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Abstract—The process of the Rydberg blockade, which is currently regarded as one of the most promising
approaches to quantum computation, can become significantly less effective due to interatomic interactions
that shift the excitation frequency of initially blocked particles to the region of resonance with external
laser radiation. In this article, we develop an analytical theory of this effect based on a self-consistent
model of two Rydberg atoms acting on each other with their dipole electric fields and experiencing a Stark
splitting of energy levels under the action of these fields. It follows from our calculations that the typical
interatomic distances at which the unblocking effect due to “parasitic” resonances begins to occur are
in rough agreement with earlier qualitative estimates; however, the number of such resonances can be
much larger than in recent numerical simulations of some particular systems. Therefore, the possibility of
breaking the Rydberg blockade at small interatomic distances should be carefully taken into account in any
future applications to quantum computing.
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INTRODUCTION

The Rydberg blockade is the impossibility of si-
multaneous excitation of several neighboring atoms
by narrow-band laser radiation into the same Ryd-
berg state, because after one atom is excited, it per-
turbs the energy levels of neighboring atoms with its
electric field and thus takes them out of resonance
with the external radiation. This phenomenon was
theoretically proposed as a tool for quantum informa-
tion processing in the very early 2000s [1]; a few years
later its practical feasibility was confirmed experimen-
tally [2, 3]. The Rydberg blockade is considered as
one of the most promising approaches to creating a
quantum computer [4, 5]. In particular, this effect un-
derlies the recent numerous experiments on quantum
simulation in ordered arrays of Rydberg atoms [6, 7].

Unfortunately, as we qualitatively showed in [8],
there can be a serious problem of the undesirable
(“parasitic”) excitation of a neighboring atom (within
the standard blockade radius) to highly perturbed en-
ergy levels with neighboring quantum numbers (see,
e.g., Fig. 1 in [8] as well as Fig. 3 in this arti-
cle). In other words, the Rydberg blockade is broken
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when the atoms are too densely arranged. Later,
detailed calculations of this effect were made in [9].
In particular, both the positions and excitation rates
of the main resonances corresponding to the quasi-
molecular states of two rubidium atoms that were
asymptotically in 100s states were found, and the cor-
responding consequences for the reliability of quan-
tum computation protocols were discussed.

However, as will be shown below, the total number
of parasitic resonances leading to simultaneous exci-
tation of two neighboring atoms can be much larger
than that depicted in Fig. 1 from [9]. Apparently,
this is due to the limited accuracy of the calculations
in the standard quantum chemistry programs used
in [9]. On the other hand, the analytical approach
we present below allows us to identify all possible
parasitic resonances (although it does not allow us to
calculate their parameters in detail). In principle, all of
them can break the Rydberg blockade, although with
different efficiencies; therefore their detrimental effect
on the reliability of quantum computation protocols
should be taken into account.

We note that the possibility of breaking the
Rydberg blockade due to the influence of neighboring
quantum states was briefly discussed in [12]. How-
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Fig. 1. The scheme of the dipole electric field created by
one of the atoms at the location of the second atom.

ever, it was entirely based on numerical calculations
and the authors noted their poor convergence.

1. DESCRIPTION OF THE MODEL
Generally speaking, the Rydberg blockade effect

can be calculated in various ways. From our point of
view, one of the most effective methods is to consider
the Stark splitting of the energy levels of each atom by
the dipole electric field of its partner already excited
into the Rydberg state. This approach was used in
our previous works [8, 10] for the case of “sequen-
tial” excitation of two Rydberg atoms, i.e., on a time
scale much larger than the inverse Rabi frequency.
This situation is interesting primarily for experiments
with ultracold Rydberg plasmas [11]. In this article,
we aim at generalizing this approach to the case of
“simultaneous” excitation, which is directly related
to quantum computations. (Let us emphasize that
exactly the same simultaneous excitation was numer-
ically simulated in [9].)

An important feature of the Stark splitting, which
should be taken into account in the following anal-
ysis, is the significant nonuniformity of the dipole
electric field created by the Rydberg atoms at char-
acteristic distances comparable to their sizes. As
far as we know, the only special consideration of the
Stark effect in a strongly nonuniform field was made
by Bekenstein and Krieger in 1970 [13] based on a
very specific version of the quasi-classical approxi-
mation. In [10], we made similar calculations without
using the quasi-classical approximation and found
some corrections to the Bekenstein–Krieger formula.
(However, these are quite insignificant for the states
with small orbital momenta, which are usually used in
the Rydberg blockade experiments.)

Therefore, the general expression for the Stark
energy level splitting of the hydrogen-like atom can
be written in the following form (here and below, the
atomic system of units is used) [10]:

δEn ≡ En +
1

2n2
≈ g1Ez − g2E2

z + g3
dEz
dz

, (1)

where the coefficients gi are defined as follows

g1 =
3

2
nΔ, (2a)

g2 =
n4

16

[
17n2 − 3Δ2 − 9m2 + 19

]
, (2b)

g3 =
n2

4
[5Δ2 + 2n1n2

+ (n−m)(m+ 1) + 1]. (2c)

Here, E is the electric field strength, n is the prin-
cipal quantum number, n1 and n2 are the parabolic
quantum numbers traditionally used in solving the
Schrödinger equation in parabolic coordinates (n1,2 �
0), Δ = n1 − n2 is the so-called electric quantum
number, and m is the absolute value of the magnetic
quantum number (i.e., we follow the Bethe–Salpeter
notation system [14]).

It is known that the above quantum numbers are
related to each other by the following formula:

n = n1 + n2 +m+ 1,

so that the following inequalities are satisfied:
m � 0,

n � m+ 1,

0 � n1, n2 � n−m− 1.

In addition, it is easy to see that g2,3 � 0.
The first two terms in the right-hand side of for-

mula (1) represent well-known expressions for the
Stark effect of the first and second orders in a uni-
form field [14–16], while the third term describes the
contribution of the electric field nonuniformity (see
its derivation in [10]; as mentioned above, it differs
somewhat from the quasi-classical result [13]). In
principle, one could also include here higher-order
corrections with respect to the electric field amplitude
(e.g., explicit expressions for terms up to the fourth
order were given in [17], and the general algorithm for
calculating the terms of arbitrary order was described
in [18]). However, as can be shown by a closer
analysis, such corrections are quite insignificant for
our purposes.1) We note, however, that the gradient
term included in formula (1) is actually important.

1)This fact is not surprising; we will be interested in perturba-
tions of the order of the energy level difference of states with
neighboring values of the principal quantum number, while
higher order corrections become significant only on the scale
of the ionization energy of the atom.
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Let us now consider the possibility of the simul-
taneous excitation of two closely spaced atoms into
Rydberg states under the action of narrow-band laser
radiation. Each of these atoms has a dipole electric
field2) and thereby perturbs its partner, producing
a corresponding Stark splitting of its energy levels.
Therefore, we will further analyze the system of two
atoms mutually perturbing each other.

Let the first atom be located at the origin of the
coordinate system (X,Y,Z) and the position of the
second atom be given by the radius vector r0 directed
along the axis X, as shown in Fig. 1. The electric

dipole moment d
(1)
e of the first atom is tilted at an

angle θ to this axis. Next, we place the origin of the
coordinate system (x, y, z) at the center of the second
atom and orient the axis z along the direction of the
electric field at that point E(r0); so that, by definition,
the only nonzero component is Ez .

The electric potential of the dipole is obviously
given by the formula

Φ =
de · r0
r30

,

and the corresponding electric field strength and its
gradient can be written as follows:3)

Ez =
de
r30

(1 + 3cos2θ)1/2,

dEz
dz

= −3de
r40

3 + 5cos2θ

1 + 3cos2θ
cos θ.

For simplicity, we will carry out the following de-
tailed analysis only for the cases of parallel and an-
tiparallel orientation of the dipoles. Then the above
formulas will be reduced to

Ez =
2de
r30

,
dEz
dz

= −εθ
6de
r40

, (3)

where εθ = 1 for θ = 0 and −1 for θ = π.
Since we consider the electric field E in the clas-

sical approximation, its source is the average value of
the operator of the electric dipole moment d̂e = −r̂e,
where re is the radius-vector of the electron inside
the atom. The corresponding matrix element is well
known, e.g., from the calculations of the first-order
Stark effect [14–16]. Therefore, for the first atom (i.e.,

2)For simplicity, we consider the case of strongly degenerate
(hydrogen-like) energy levels when a constant dipole mo-
ment can exist.

3)The fact that these formulas involve only one angle θ should
not be surprising; we consider the situation only in the
electric field symmetry plane given by the direction of the first
dipole d(1)

e and the direction to the second atom r0.
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Fig. 2. The possible mutual orientations of electric dipoles
and corresponding physical parameters as well as direc-
tions of coordinate axes.

the field source in Fig. 1), the projection of the dipole
moment on the axis X will be as follows

d
(1)
eX = −〈X̂e〉 = −3

2
nΔ(1),

and the absolute value, respectively,

d(1)e =
3

2
n|Δ(1)| (4)

and similarly for the second atom.4) It is obvious that

εθ = −sgn(Δ).

Four possible orientations of the dipoles d(1)
e and d

(2)
e

together with their corresponding physical parame-
ters are shown in Fig. 2.

In the following consideration, it will be convenient
to measure the Stark shifts of energy not with respect
to the same unperturbed level n but with respect
to the unperturbed state with the principal quantum
number n̄ whose blockade is studied (and which will
be denoted by a dash above). In other words, the
energy of the perturbed level can be written, on the
one hand, as −1/(2n2) + δEn, and, on the other
hand, as −1/(2n̄2) + δEn̄. By combining these two
expressions, we obtain:

δEn̄ ≡ 1

2n̄2
− 1

2n2
+ δEn.

In addition, we will normalize all lengths and energies
by the characteristic size and energy of this state n̄
and the corresponding quantities will be denoted by
tildes:

r0 = n̄2r̃, E = Ẽ/(2n̄2). (5)

4)The parabolic quantum numbers used here will generally
have different signs if the axes X and z are oriented opposite
to each other. However, since only the absolute values of the
dipole moments will be used hereafter, we can assume that
they are defined in the same coordinate system.
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(For brevity, the normalized radius-vector of the atom
is written without the superscript ’0’.)

Finally, by combining formulas (1), (2a), (3), (4),
and (5), we obtain the energy level shifts of the second
atom caused by the first atom:

δẼ
(2)
n̄ = 1− n̄2

n(2)2
+ 9

[
1

r̃3
n(1)n(2)|Δ(1)|Δ(2)

n̄4

− 2

r̃6
g
(2)
2 n(1)2Δ(1)2

n̄10
+

2

r̃4
g
(2)
3 n(1)Δ(1)

n̄6

]

,

where the superscripts in parentheses denote the
number of the atom (parentheses are used to avoid
confusion with power exponents). A similar formula
with interchanged superscripts will obviously give the
energy shifts in the first atom.

In order to avoid cumbersome calculations, we
further consider in detail only two “symmetric” types
of excitations in such a two-atom system:5)

(a) |n1, n2,m〉(1)|n1, n2,m〉(2),
i.e., n ≡ n(1) = n(2), Δ ≡ Δ(1) = Δ(2),

(b) |n1, n2,m〉(1)|n2, n1,m〉(2),
i.e., n ≡ n(1) = n(2), Δ ≡ Δ(1) = −Δ(2).

In other words, both atoms are excited either to the
same states or to states with interchanged parabolic
quantum numbers. It is easy to show that case (a)
corresponds to a parallel orientation of the dipoles,
while case (b) corresponds to an antiparallel orienta-
tion (toward or opposite to each other).

Therefore, in any case the energy shifts in both
atoms will be the same:

δẼn̄ ≡ δẼ
(1)
n̄ = δẼ

(2)
n̄

= 1− n̄2

n2
+ 9

[
1

r̃3
n2Δ2

n̄4
εsgn(Δ)

− 2

r̃6
g2n

2Δ2

n̄10
+

2

r̃4
g3nΔ

n̄6

]

, (6)

where ε = 1 and −1 for parallel and antiparallel ori-
entations of the dipoles, respectively. We note that
the first and second terms in the square brackets are
due to the Stark effect of first and second order in a
uniform field, while the third term corresponds to the
first order perturbation from the electric field gradient.

5)In order to avoid confusion, we emphasize that the situation
when the principal quantum numbers of the two atoms are
equal is not “preferable” from the physical point of view. In
this case, it is only an assumption to simplify the calcula-
tions.

2. CALCULATION RESULTS

The formulas presented in the previous section can
be applied to calculate the Rydberg blockade of any
chosen state. As an example, let us consider the
blockade of the 100s state of hydrogen-like atoms
(n̄ = 100, m = 0). The behavior of several Stark-
shifted energy levels in the vicinity of this state as a
function of the interatomic distance calculated using
formula (6) is shown in Fig. 3. For clarity, the width
of the laser emission band depicted by the dashed
line along the horizontal axis was taken as sufficiently
large, ΔẼ = 5× 10−3 (in real experiments, it is one
or two orders of magnitude less). In addition, in order
not to clutter the figure, we do not depict here the
entire set of split levels; only the curves corresponding
to the five parabolic quantum numbers are shown for
each of the values of the principal quantum number.

Let us comment briefly on the relative role of the
different terms of formula (6) in the behavior of the re-
sulting curves. As follows from a more detailed analy-
sis, the main contribution stems from the well-known
first-order Stark effect in a uniform field. The first
order gradient term is also quite important; moreover,
it qualitatively changes the behavior of the energy
curves at small r̃ in the case of antiparallel orientation
of the dipoles. The second-order Stark effect in a
uniform field is usually insignificant. It becomes more
or less noticeable only at small distances in the case
of the antiparallel orientation of the dipoles, when
first-order perturbations by the field amplitude and its
gradient largely compensate each other.

Figure 3 clearly shows the physical mechanism
of the Rydberg blockade: when two atoms approach
each other, the energy levels of the excited state n̄
(which at large distances were degenerate and were in
resonance with the laser radiation) experience larger
and larger perturbations and finally leave the excita-
tion band. This is the reason why the blockage effect
develops.

However, when the interatomic distance is further
reduced, strongly perturbed energy levels from the
states with neighboring values of the principal quan-
tum number (n �= n̄) begin to enter the laser emission
band, and thus the possibility of excitation of two
perturbed atoms is restored. Therefore, the Rydberg
blockade is broken at some set of “resonance” radii.6)

It is difficult to determine the exact total num-
ber of levels with neighboring values of the principal
quantum number n involved in breaking the Rydberg

6)We did not show the effect of “anticrossing” the energy
curves in Fig. 3, because the key question of our considera-
tion is the point of their intersection with a narrow excitation
band along the horizontal axis; the behavior of the curves
outside this region is of no interest.
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Fig. 3. The Stark shifts of energy levels δẼn̄ in each of the interacting atoms as a function of the distance r̃ between them for
parallel (ε = 1) and antiparallel (ε = −1) orientations of the dipoles. For n = n̄ = 100, the curves are shown for the parabolic
quantum numbers n1 = 0, 25, 50, 75, 99; for n = 99, for the parabolic quantum numbers n1 = 0, 25, 49, 73, 98; for n = 98,
for n1 = 0, 25, 49, 73, 97; for n = 101, for n1 = 0, 25, 50, 75, 100; and for n = 102, for n1 = 0, 25, 50, 75, 101. The shaded
horizontal regions near the horizontal axis show the laser excitation band, ΔẼ = 5× 10−3.

blockade, because it is limited by the scope of appli-
cability of the perturbation theory. Roughly speaking,
it is given by the condition that the energy shift should
be less than its absolute value in the unperturbed
state:

|En − En̄| � |En|; (7)

it follows that the condition is n �
√
2n̄. On the other

hand, it is easy to see that for all lower states, n < n̄,
the condition of applicability of perturbation theory (7)
is automatically satisfied.

The most interesting and important result aris-
ing from our analysis is that the total number of
resonance radii turns out to be much greater than
the number of “quasimolecular” resonances obtained
by computer simulations using quantum chemistry
methods [9]. For the particular case of 100s-states,
this fact is illustrated in Fig. 4: in our calculations,

the number of resonances Nres in the range of inter-
atomic distances r0 � 2 μm turns out to be an order
of magnitude greater than in the quasi-molecular
approximation in the case of antiparallel orientation
of the dipoles and two orders of magnitude greater in
the case of parallel orientation.7)

Unfortunately, it is almost impossible to compare
the specific positions of the resonances obtained in
our calculations with those found in [9], because the
rubidium atoms simulated in it have significant quan-
tum defects. (This probably explains the appearance

7)Note that the presented pattern of resonances is little sensi-
tive to the width of the excitation band ΔẼ. Indeed, as can
be seen in Fig. 3, the development of the Rydberg blockade
depends significantly on ΔẼ, i.e., the narrower this band,
the larger the size of the blocked region. However, the
radii in which the blockade is broken are almost independent
of ΔẼ, because the corresponding energy curves cross the
horizontal axis almost vertically.
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Fig. 4. The scheme of quasi-molecular resonances for
the 100s state of rubidium [9] (middle band) in com-
parison with all possible resonances of the same state
of hydrogen-like atoms (upper band is for the parallel
orientation of dipoles and lower band is for the antiparallel
orientation). Two quasi-molecular resonances presented
in Fig. 1 from [9] but not listed in Table 1 of the same
article are dotted.

of two resonances in rubidium at very large distances,
approximately 6 μm.) On the other hand, the huge
difference in total number of resonances shown in
Fig. 4 clearly cannot be related only to quantum
defects. This discrepancy is most likely due to the
limited accuracy of numerical calculations performed
using standard quantum chemistry computer pro-
grams. It is also possible that a significant part of the
resonances found in our calculations has a very low
excitation efficiency, as a result of which they were not
identified in the numerical simulations. (This is also
indicated by the results of [12]; see, e.g., Fig. 2 there.)

CONCLUSIONS

1. We qualitatively predicted the possibility of
breaking the Rydberg blockade at small interatomic
distances due to the effect of strongly perturbed
neighboring energy levels in [8, 10]. This was done
for the case of “sequential excitation” of two atoms
(i.e., on a time scale much larger than the inverse
Rabi frequency), which is of interest mainly for the
experiments with Rydberg plasmas [11]. In this
work, a similar analytical approach based on the
Stark shift of energy levels was developed for the
case of “simultaneous” excitation, which is of main
interest in quantum information problems [4], as well
as in experiments on the detailed spatial study of the
Rydberg blockade [19].

2. Numerical simulations of breaking the Rydberg
blockade [9] carried out for the same purpose by other
authors were based on the use of standard computa-
tional packages of quantum chemistry. They allowed
only a few basic resonances to be calculated; most
of them were not identified at all. In this sense, our
analytical approach provides us with a more adequate
picture of the complete set of parasitic resonances,

although it does not allow us to obtain their exact pa-
rameters, because it is limited only to the hydrogen-
like approximation and to the dipole nature of inter-
action.

3. The high density of resonances at small inter-
atomic distances obtained in our calculations indi-
cates that the effect of breaking the Rydberg blockade
can play a large role and should be taken into account
very carefully when creating any experimental setup
designed to implement quantum calculations. An-
other, fundamentally different mechanism of breaking
the Rydberg blockade was indicated earlier [20]. This
is a specific superposition of excitations in a system of
three (or more) atoms. However, such a mechanism
seems less dangerous than that I am considering,
since it requires the simultaneous approach of parti-
cles.
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