Na,        (12) 

which increases linearly with the block length and as 1/2 with the Flory-Huggins parameter. 

For the random multiblock copolymers, the number of joint blocks is 10-20% less than the 

total number of long blocks if a considerable amount of solitary short block is located in the “alien” 

layers, since the probability that a long block is the part of a joint block is approximately equal to 

pbplong~psh(1psh). The low elasticity of joint blocks diminishes the overall elastic response and 

promotes the layer thickening. At the same time, the short blocks localized at the interface can 

considerably enlarge the interface thickness, D, and the interfacial tension,  (the second term in 

Eq. (9) is proportional to D). Both factors promote an essential increase in the equilibrium layer 

thickness in comparison with that of regular block copolymers. The critical value of (N)cr24 

separating the regimes of stretched and unstretched blocks for a regular block copolymer can be 
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estimated from Eq. (12) and Lr= aN . For a random block copolymer, the critical value should be 

several times lower. 

The analysis of the calculated data leads to the conclusion that the layer thickness at L>L00 is 

mainly controlled by the interaction parameter, , the long block size, Nlong, and the mean block 

size, N , which is inversely proportional to the total number of polymer blocks. The dependences of 

the layer thickness on Nlong for the fixed mean block size but different short block sizes are very 

close (open and solid symbols in Figure 6). The maximum volume fractions of short blocks, 0max, 

and the block size dispersity (or PDI), Đ, for these series are different, nevertheless the layer 

thickness is almost the same. Note that we consider the fraction of short blocks less than 0.7, 

otherwise, the total volume fraction of short blocks becomes not small and the condition 

D << aN long  for the strong segregation regime can be disturbed. 
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FIG. 6. Layer thickness, L, vs the long block size, Nlong, at the fixed mean block size, N =40 for 
Nsh=4 (solid symbols) and Nsh=8 (open symbols) and for =0.15 (triangles), 0.4 (squares), and 0.8 
(circles). The range of Nlong values corresponds to changing the number fraction of short blocks, psh, 
from 0.05 to 0.65. 
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The dependences of the layer thickness for the random multiblock copolymers on the 

dispersity in the block size, Đ= 22
longlong

2
shsh )( NNpNp  , at the same mean block size, 

shshlonglong NpNpN  =40, and at the fixed size, number fraction, or volume fraction of short 

blocks are presented in Figure 7. The layer thickness considerably increases with the dispersity at 

fixed Nsh or sh that stems from an increase in the long block size, Nlong. At fixed psh, the long block 

length increases only slightly with the dispersity that corresponds to a slight increase in the layer 

thickness. 

 

1 2 3
4

6

8

10

12

14

16

L
/a

Dispersity

 N
sh

 = const

 p
sh

 = const

 
sh

 = const

N = 40

 

FIG. 7. Layer thickness, L, for the random multiblock copolymers with the fixed mean block size, 

N =40, vs the dispersity in the block size, Đ, at the fixed size of short blocks (Nsh=4, squares), fixed 
number fraction of short blocks (psh=0.4, triangles), or fixed volume fraction of short blocks 
(sh=0.2, circles). The Flory-Huggins parameter,  = 0.4. 
 

As long as the short blocks are present in the “alien” layers, the layer thickness for a random 

multiblock copolymer is larger than that for a regular multiblock copolymer with the block size 

N=Nlong (Figure 8). At larger , for which all short blocks are pushed out, the layer thickness is less 

than that for a regular copolymer. To explain this difference, let us analyze the dependence of the 

free energy (4) on the layer thickness, L, at 0=0 and at a fixed . The number of long blocks and 
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their elastic contribution is only slightly less than that of a regular multiblock copolymer (by the 

factor plongNlong/ N ). The volume of the interfacial layer is approximately equal to the volume of 

short blocks, the interface thickness being proportional to the layer thickness (from Eqs. (1) and 

(2)), D=D+=D0+Lsh. Then, the interaction contribution into the interfacial energy, Fs, is constant 

and the main factor is decreasing the block elastic contribution to the surface tension (the first term 

in Eq. (9)) and, correspondingly, the surface free energy due to a much larger interfacial layer 

thickness, D. Note that the regular multiblock copolymer with the block size equal to that of the 

random one (N= N  rather than N=Nlong) would have a much less domain size (the dashed black 

curve), because it is controlled by the elasticity of long blocks rather than of blocks of size N  

( N <Nlong). 

At very large  and Nlong, the asymptotic dependences for the regular and random multiblock 

copolymers can be found neglecting the entropy effects of block ends and short blocks. In this limit, 

the block elastic free energy can be taken in the form 
2

long

2
B

gsbl 2

3

aN

LTk
ff  . For a regular 

multiblock copolymer, the free energy (11) is approximately equal to FrMfgs+0S, and its 

minimum corresponds to aNL 32
long

61
a0 )54(  (more exactly, La0Lstr= aN 32

long
61)54( , if fbl is 

given by Eq. (7)). For a random multiblock copolymer, all “alien” short blocks are pushed out of the 

layers, so that 0=0 and the free energy (4) can be written as FMplongfgs+S, the interfacial tension 

(9) is equal to  0005.0 DDDD   , where the interface thickness, D=D0+Lsh. At L, 

the interface free energy depends on L as Fs=S=const+0.50V(1/L+O(D0/L
2)). Since V=M N , 

then the equilibrium thickness, La=La0/(2(1sh))
1/3, is characterized by the same slope (~1/6) in the 

double logarithmic scale (Figure 8). 

The effect of the block end entropy decreases the equilibrium layer thickness for a regular 

block copolymer because the additional entropy penalty ~ln(L/D0) per block hinders the increase in 
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L (compare the blue curve with diamonds and the dashed black curve). This effect becomes 

negligible with the increase of  and N (the decrease of the block end number). 

The slope of the dependence of the layer thickness, L, on   for the random multiblock 

copolymer is less than that for the regular copolymer (at >0.8). This conclusion agrees with the 

computer simulation results,17,18 where the very weak dependences of the structure period on the 

Flory-Huggins parameter were found. The dependences of L on  tend to the asymptotic law ~1/6 

at Nlong>1000 only. Considering the dependences of the layer thickness, L, on the long block size 

one can predict that they are close to the asymptotical one ~N2/3 for a regular multiblock copolymer 

from N40 and for a random multiblock copolymers from Nlong100. 
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FIG. 8. Layer thickness, L, vs the Flory-Huggins parameter, , in the double logarithmic scale for 
the random multiblock copolymer (black curve with squares, Nlong=40, Nsh=4, psh=0.4) and for the 

regular block copolymers with N=Nlong (dashed thick curve) and with N= N  =plongNlong+pshNsh 

=25.6 (dashed thin curve). The blue curve with diamonds represents the layer thickness for the 
regular block copolymer with N=Nlong calculated neglecting the block end entropy effect. The thin 
line gives the asymptotic trend ~1/6. 

 

 

IV. CONCLUSIONS 
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In the present work, microphase separation in random multiblock copolymers is studied 

using the mean-filed theory for the special type of bidisperse random multiblock copolymers with 

blocks of only two sizes (long and short). Such copolymer type is a model for random multiblock 

copolymers with high dispersity in the block size. By varying the long and short block sizes and 

their fractions, the mean block size and block size dispersity can be controlled. 

The strong segregation regime for long blocks is assumed, whereas solitary short blocks are 

able to penetrate into “alien” domains and exchange between the domains and interfacial layer, 

where the other short blocks are concentrated. In comparison with copolymers characterized by a 

low polydispersity, the main features of the present consideration relate to the presence of short 

blocks. First, the penetration of short blocks into the “alien” domains leads to the formation of joint 

long blocks in their own domains. A very low elastic free energy of joint blocks, or effective 

enlargement of a long block size, promotes the increase of the layer thickness. Second, many short 

blocks are localized in the interfacial layer, which becomes much thicker in comparison with a 

similar melt structure for multiblock copolymers with only long blocks. Correspondingly, the 

elastic deformation of long blocks at the interface decreases but the interfacial interaction energy 

increases. 

The possibility of short block penetration into the “alien” domains is controlled by the 

product Nsh, and the volume fraction of “alien” short blocks does not exceed several per cent in 

terms of the present model. As a result, at not very large values of Nsh the domain size for random 

multiblock copolymers is larger than that for a regular copolymer consisting of the same long 

blocks, while at quite large values of Nsh it is smaller. The domain size increases with the 

polydispersity index at a fixed mean block length. The calculations were performed for a lamellar 

melt structure, however, the same general features can be expected for other types of microphase 

separation including bicontinuous-like structures. 

In experiments, the structure of random multiblock copolymer melts is not strictly periodic, 

being characterized by only one or two peaks in their SAXS profiles. Therefore, those materials are 
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not good, for example, for lithography. At the same time, a melt structure is often bicontinuous that 

is important for conducting membranes and can provide high mechanical stability. Besides, the 

penetration of small amount of short blocks into “alien” domains could provide the possibility to 

obtain sustainable plastics with both phases to be degradable. The recent developments of new 

experimental techniques for a synthesis of random multiblock copolymers promise new horizons in 

their practical applications. 

 

APPENDIX A: PARAMETERS OF THE INTERFACE 

The interface free energy for a block copolymer melt (with long blocks only) in a strong 

segregation regime can be written as33 
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0 is the interfacial tension in a homopolymer melt, S is the interface area, 
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is the entropic contribution of the localization of block junction points in an interfacial region of 

thickness 60 aD  , M0 is the number of block junctions,   is the mean volume fraction of 

block junctions over the whole system (the junction point volume is equal to ). 

The well-known expression for 0 (Eq. (A2)) can be obtained, for example, using the 

following half-empirical approach. Let A(x) be the dependence of the volume fraction of A 

monomer units on the coordinate x along an axis perpendicular to the interface. The interfacial 

tension 0int0el0    is equal to a sum of the elastic energy contribution, el 0, and contribution 

of the interaction energy of monomer units, int 0. The first term is proportional to the Lifshitz 

conformational entropy42 and can be written in the form 
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Minimum of the sum of the contributions (A4) and (A5) with respect to D0 corresponds to the 

expression (A2) for the interfacial tension 0 at 60 aD  . 

 Now let us take into account that monomer units of “alien” type are present in all layers. The 

expression (A2) can be generalized using a semi-empirical approach described above. Let the 

volume fraction of a non-selective solvent be equal to 0 in all layers, the Flory-Huggins parameter 

of interactions between A or B monomer units and the solvent be equal to  in all layers, and 

thickness of an interfacial region be equal to D. The total interaction energy of such system is equal 

to that of a random multiblock AB copolymer melt with a lamellar structure, where the volume 

fraction of “alien” blocks in the layers is equal to 0. 

The interfacial tension, 1, without a contribution of the block end localization is equal to a 

sum of the elastic energy contribution, el 1, and contribution of the interaction energy, int 1: 

1=el 1+int 1. The volume fraction of long A or B blocks changes from the value of 10 in a layer 

of their own type to 0 in an “alien” layer. Since the elastic free energy contribution to the surface 

tension is linear with respect to the block concentration at a fixed interface thickness, this 

contribution can be written as 
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The interaction energy contribution to the surface tension can be estimated as 

))1())(1)((()( 00AAB 1int    xxdxTk
2

)21( 2
0 D 

 .   (A7) 

Minimum of the sum of the expressions (A6) and (A7) for el 1 and int 1, respectively, over D 

corresponds to the interface parameters 
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Thus, the interfacial region thickness increases and the interfacial tension decreases with the growth 

of 0, DD0(1+1.50), 10(12.50) at 0<<1. The approximation (A8) agrees qualitatively with 

the results of the self-consistent field analysis of the interfacial characteristics for a homopolymer 

mixture in the presence of solvent,43,44 where the change in the solvent concentration in the 

interfacial region is taken into account. 

In a random multiblock copolymer melt, localization of short blocks at the interface should 

enlarge an interfacial layer region. Let the interfacial region thickness become equal to a sum of the 

thickness D (A8) and thickness  (Eq. (1)): D=+D. Remind that  is equal to the thickness of a 

hypothetical layer containing only short blocks localized at the interface. Assuming that the elastic 

free energy contribution of long blocks and interaction energy contribution to the interfacial tension 

depend on the interfacial layer thickness as described by the expressions (A6) and (A7), 

respectively, one can calculate the interfacial tension, , as 
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Junction points between long blocks and a part of short blocks are localized in the interfacial 

region. The contribution of their localization to the interfacial tension (e,long and e,sh, respectively) 

can be written similarly to the expression (A3): 

e =e,long +e,sh 
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where long
~pM  is the total number of block ends for long joint blocks beginning at the interface and 

ending at the junction with a long block (two long blocks of the same type separated by a short block 

in an “alien” layer belong to one joint block), the relation V=SL=M N  being taken into account. 

Short blocks adjacent in the chain are assumed to be able to move as one object. The first term in the 

short block contribution describes solitary short blocks (adjacent to two long blocks), 

sh
2
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1
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i
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APPENDIX B: ELASTIC FREE ENERGY OF BLOCKS 

 Let us consider a polymer block consisting of k monomer units in a layer of thickness L, 

both ends of the block being localized at an interface. Let akL 0  be the characteristic spatial 

size of the block with a completely random conformation. If the layer thickness is not large (L<L0), 

then blocks are not stretched and their elastic free energy can be calculated as an additional 

contribution to the free energy of a homogeneous melt, as was done for the elastic free energy of 

blocks in a polymer globule with both ends at its surface.41 The elastic free energy of a block 

calculated using this approach is denoted by fL(k,L). 

 Taking into account that both “loop” and “bridge” conformations are possible, the block 

elastic free energy can be written as 

)),(),(ln(
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Tk

Lkf
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where G1(k,L) and G2(k,L) are the statistical weights of a “loops” and “bridge”, respectively. The 

sum G1+G2 is proportional to the number of conformations of a block with the ends at the layer 

surfaces. 

  To find G1(k,L) and G2(k,L), it is necessary to calculate the Green function of a block, 

 0|, rr kG , consisting of k statistical segments of length a with the beginning at the point 
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r0 = (x0,y0,z0) and end at the point r = (x,y,z) of the layer. The Green function describes a random 

block conformation in the layer and satisfies the diffusion-type equation42,45 
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where  is a Laplacian with respect to r, VL is the layer of thickness L. The initial condition is 
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The boundary conditions are 
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A zero probability flux at the planes x=0 и x=L (B4) corresponds to the condition of a constant 

polymer density in the layer. 

The solution of the equation (B2) under the conditions (B3) and (B4) can be written as a 

product 
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where the Green function  0|, xkxG  is equal to 
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The Green functions  00 |, ykyG  and  00 |, zkzG  describe a free random walk along the axes y 

and z, they are given by the expression   
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  2

02200 )(
2

3
exp

2

3
|, yy

kaka
ykyG


. 

 For a “loop” conformation, the beginning and end coordinates are x=x0=0, for a “bridge” 

conformation x0=0, x=L. At k>>(L/a)2, the first term dominates in the sum (B6) and the statistical 

weights of “loops” and “bridges” can be estimated as   222
1 6exp21

1
),( Lka

L
LkG   and 

  222
2 6exp21

1
),( Lka

L
LkG  , respectively. At 1<<k<<(L/a)2, the sum can be replaced by 
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an integral and then 
221
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 . More exactly, the statistical weights of 

“loops” and “bridges” for discrete values of block lengths are calculated as 
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The dependences of the block elastic free energy (Eq. (B1)), fL, on the block size at the fixed 

layer thickness and on the layer thickness at a fixed block size are presented in Figures B1 and B2, 

respectively. The elastic free energies of “loops”, floop/(kBT) =–ln(G1(k,L)a), and “bridges”, 

fbr/(kBT) = –ln(G2(k,L)a), are shown as well. All block free energies increases with L, floop and fL 

become almost constant L>L0 and L>2L0, respectively. At k<(L/a)2, the elastic free energy of 

“bridges” is considerably larger than that of “loops” and these energies become practically equal to 

each other for k>2(L/a)2. The fraction of “loops” (blocks that begin and end at the same layer 

surface)  p1 and “bridges” (blocks that begin and end at the different surfaces of the layer) p2 can be 

directly calculated from the Green functions G1(k,L) and G2(k,L), which are proportional to the 

number of corresponding conformations, 
),(),(

),(

21

1
1 LkGLkG

LkG
p


 , 

),(),(

),(

21

2
2 LkGLkG

LkG
p


 .  

The “bridge” fraction p2 decreses from approximately 0.5 at L~a to 0.3 at L=L0. 
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FIG. 9. Elastic free energy of a block, fL, in units kBT, vs the block size, k, at the layer thickness 
L=5a and 8a (the black curves). The elastic free energies of “loop” and “bridge” blocks, floop, and 
fbr, are shown by the red and blue curves, respectively. Solid curves are plotted for L=5a and dashed 
ones for L=8a. 
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FIG. 10. Total elastic free energy of a block, fL, in units kBT, vs the layer thickness, L, for blocks of 
size k=25 and 40 (the black curves). The elastic free energies of “loop” and “bridge” blocks, floop, 
and fbr, are shown by the red and blue curves, respectively. Solid symbols are used for k=25 and 
open ones for k=40. 
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