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Abstract The stabilized sequential quadratic programming (SQP) method
has nice local convergence properties: it possesses local superlinear convergence
under very mild assumptions not including any constraint qualifications. How-
ever, any attempts to globalize convergence of this method indispensably face
some principal difficulties concerned with intrinsic deficiencies of the steps pro-
duced by it when relatively far from solutions; specifically, it has a tendency to
produce long sequences of short steps before entering the region where its su-
perlinear convergence shows up. In this paper, we propose a modification of the
stabilized SQP method, possessing better “semi-local” behavior, and hence,
more suitable for the development of practical realizations. The key features
of the new method are identification of the so-called degeneracy subspace and
dual stabilization along this subspace only; thus the name “subspace-stabilized
SQP”. We consider two versions of this method, their local convergence prop-
erties, as well as a practical procedure for approximation of the degeneracy
subspace. Even though we do not consider here any specific algorithms with
theoretically justified global convergence properties, subspace-stabilized SQP
can be a relevant substitute for the stabilized SQP in such algorithms using the
latter at the “local phase”. Some numerical results demonstrate that stabiliza-
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tion along the degeneracy subspace is indeed crucially important for success
of dual stabilization methods.

Keywords sequential quadratic programming · degenerate solution;
noncritical Lagrange multiplier · dual stabilization · superlinear convergence ·
global convergence

1 Introduction

The stabilized sequential quadratic programming (SQP) method was intro-
duced in [29] for inequality-constrained optimization problems, and in the
form of solving the min-max subproblems, as a tool to restore the superlinear
convergence rate of the basic SQP, which is usually lost when the latter is
applied to problems violating traditional constraint qualifications. It was rec-
ognized very soon though that this min-max subproblem is equivalent to the
quadratic programming problem in the primal-dual space [23], and that the
method is applicable to problems with equality constraints as well.

Convergence properties of the stabilized SQP method have been further
studied in [11,30,31]. The sharpest known local convergence result for the
stabilized SQP was obtained in [4], using the abstract iterative framework de-
veloped in [5]. Specifically, the local superlinear convergence of the method
was established in [4] under the sole assumption of the second-order sufficient
optimality condition. For purely equality-constrained problems, this assump-
tion was further relaxed in [16] to the so-called noncriticality of the involved
Lagrange multiplier (see below). The main point revealed by these results is
the local dual stabilization property of the method in question, allowing to
avoid (locally) the attraction of its dual sequences to critical Lagrange multi-
pliers, the destructive phenomenon which is mainly responsible for the lack of
superlinear convergence of the basic SQP when such multipliers do exist; see
[12,15,22], [17, Chapter 7], the very recent discussion in [6,18,19,24,25,28],
and many other related references therein.

However, by now, we are not aware of any evidently successful practical
implementations of the stabilized SQP, and the reason for this is that this
dual stabilization procedure is essentially local. Various attempts to globalize
convergence of the stabilized SQP were undertaken in [3,7–10,13,20,21]. In
particular, [8] reports on some relatively encouraging numerical results; less
encouraging but reasonable results are reported in [20]. However, we believe
that any approach to this problem would face principal difficulties when it
comes to numerical performance. The reason for these difficulties is concerned
with some undesirable global features of the stabilized SQP itself, recently
exposed in [21], where a globalization based on the linesearch for the smooth
exact penalty function from [27] has been investigated.

To be specific, consider the equality-constrained optimization problem

minimize f(x)
subject to h(x) = 0,

(1)
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where the objective function f : IRn → IR and the constraint mapping h :
IRn → IRl are at least twice differentiable. Let L : IRn × IRl → IR be the usual
Lagrangian of problem (1), i.e.,

L(x, λ) = f(x) + 〈λ, h(x)〉.

Given the current primal-dual iterate (x, λ) ∈ IRn × IRl and the value σ > 0
of the stabilization parameter, the stabilized SQP method for problem (1)
generates the direction (ξ, η) ∈ IRn × IRl by solving the linear system

∂2L

∂x2
(x, λ)ξ + (h′(x))Tη = −

∂L

∂x
(x, λ), h′(x)ξ − ση = −h(x). (2)

The next iterate of the basic stabilized SQP is then defined as (x+ ξ, λ+ η).
Violation of constraint qualifications at some feasible point x̄ of problem

(1) means that (im h′(x̄))⊥ = ker(h′(x̄))T is a nontrivial subspace in IRl, which
we will call the degeneracy subspace. (Here by im and ker we denote the range
space and the null space of a linear operator, respectively.) In the cases of full
degeneracy, i.e., when h′(x̄) = 0, which means that the degeneracy subspace
is equal to the entire IRl, the stabilized SQP and its existing globalizations
usually perform just fine. The problem, however, is that the stabilized SQP
has a strong tendency to produce long series of short steps in cases of non-
full degeneracy, i.e., when the degeneracy subspace is a nontrivial but proper
subspace in IRl. The stabilization mechanism of this method is intended to
prevent it from moving along the set of Lagrange multipliers which is an affine
manifold parallel to the degeneracy subspace. Moving along the set of multi-
pliers is precisely the reason for slow convergence of the SQP method when
applied to degenerate problems. However, when used not close enough to solu-
tions, the specified stabilizing mechanism often results in “over-stabilization”
enforcing the steps to be short in principle, rather than only in the directions
of the degeneracy subspace. In such cases the performance of the stabilized
SQP can be even much worse than the one observed for the usual SQP without
any stabilization, and these difficulties are not concerned with local conver-
gence rate, as they are encountered earlier than the superlinear convergence
shows up. We emphasize that this behavior is not related to any deficiencies of
particular globalizations; it rather appears to be an intrinsic property of the
stabilized SQP itself, which must show up in any globalization attempting to
use the full stabilized SQP step as often as possible. The specified effect has
been observed already in [26]. See [21] and Section 4 below for details.

This gives rise to the following idea, realization of which is the main subject
of this work: what should be fixed is not any globalization strategy for the
stabilized SQP but rather the stabilized SQP itself. Specifically, the stabilization
term ση in (2) should be replaced by a “smaller” one essentially affecting
not the entire dual direction η but only its projection onto the degeneracy
subspace, thus not blocking long steps in the directions orthogonal to this
subspace. We refer to this approach as subspace-stabilized SQP. Of course,
this approach can make practical sense only if equipped with a relatively cheap
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technique for approximation of the degeneracy subspace, since this subspace
cannot be known exactly for an unknown x̄. A surprisingly simple and natural
technique of this kind will be suggested below, which is also shown to be quite
reliable and cheap, especially when the number of constraints l is not too
large (previous proposals of this kind employed the prohibitively expensive
singular-value decomposition of the constraints Jacobian [14]).

Note that we do not consider in this paper any specific algorithms with
theoretically justified global convergence properties; we rather propose to use
the subspace-stabilized SQP as a relevant substitute for the stabilized SQP in
such algorithms involving some kind of a “local phase” at which the stabilized
SQP is applied to the equality-constrained problem obtained by identification
of active inequality constraints, or to the original problem when there are no
inequality constraints. One such algorithm has been developed in the series of
papers [7,8,10], where the stabilized SQP is combined this way with a certain
primal-dual augmented Lagrangian method. Another example is the algorithm
from [20], where the standard augmented Lagrangian method is used instead
as a tool for enforcing provable global convergence. This paper attempts to
demonstrate that incorporating the newly developed subspace-stabilized SQP
in these algorithms can significantly improve their performance on problems
with degenerate but not fully degenerate constraints.

Some basic definitions and notation are in order. Stationary points and as-
sociated Lagrange multipliers of problem (1) are characterized by the Lagrange
optimality system

∂L

∂x
(x, λ) = 0, h(x) = 0, (3)

with respect to x ∈ IRn and λ ∈ IRl. Let M(x̄) stand for the set of Lagrange
multipliers associated to x̄, i.e., of those λ satisfying (3) with x = x̄. Recall
that λ̄ ∈ M(x̄) is called a critical Lagrange multiplier if there exists ξ ∈
kerh′(x̄) \ {0} such that

∂2L

∂x2
(x̄, λ̄)ξ ∈ im(h′(x̄))T,

and noncritical otherwise [12]. The multiplier is always noncritical if it satisfies
the second-order sufficient optimality condition (SOSC):

〈

∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉

> 0 ∀ ξ ∈ kerh′(x̄) \ {0}.

See [17, Chapters 1, 7] for details on critical and noncritical multipliers.
Throughout the paper P̄ stands for the orthogonal projector onto the de-

generacy subspace (im h′(x̄))⊥ (for a fixed x̄). By I we denote the identity
mapping, and by B(u, ε) we denote the Euclidean ball of radius ε > 0, cen-
tered at u. All norms are Euclidean.

The rest of the paper is organized as follows. Section 2 presents two ver-
sions of the subspace-stabilized SQP and their local convergence properties. In
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Section 3 we develop the technique for approximation of the degeneracy sub-
space, making the methods from Section 2 implementable. Section 4 presents
some numerical experience with the newly developed algorithms, demonstrat-
ing their advantages over the usual SQP and the stabilized SQP. Concluding
remarks summarizing our development are given in Section 5.

2 Subspace-stabilized SQP and its local convergence

We now describe the iteration of the subspace-stabilized SQP method. Let a
mapping P : IRn × IRl → IRl×l and a function σ : IRn × IRl → IR be given.
The linear operator P (x, λ) is supposed to approximate a projector onto the
degeneracy subspace (in some sense, to be specified below) as (x, λ) → (x̄, λ̄).

Given the current primal-dual iterate (x, λ) ∈ IRn × IRl, we compute the
direction (ξ, η) ∈ IRn × IRl by solving the linear system

∂2L

∂x2
(x, λ)ξ + (h′(x))Tη = −

∂L

∂x
(x, λ), h′(x)ξ − σ(x, λ)P (x, λ)η = −h(x)

(4)
(c.f. (2)). The next iterate is then defined as (x+ ξ, λ+ η).

Take any stationary point x̄ of problem (1) and any associated Lagrange
multiplier λ̄. The local convergence of our method will be justified by ap-
plication of the local iterative framework from [5] to the Lagrange system
of equations (3) and the iterative process the step of which is defined by (4).
Therefore, one needs to verify Assumptions 1–3 of [5, Theorem 1]. As discussed
in [16, Remark 1], Assumption 1 is equivalent to the error bound

‖x− x̄‖+ dist(λ, M(x̄)) = O

(∥

∥

∥

∥

(

∂L

∂x
(x, λ), h(x)

)∥

∥

∥

∥

)

(5)

as (x, λ) → (x̄, λ̄), and according to [16, Proposition 1], this is further equiv-
alent to the assumption that λ̄ is noncritical.

Verification of Assumptions 2 and 3 in [5] requires further assumptions
regarding P and σ, and in the rest of this section we will consider separately
two different sets of such assumptions. This gives rise to the two versions of
subspace-stabilized SQP, with similar local convergence properties. Implemen-
tations of those versions require some specific practical rules for defining P and
σ satisfying the needed assumptions. As for σ, natural ways of defining it arise
from (5). Constructing appropriate P in a practical way is a more complicated
issue; it will be the subject of Section 3.

2.1 Asymptotically vanishing stabilization

Suppose first that P and σ satisfy the following assumptions:

(P1) P is continuous at (x̄, λ̄), and (imh′(x̄))⊥ is an invariant subspace of
P (x̄, λ̄), i.e.,

P (x̄, λ̄)η = η ∀ η ∈ (imh′(x̄))⊥.
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(S1) σ is continuous at every point of {x̄} × M(x̄) close enough to (x̄, λ̄),
σ(x̄, λ) = 0 for all λ ∈ M(x̄) close enough to λ̄, σ(x, λ) 6= 0 for all
(x, λ) ∈ (IRn × IRl) \ ({x̄} ×M(x̄)) close enough to (x̄, λ̄), and

‖x− x̄‖ = O(|σ(x, λ)|) (6)

as (x, λ) → (x̄, λ̄).

We refer to the corresponding stabilization as asymptotically vanishing be-
cause the stabilizing second term in the left-hand side of the (4), distinguishing
it from the basic SQP iteration system, tends to zero as (x, λ) tends to any
point of {x̄} ×M(x̄) near (x̄, λ̄).

Observe that assumption (P1) allows to take, e.g., P (·) ≡ I, thus covering
the usual stabilized SQP method. Other possible choices of P will be discussed
below. Observe further that assumption (S1) is satisfied if λ̄ is a noncritical
multiplier, and σ is taken as

σ(x, λ) = ‖Φ(x, λ)‖β (7)

with any fixed β ∈ (0, 1], where Φ : IRn × IRl → IRn × IRl is the operator of
the Lagrange system:

Φ(x, λ) =

(

∂L

∂x
(x, λ), h(x)

)

. (8)

Assumption 2 in [5] characterizes the required quality of approximation
of the original problem by the iteration subproblems. Define the mapping
A : (IRn × IRl)× (IRn × IRl) → IRn × IRl,

A((x, λ), (ξ, η)) =

(

∂L

∂x
(x, λ) +

∂2L

∂x2
(x, λ)ξ + (h′(x))Tη,

h(x) + h′(x)ξ − σ(x, λ)P (x, λ)η

)

. (9)

Observe that the iteration subproblem (4) can then be written as

A((x, λ), (ξ, η)) = 0.

The required quality of approximation (of Φ by A) is justified by the following

Proposition 1 Let f : IRn → IR and h : IRn → IRl be twice differentiable
in a neighborhood of x̄ ∈ IRn, with their second derivatives continuous at x̄.
Let x̄ be a stationary point of problem (1), and let λ̄ ∈ M(x̄). Assume that
P : IRn×IRl → IRl×l is bounded in a neighborhood of (x̄, λ̄), σ : IRn×IRl → IR
is continuous at every point of the set {x̄} × M(x̄), close enough to (x̄, λ̄),
and σ(x̄, λ) = 0 for all λ ∈ M(x̄) close enough to λ̄.

Then there exists ε > 0 such that for any C > 0 there exists a function
ω : IR+ → IR+ such that ω(t) = o(t) as t → 0, and for Φ and A defined by (8)
and (9) it holds that

‖Φ(x+ ξ, λ+ η)−A((x, λ), (ξ, η))‖ ≤ ω(‖x− x̄‖+ dist(λ, M(x̄))) (10)
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for all (x, λ) ∈ B((x̄, λ̄), ε) and all (ξ, η) ∈ IRn × IRl satisfying

‖(ξ, η)‖ ≤ C(‖x− x̄‖+ dist(λ, M(x̄))). (11)

Proof Fix any ε > 0 such that f and h are twice differentiable in B((x̄, λ̄), ε),
the value ‖P (x, λ)‖ is bounded by some fixed constant for all (x, λ) ∈ B((x̄, λ̄), ε),
σ is continuous at every point of ({x̄}×M(x̄))∩B((x̄, λ̄), ε), and σ(x̄, λ) = 0
for all λ ∈ M(x̄) ∩ B(λ̄, ε).

Evidently,

‖Φ(x+ ξ, λ+ η)−A((x, λ), (ξ, η))‖ ≤

∥

∥

∥

∥

∂L

∂x
(x+ ξ, λ+ η)−

∂L

∂x
(x, λ)

−
∂2L

∂x2
(x, λ)ξ − (h′(x))Tη

∥

∥

∥

∥

+ ‖h(x+ ξ)− h(x) − h′(x)ξ‖

+ |σ(x, λ)| ‖P (x, λ)η‖ .

Therefore, it is sufficient to find functions ωi : IR+ → IR+ satisfying ωi(t) =
o(t) for i = 1, 2, 3, and such that

∥

∥

∥

∥

∂L

∂x
(x+ ξ, λ+ η)−

∂L

∂x
(x, λ)−

∂2L

∂x2
(x, λ)ξ − (h′(x))Tη

∥

∥

∥

∥

≤

ω1(‖x− x̄‖+ dist(λ, M(x̄))), (12)

‖h(x+ ξ)− h(x) − h′(x)ξ‖ ≤ ω2(‖x− x̄‖+ dist(λ, M(x̄))), (13)

|σ(x, λ)| ‖P (x, λ)η‖ ≤ ω3(‖x− x̄‖+ dist(λ, M(x̄))) (14)

for all (x, λ) ∈ B((x̄, λ̄), ε) and all (ξ, η) satisfying (11).
Set

R((x, λ), (ξ, η)) =
∂L

∂x
(x+ ξ, λ+ η)−

∂L

∂x
(x, λ)−

∂2L

∂x2
(x, λ)ξ − (h′(x))Tη,

and define the function ω1 as

ω1(t) = sup















‖R((x, λ), (ξ, η))‖

∣

∣

∣

∣

∣

∣

∣

∣

(x, λ) ∈ B((x̄, λ̄), ε),

(ξ, η) ∈ IRn × IRl,
‖x− x̄‖+ dist(λ, M(x̄))) ≤ t,
‖(ξ, η)‖ ≤ C(‖x− x̄‖+ dist(λ, M(x̄)))















.

(15)
Observe that the set over which supremum is taken in the right-hand side
is nonempty and compact for any fixed t ≥ 0. Therefore, ω1 is well-defined,
and for any t ≥ 0 there exist some (x, λ) and (ξ, η) in this set such that
ω1(t) = ‖R((x, λ), (ξ, η))‖.

Evidently, the function ω1 just defined satisfies (12) for all (x, λ) ∈ B((x̄, λ̄), ε)
and all (ξ, η) satisfying (11). It remains to prove that ω1(t) = o(t) as t → 0.
Suppose the contrary: there exist γ > 0 and a sequence {tk} of positive reals,
convergent to zero and such that ω1(tk) ≥ γtk for all k. The latter implies the
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existence of sequences {(xk, λk)} ⊂ B((x̄, λ̄), ε) and {(ξk, ηk)} ⊂ IRn × IRl

such that for all k

‖R((xk, λk), (ξk, ηk))‖ ≥ γtk, (16)

‖xk − x̄‖+ dist(λk, M(x̄))) ≤ tk, (17)

‖(ξk, ηk)‖ ≤ C(‖xk − x̄‖+ dist(λk, M(x̄))). (18)

From these relations and from the mean value theorem we obtain

γtk ≤

∥

∥

∥

∥

∂L

∂x
(xk + ξk, λk + ηk)−

∂L

∂x
(xk, λk)−

∂2L

∂x2
(xk, λk)ξk − (h′(xk))Tηk

∥

∥

∥

∥

≤

∥

∥

∥

∥

∂L

∂x
(xk + ξk, λk)−

∂L

∂x
(xk, λk)−

∂2L

∂x2
(xk, λk)ξk

∥

∥

∥

∥

+
∥

∥(h′(xk + ξk)− h′(xk))Tηk
∥

∥

≤ sup
τ∈[0, 1]

∥

∥

∥

∥

∂2L

∂x2
(xk + τξk, λk)−

∂2L

∂x2
(xk, λk)

∥

∥

∥

∥

‖ξk‖

+ sup
τ∈[0, 1]

‖h′′(xk + τξk)‖‖ξk‖‖ηk‖

= o(‖ξk‖) +O(‖ξk‖‖ηk‖)

= o(tk)

as k → ∞, which is a contradiction.
Continuity of h′′ at x̄ implies the estimate h′′(x) ≤ M for some M > 0 and

for all x close enough to x̄. Applying again the mean-value theorem, we have

‖h(x+ ξ)− h(x)− h′(x)ξ‖ ≤ sup
τ∈[0, 1]

‖h′(x+ τξ) − h′(x)‖ ‖ξ‖

≤ sup
τ∈[0, 1]

‖h′′(x+ τξ)‖ ‖ξ‖2

≤ ω2(‖x− x̄‖+ dist(λ, M(x̄)))

for all (x, λ) close enough to (x̄, λ̄), and for all (ξ, η) satisfying (11), where
the function ω2 defined by ω2(t) = C2Mt2 obviously satisfies ω2(t) = o(t) as
t → 0. Therefore, this function satisfies (13) for all (x, λ) ∈ B((x̄, λ̄), ε) and
all (ξ, η) satisfying (11), where ε > 0 must be reduced, if necessary.

Finally, set

R((x, λ), η) = σ(x, λ)P (x, λ)η, (19)

and consider ω3 defined similarly to ω1 in (15) but with R((x, λ), (ξ, η)) re-
placed by this R((x, λ), η). Evidently, this ω3 satisfies (14) for all (x, λ) ∈
B((x̄, λ̄), ε) and all (ξ, η) satisfying (11), and it remains to prove that ω3(t) =
o(t) as t → 0. Supposing the contrary, we obtain the existence of γ > 0, a se-
quence {tk} of positive reals, convergent to zero, and sequences {(xk, λk)} ⊂
B((x̄, λ̄), ε) and {(ξk, ηk)} ⊂ IRn × IRl, such that inequalities (16)–(18) hold
for all k.
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According to (17) and (18), passing to subsequences, if necessary, we may
assume that {(xk, λk)} is convergent to (x̄, λ∗) with some λ∗ ∈ M(x̄)∩B(λ̄, ε),
and ‖ηk‖ ≤ Ctk for all k. Since our choice of ε subsumes that {‖P (xk, λk)‖}
is a bounded sequence, σ(x̄, λ∗) = 0, and σ is continuous at (x̄, λ∗), we then
obtain that

γtk ≤ |σ(xk, λk)|‖P (xk, λk)‖‖ηk‖ = o(tk),

as k → ∞, which is a contradiction. ⊓⊔

Evidently, the requirements on P and σ in this proposition are satisfied if
assumptions (P1) and (S1) hold.

Finally, Assumption 3 in [5] consists of saying that for all (x, λ) ∈ IRn× IRl

close enough to (x̄, λ̄), system (4) has a solution (ξ, η) satisfying

‖(ξ, η)‖ = O(‖x − x̄‖+ dist(λ, M(x̄))) (20)

as (x, λ) → (x̄, λ̄). We establish this next.

Proposition 2 Let f : IRn → IR and h : IRn → IRl be twice differentiable
in a neighborhood of x̄ ∈ IRn, with their second derivatives continuous at x̄.
Let x̄ be a stationary point of problem (1), and let λ̄ ∈ M(x̄) be a noncritical
multiplier. Assume that P : IRn × IRl → IRl×l and σ : IRn × IRl → IR satisfy
assumptions (P1) and (S1).

Then for all (x, λ) ∈ (IRn × IRl) \ ({x̄} × M(x̄)) close enough to (x̄, λ̄),
system (4) has the unique solution (ξ, η), and this solution satisfies estimate
(20).

Proof We first prove that for all (x, λ) ∈ (IRn × IRl) \ ({x̄} × M(x̄)) close
enough to (x̄, λ̄), the matrix





∂2L

∂x2
(x, λ) (h′(x))T

h′(x) −σ(x, λ)P (x, λ)





of the linear system (4) is nonsingular.
Suppose not, then there exist sequences {(xk, λk)} ⊂ IRn×IRl and {(ξk, ηk)} ⊂

IRn × IRl such that {(xk, λk)} → (x̄, λ̄), and for all k it holds that (xk, λk) 6∈
{x̄} ×M(x̄), ‖(ξk, ηk)‖ = 1,

∂2L

∂x2
(xk, λk)ξk + (h′(xk))Tηk = 0, h′(xk)ξk − σ(xk, λk)P (xk, λk)ηk = 0.

(21)
Without loss of generality suppose that {(ξk, ηk)} → (ξ, η). Then by pass-

ing onto the limit in the relations above it holds that ‖(ξ, η)‖ = 1 and

∂2L

∂x2
(x̄, λ̄)ξ + (h′(x̄))Tη = 0, h′(x̄)ξ = 0, (22)

where the last equality is by continuity of P and σ at (x̄, λ̄), and by the
equality σ(x̄, λ̄) = 0 (assumptions (P1) and (S1)).
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If ξ 6= 0, then (22) contradicts the assumption that λ̄ is noncritical. There-
fore, ξ = 0, and hence, ‖η‖ = 1 and (h′(x̄))Tη = 0. Since by the assumption
(P1) (im h′(x̄))⊥ = ker(h′(x̄))T is an invariant subspace of P (x̄, λ̄), we now
conclude that P (x̄, λ̄)η = η.

From the second equality in (21) we derive that for all k

σ(xk, λk)P̄P (xk, λk)ηk = P̄ h′(xk)ξk

= P̄ (h′(xk)− h′(x̄))ξk

= O(‖xk − x̄‖‖ξk‖)

= O(|σ(xk , λk)|‖ξk‖)

as k → ∞, where the last equality is by (6). Therefore, since σ(xk, λk) 6= 0
for all k (assumption (S1)) and {ξk} → ξ = 0, we have that

η = P̄ η = P̄P (x̄, λ̄)η = lim
k→∞

P̄P (xk, λk)ηk = 0, (23)

contradicting the equality ‖η‖ = 1.

It remains to prove that for all (x, λ) ∈ (IRn × IRl) \ ({x̄} ×M(x̄)) close
enough to (x̄, λ̄), the unique solution (ξ, η) of system (4) satisfies estimate
(20).

Suppose not, then there exist sequences {(xk, λk)} ⊂ IRn×IRl and {(ξk, ηk)} ⊂
IRn × IRl such that {(xk, λk)} → (x̄, λ̄), for all k it holds that (xk, λk) 6∈
{x̄} ×M(x̄), (ξk, ηk) 6= 0,

∂2L

∂x2
(xk, λk)ξk + (h′(xk))Tηk = −

∂L

∂x
(xk, λk),

h′(xk)ξk − σ(xk, λk)P (xk, λk)ηk = −h(xk), (24)

and

‖xk − x̄‖+ dist(λk, M(x̄)) = o(‖(ξk, ηk)‖) (25)

as k → ∞. Observe first that the latter implies

∥

∥

∥

∥

(

∂L

∂x
(xk, λk), h(xk)

)∥

∥

∥

∥

=

∥

∥

∥

∥

(

∂L

∂x
(xk, λk)−

∂L

∂x
(x̄, λ̄k), h(xk)− h(x̄)

)∥

∥

∥

∥

= O(‖xk − x̄‖+ dist(λk, M(x̄)))

= o(‖(ξk, ηk)‖), (26)

where λ̄k is the metric projection of λk onto M(x̄).

Without loss of generality suppose that {(ξk, ηk)/‖(ξk, ηk)‖} → (ξ, η),
‖(ξ, η)‖ = 1. Then dividing (24) by ‖(ξk, ηk)‖ and passing onto the limit, by
(26) we obtain (22). Similarly to the argument above employing noncriticality
of λ̄ we derive that ξ = 0, ‖η‖ = 1, (h′(x̄))Tη = 0, and P (x̄, λ̄)η = η.
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The second equality in (24) now implies that for all k

σ(xk, λk)P̄P (xk, λk)ηk = P̄ (h(xk) + h′(xk)ξk)

= P̄ (h(xk)− h(x̄)− h′(x̄)(xk − x̄)

+ (h′(xk)− h′(x̄))ξk)

= O(‖xk − x̄‖2) +O(‖xk − x̄‖‖ξk‖)

= o(|σ(xk, λk)|‖(ξk, ηk)‖) +O(|σ(xk , λk)|‖ξk‖)

as k → ∞, where the second equality is by the mean-value theorem, and
the last equality is by (6) and (25). Therefore, since σ(xk, λk) 6= 0 for all k,
σ(xk, λk) → 0 as k → ∞ (assumption (S1)), and {ξk/‖(ξk, ηk)‖} → ξ = 0,
we again derive (23), contradicting the equality ‖η‖ = 1. ⊓⊔

By Propositions 1 and 2 and the discussion above, from [5, Theorem 1]
(employing some relations in its proof) we now obtain the following local
convergence result.

Theorem 1 Under the assumptions of Proposition 2, the following assertions
are valid:

(a) For some neighborhood V of (x̄, λ̄) there exists the unique mapping d(·) =
(ξ(·), η(·)) : V → IRn × IRl with the following properties: (ξ(x, λ), η(x, λ))
satisfies (4) for every (x, λ) ∈ V, and d(x̄, λ) = 0 if λ ∈ M(x̄).

(b) The neighborhood V can be chosen small enough, so that there exists ℓ > 0
and a function χ : IR+ → IR+ such that χ(t) = o(t) as t → 0, and

‖d(x, λ)‖ ≤ ℓ(‖x− x̄‖+ dist(λ, M(x̄))),

‖x+ ξ(x, λ)− x̄‖+dist(λ+ η(x, λ), M(x̄)) ≤ χ(‖x− x̄‖+dist(λ, M(x̄)))

for all (x, λ) ∈ V.
(c) There exists M > 0 such that for any ε > 0 there exists ε0 > 0 such

that for any (x0, λ0) ∈ B((x̄, λ̄), ε0) the sequence {(xk, λk)} is correctly
defined by the equality (xk+1, λk+1) = (xk, λk) + d(xk, λk) for all k, and
satisfies {(xk, λk)} ⊂ B((x̄, λ̄), ε); this sequence converges to (x̄, λ∗) for
some λ∗ = λ∗(x0, λ0) ∈ M(x̄), and for all k

‖xk+1 − x̄‖+ ‖λk+1 − λ∗‖ ≤ Mχ(‖xk − x̄‖+ dist(λk, M(x̄))). (27)

Note that (27) immediately implies the following estimates for all k:

‖xk+1 − x̄‖+ dist(λk+1, M(x̄)) ≤ Mχ(‖xk − x̄‖+ dist(λk, M(x̄)))

‖xk+1 − x̄‖+ ‖λk+1 − λ∗‖ ≤ Mχ(‖xk − x̄‖+ ‖λk − λ∗‖),

and in particular, the rates of convergence of {(xk, λk)} to (x̄, λ∗) and of
{‖xk − x̄‖+ dist(λk, M(x̄))} to zero are superlinear.
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2.2 Nonvanishing stabilization

Suppose now that P and σ satisfy the following assumptions:

(P2) P is continuous at every point of {x̄} × M(x̄) close enough to (x̄, λ̄),
imP (x̄, λ) ∩ imh′(x̄) = {0} for all λ ∈ M(x̄) close enough to λ̄, and
kerP (x̄, λ̄) ∩ (imh′(x̄))⊥ = {0}.

(S2) σ is continuous at (x̄, λ̄), and σ(x̄, λ̄) 6= 0.

The latter property is the reason why we call this stabilization nonvanishing.
We proceed with verifying Assumption 2 and 3 in [5] under (P2) and (S2).

Observe that (P2) and (S2) are different from (P1) and (S1). With P and σ
satisfying (P2) and (S2), the iterative process defined by (4) is related to the
idea of the method from [14].

Regarding Assumption 2 in [5], observe that according to [5, Remark 2] it
has to be verified only for solutions of subproblems. Specifically, the needed
fact is established in the following

Proposition 3 Let f : IRn → IR and h : IRn → IRl be twice differentiable
in a neighborhood of x̄ ∈ IRn, with their second derivatives continuous at x̄.
Let x̄ be a stationary point of problem (1), and let λ̄ ∈ M(x̄). Assume that
P : IRn × IRl → IRl×l and σ : IRn × IRl → IR satisfy assumptions (P2) and
(S2).

Then there exists ε > 0 such that for any C > 0 there exists a function
ω : IR+ → IR+ such that ω(t) = o(t) as t → 0, and for Φ and A defined by (8)
and (9) respectively, estimate (10) holds for all (x, λ) ∈ B((x̄, λ̄), ε) and all
(ξ, η) satisfying (4) and (11).

Proof Fix any ε > 0 such that f and h are twice differentiable in B((x̄, λ̄), ε),
P is continuous at every point of ({x̄} × M(x̄)) ∩ B((x̄, λ̄), ε), imP (x̄, λ) ∩
imh′(x̄) = {0} and kerP (x̄, λ)∩ (im h′(x̄))⊥ = {0} for all λ ∈ M(x̄)∩B(λ̄, ε)
(assumption (P2)).

Arguing the same way as in proof of Proposition 1, we conclude that it
is sufficient to prove the inequality (14) for all (x, λ) ∈ B((x̄, λ̄), ε) and all
(ξ, η) satisfying (4) and (11), with some function ω3 : IR+ → IR+ satisfying
ω3(t) = o(t) as t → 0.

For R((x, λ), η) given by (19) set

ω3(t) = sup















‖R((x, λ), ξ)‖

∣

∣

∣

∣

∣

∣

∣

∣

(x, λ) ∈ B((x̄, λ̄), ε),
(ξ, η) ∈ IRn × IRl satisfies (4),
‖x− x̄‖+ dist(λ, M(x̄))) ≤ t,
‖(ξ, η)‖ ≤ C(‖x− x̄‖+ dist(λ, M(x̄)))















.

The set over which supremum is taken in the right-hand side is compact for
any fixed t ≥ 0. For those t ≥ 0 for which this set is empty we set ω3(t) = 0,
and with this convention the function ω3 is well-defined. Moreover, for any
t ≥ 0 such that ω3(t) 6= 0 there exist some (x, λ) and (ξ, η) in this set such
that ω3(t) = ‖R((x, λ), η)‖.



Subspace-stabilized sequential quadratic programming 13

The function ω3 just defined satisfies (14) for all (x, λ) ∈ B((x̄, λ̄), ε) and
all (ξ, η) satisfying (4) and (11). It remains to prove that ω3(t) = o(t) as
t → 0. Suppose the contrary: there exist γ > 0 and a sequence {tk} of positive
reals, convergent to zero and such that ω3(tk) ≥ γtk for all k. The latter
implies the existence of sequences {(xk, λk)} ⊂ (IRn × IRl) ∩ B((x̄, λ̄), ε) and
{(ξk, ηk)} ⊂ IRn × IRl such that the inequalities (16)–(18) and the equalities
in (24) hold for all k.

According to (17) and (18), passing to subsequences, if necessary, we may
assume that {(xk, λk)} converges to (x̄, λ∗) with some λ∗ ∈ M(x̄), and for
all k it holds that ‖(ξk, ηk)‖ ≤ Ctk, implying that ‖xk + ξk − x̄‖ ≤ (1 +C)tk.
Hence, we may assume without loss of generality that

{

1

tk
ηk

}

→ η,

{

1

tk
(xk + ξk − x̄)

}

→ ξ (28)

for some ξ ∈ IRn and η ∈ IRl. Finally, according to assumption (S2), we may
assume without loss of generality that ε > 0 is chosen in such a way that
σ(xk, λk) → σ̄ as k → ∞ for some real σ̄ 6= 0.

The second equation in (4) implies

σ(xk, λk)P (xk, λk)ηk = h(xk) + h′(xk)ξk

= (h(xk)− h(x̄)− h′(x̄)(xk − x̄)) + (h′(xk)− h′(x̄))ξk

+ h′(x̄)(xk + ξk − x̄)

= h′(x̄)(xk + ξk − x̄)

+O(‖xk − x̄‖2) +O(‖xk − x̄‖‖ξk‖)

= h′(x̄)(xk + ξk − x̄) +O(t2k), (29)

where the next-to-last equality is by the mean-value theorem, and the last is
by (17) and (18). Dividing (29) by tk, passing onto the limit and employing
(28) and assumption (P2), we obtain

σ̄P (x̄, λ∗)η = h′(x̄)ξ.

Since imP (x̄, λ∗)∩ im h′(x̄) = {0} (which follows from assumption (P2)), this
may only hold when σ̄P (x̄, λ∗)η = 0. On the other hand, (16) implies that
‖σ̄P (x̄, λ∗)η‖ ≥ γ, giving a contradiction. ⊓⊔

Finally, by the argument similar to the one in [14, Theorem 2.4], it can
be seen that if assumptions (P2) and (S2) hold and λ̄ is noncritical, then the
matrix





∂2L

∂x2
(x̄, λ̄) (h′(x̄))T

h′(x̄) −σ(x̄, λ̄)P (x̄, λ̄)





is nonsingular, and this evidently implies Assumption 3 in [5]. Moreover, the
solution of the iteration system (4) is necessarily unique for all (x, λ) ∈ IRn ×
IRl close enough to (x̄, λ̄).

Applying [5, Theorem 1] again, we obtain the following local convergence
result.
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Theorem 2 Under the assumptions of Proposition 2, but with (P1) and (S1)
replaced by (P2) and (S2), respectively, the assertions of Theorem 1 remain
valid.

3 Approximation of the degeneracy subspace

In this section we are concerned with defining P with the needed properties
in a practical way. We start with the following auxiliary problem setting.
Let Ā ∈ IRl×n be some fixed but “unavailable” matrix, and let r = rank Ā
be known. The task is to construct a mapping U : IRl×n → IRl×(l−r) such
that for any accumulation point Ū of U(·) at Ā it holds that rank Ū = l − r
and ĀTŪ = 0. We develop a simple Algorithm 31 accomplishing this task,
which is a variant of the classical Gaussian elimination with full pivoting (the
difference is that no actual permutation of rows and/or columns is performed).
Specifically, for a given matrix A ∈ IRl×n close enough to Ā, this algorithm
computes a matrix U(A) ∈ IRl×(l−r) such that the mapping U(·) defined this
way possesses the needed properties. Afterwards, the algorithm is extended to
cover the case when r is not supposed to be known. The resulting Algorithm 32
produces matrices allowing to define the needed P .

Algorithm 31 Set I0 = ∅, U (0) = I ∈ IRl×l, A(0) = A, s = 0.

1. If s = r, go to step 4. Otherwise, find indices is ∈ {1, . . . , l} \ Is and
js ∈ {1, . . . , n} such that

|A
(s)
isjs

| = max
i∈{1, ..., l}\Is,

j∈{1, ..., n}

|A
(s)
ij |. (30)

If A
(s)
isjs

= 0, stop with failure. Otherwise, set Is+1 = Is ∪ {is}.

2. Define the transformation matrix T (s) ∈ IRl×l,

T
(s)
ij =











−
A

(s)
jjs

A
(s)
isjs

if i = is, j 6∈ Is+1,

1 if i = j,
0 otherwise,

i, j = 1, . . . , l. (31)

Set U (s+1) = U (s)T (s) and A(s+1) = (T (s))TA(s).
3. Increase s by 1 and go to step 1.
4. Define U(A) as the submatrix of U (r) with columns indexed by i ∈ {1, . . . , l}\

Ir.

In principle, U(A) (and other products of Algorithm 31 and Algorithm 32
below) may depend on the choices of is and js on step 1 (when maximum
in (30) is attained on several pairs of indices). However, the properties being
established below are valid for any possible realization of U(A). On the other
hand, any specific implementation of these algorithms would always produce
the same U(A) for a given A.
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By construction, for each s

U (s) = U (s−1)T (s−1) = U (0)T (0) . . . T (s−1) = T (0) . . . T (s−1), (32)

A(s) = (T (s−1))TA(s−1) = (T (0) . . . T (s−1))TA(0) = (U (s))TA, (33)

and det T (s) = 1, and therefore, detU (s) = 1 and rankA(s) = rankA = r.
Suppose that Algorithm 31 stops with failure on step 1. In this case all

rows of A(s) with indices in {1, . . . , l} \ Is contain only zero entries, which
implies that rankA(s) ≤ s < r. Therefore, if rankA ≥ r (which is true for all
A close enough to Ā), then Algorithm 31 never stops with failure.

Furthermore, for each s it holds by construction that |T
(s)
ij | ≤ 1 for all

i, j = 1, . . . , l. Therefore, from (32) it follows that ‖U (r)‖ (and hence ‖U(A)‖)
can be bounded by some constant that depends on r but does not depend on
a specific matrix A.

Lemma 1 If A ∈ IRl×n is such that rankA = r, then for a matrix A(r)

produced by Algorithm 31 it holds that A
(r)
ij = 0 for all i ∈ {1, . . . , l} \ Ir and

j ∈ {1, . . . , n}.

Proof Merely for simplicity of presentation we will suppose that for each s =
0, . . . , r − 1 it holds that is = s+ 1 and js = s + 1. In this case matrix A(s)

has the following form for each s = 0, . . . , r:

A(s) =































A
(0)
11 A

(0)
12 · · · A

(0)
1s A

(0)
1(s+1) · · · A

(0)
1n

0 A
(1)
22 · · · A

(1)
2s A

(1)
2(s+1) · · · A

(1)
2n

...
...

. . .
...

...
. . .

...

0 0 · · · A
(s−1)
ss A

(s−1)
s(s+1) · · · A

(s−1)
sn

0 0 · · · 0 A
(s)
(s+1)(s+1) · · · A

(s)
(s+1)n

...
...

. . .
...

...
. . .

...

0 0 · · · 0 A
(s)
l(s+1) · · · A

(s)
ln































Observe that A
(s)
isjs

6= 0 for such s (otherwise the algorithm would terminate

with failure, which is impossible since rankA = r), and therefore, A
(s)
ii 6= 0

for i ∈ {1, . . . , s}. It further implies that the top-left s × s-minor of A(s) is
nonzero.

Therefore, if A(r) has nonzero entries in the rows from r + 1 to l, then,
evidently, rankA(r) > r, which is again impossible since rankA = r. ⊓⊔

Lemma 2 If A ∈ IRl×n is such that rankA ≥ r, then for a matrix U(A)
produced by Algorithm 31 it holds that rankU(A) = l−r. Moreover, if rankA =
r, then ATU(A) = 0.

Proof The equality rankU(A) = l− r immediately follows from the definition
of U(A) in step 4 of the algorithm, since detU (r) = 1. The equality ATU(A) =
0 is again by the definition of U(A), by (33), and by Lemma 1. ⊓⊔
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We emphasize again that the properties asserted in Lemma 2 do not depend
on the specific choices of is and js on step 1 of Algorithm 31, even though
U(A) itself may depend on these choices.

Proposition 4 Let Ā ∈ IRl×n be such that rank Ā = r, and let {Ak} ⊂ IRl×n

be a sequence of matrices convergent to Ā. For each k large enough, let U(Ak)
be produced by Algorithm 31.

Then for any accumulation point Ū of the bounded sequence {U(Ak)} it
holds that rank Ū = l − r and ĀTŪ = 0.

Proof Observe that rankAk ≥ r for all k large enough, and therefore, Algo-
rithm 31 does not terminate with failure when applied to A = Ak or A = Ā.

In order to establish that rank Ū = l − r and ĀTŪ = 0, we argue by
contradiction: suppose that there exists an accumulation point Ū of {U(Ak)}
such that either rank Ū < l − r or ĀTŪ 6= 0. Without loss of generality
we assume that {U(Ak)} converges to Ū , and moreover, that for each s =
0, . . . , r− 1, the indices is and js chosen on step 1 of Algorithm 31 applied to
A = Ak are the same for all k (otherwise we pass to appropriate subsequences).

It is easy to see that for each s = 0, . . . , r − 1, Algorithm 31 applied to
A = Ā may also pick up is and js specified above. Indeed, since (30) holds
with A = Ak for every k, and since {Ak} converges to Ā, passing onto the
limit in (30) as k → ∞, we obtain the equality

|Ā
(s)
isjs

| = max
i∈{1, ..., l}\Is,
j∈{1, ..., n}

|Ā
(s)
ij |,

and hence, (30) holds with A = Ā as well.

For each k and each s = 0, . . . , r − 1, let T
(s)
k , U

(r)
k and U(Ak) stand for

the matrices produced by Algorithm 31 applied to A = Ak (with the specified
choices of is and js), and let T (s), U (r) and U(Ā) stand for the matrices
produced by Algorithm 31 applied to A = Ā (with the same choices of is and
js).

From (31) and from convergence of {Ak} to Ā it follows that {T
(s)
k } con-

verges to T (s) for all s = 0, . . . , r − 1, and hence, by (32), {U
(r)
k } converges

to U (r), implying that {U(Ak)} converges to U(Ā). Therefore, U(Ā) = Ū ,
and hence, any of the properties rank Ū < l − r and ĀTŪ 6= 0 contradicts
Lemma 2. ⊓⊔

Now we extend the constructions above to the case when the rank r of Ā is
not supposed to be known. This construction relies on the following estimates.

Lemma 3 Suppose that for Ā ∈ IRl×n it holds that rank Ā = r.
Then there exist ε > 0 and M > 0 with the following properties: for any

A ∈ IRl×n close enough to Ā, and for R(s)(A) ∈ IR(l−s)×n standing for the
submatrix of A(s) with rows indexed by i ∈ {1, . . . , l} \ Is, where Is and A(s)

are obtained by Algorithm 31, the following conditions hold:

‖R(s)(A)‖ ≥ ε ∀ s = 0, . . . , r − 1, (34)

‖R(r)(A)‖ ≤ M‖A− Ā‖. (35)
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Observe that according to Lemma 1, if rankA = r, then R(r)(A) = 0.
Estimate (35) covers the case when rankA can be greater than r.

Proof We first prove the existence of ε > 0 satisfying (34) for all A close
enough to Ā. Suppose the contrary: there exists q ∈ {0, . . . , r − 1} and a
sequence {Ak} ⊂ IRl×n convergent to Ā such that for matrices R(q)(Ak) it
holds that

lim
k→∞

R(q)(Ak) = 0. (36)

We can assume without loss of generality that for each s = 0, . . . , q − 1 the
indices is and js chosen on step 1 of Algorithm 31 applied to A = Ak are the
same for all k (otherwise we pass to appropriate subsequences). Repeating the
same arguments as in proof of Proposition 4, we can easily show that for each
s = 0, . . . , q − 1, Algorithm 31 applied to A = Ā may also pick up is and js
specified above, and that the matrix R(q)(Ā) obtained accordingly satisfies

lim
k→∞

R(q)(Ak) = R(q)(Ā).

Combining this condition with (36), we obtain R(q)(Ā) = 0, which means that
for the matrix Ā(q) obtained by Algorithm 31 applied to A = Ā it holds that
rank Ā = rank Ā(q) ≤ q < r, giving a contradiction.

We next prove the existence of M > 0 satisfying (35) for all A close enough
to Ā. Observe that for A = Ā (35) is satisfied with any M > 0, since both
sides of this inequality are equal to zero. Suppose that for some sequence
{Ak} ⊂ IRl×n\{Ā} convergent to Ā, for matricesR(r)(Ak) generated according
to Algorithm 31 it holds that

lim
k→∞

‖R(r)(Ak)‖

‖Ak − Ā‖
= +∞. (37)

We again assume without loss of generality that for each s = 0, . . . , r− 1 the
indices is and js chosen on step 1 of Algorithm 31 applied to A = Ak are the
same for all k, which implies that for each s = 0, . . . , r − 1, Algorithm 31
applied to A = Ā may also pick up specified indices is and js.

Note that for each s = 0, . . . , r− 1 the matrix T (s) defined by (31) for any
fixed is and js, being considered as a function of A (mapping IRl×n to IRl×l),
is analytic near Ā. Therefore, the matrix A(r) = A(r)(A) defined according to
(32), (33), is also analytic near Ā as a function of A, and hence, Lipschitz-
continuous near Ā. It then follows from definition of R(r)(·) and from the
equality R(r)(Ā) = 0 that for some M > 0

‖R(r)(Ak)‖ = ‖R(r)(Ak)−R(r)(Ā)‖ ≤ ‖A(r)(Ak)−A(r)(Ā)‖ ≤ M‖Ak − Ā‖

for all k, which evidently contradicts (37). ⊓⊔

This lemma allows us to modify Algorithm 31 so that it would be auto-
matically estimating r. Suppose that along with A ∈ IRl×n, we have at hand
some quantity t ≥ 0 somehow measuring the distance from A to Ā.
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Algorithm 32 Set I0 = ∅, U (0) = I ∈ IRl×l, A(0) = A, R(0)(A, t) = A, s = 0.

1. If s = l or
‖R(s)(A, t)‖ ≤ t, (38)

set r = s and go to step 4. Otherwise, find indices is ∈ {1, . . . , l} \ Is and
js ∈ {1, . . . , n} such that (30) holds. Set Is+1 = Is ∪ {is}.

2. Define the transformation matrix T (s) ∈ IRl×l by (31). Set U (s+1) =
U (s)T (s), A(s+1) = (T (s))TA(s), and define R(s+1)(A, t) as a submatrix
of A(s+1) with rows indexed by i ∈ {1, . . . , l} \ Is+1.

3. Increase s by 1 and go to step 1.
4. Define U(A, t) as the submatrix of U (r) with columns indexed by i ∈

{1, . . . , l} \ Ir.

Note that the value A
(s)
isjs

obtained on step 1 of Algorithm 32 is always
distinct from zero, since otherwise the test (38) would be satisfied. Therefore,
Algorithm 32 always terminates successfully.

Proposition 5 Let τ > 0 and θ ∈ (0, 1) be fixed. Let {Ak} ⊂ IRl×n be a
sequence of matrices convergent to some Ā ∈ IRl×n. Let {σk} be a sequence of
reals such that σk → 0 as k → ∞, and there exists M > 0 such that for all k

‖Ak − Ā‖ ≤ M |σk|.

Then for all k large enough, Algorithm 32 applied to A = Ak and t = τ |σk |θ

terminates with r = rank Ā, and for any accumulation point Ū of the bounded
sequence {U(Ak, τ |σk|

θ)} it holds that rank Ū = l − rank Ā and ĀTŪ = 0.

Proof Taking into account Proposition 4, we only need to show that for all k
large enough Algorithm 32 stops with r = rank Ā, since in this case U(Ak, τ |σk|θ)
coincides with U(Ak) obtained by Algorithm 31 (assuming that both algo-
rithms accept the identical choices of is and js for each s = 0, . . . , r − 1).

Suppose first that there exist infinitely many indices k such that Algo-
rithm 32 applied to A = Ak and t = τ |σk|θ terminates with some r < rank Ā.
Since rank Ā ≤ l, and hence r < l, the test (38) is satisfied for these indices with
s = r. Therefore, the corresponding subsequence of {R(r)(Ak, τ |σk|

θ)} tends
to zero, which contradicts Lemma 3 according to which there exists ε > 0 such
that ‖R(r)(Ak)‖ ≥ ε for all k large enough, and hence, ‖R(r)(Ak, τ |σk|θ)‖ ≥ ε
for all k large enough (since the matrices R(s)(Ak) defined by Lemma 3, and
R(s)(Ak, τ |σk|θ) produced by Algorithm 32 are the same for s ≤ rankAk).

Suppose now that for infinitely many k Algorithm 32 stops with r > rank Ā.
Evidently, for all such k it holds that

‖R(rank Ā)(Ak, τ |σk|
θ)‖ > τ |σk|

θ ≥
τ‖Ak − Ā‖θ

Mθ
.

On the other hand, from Lemma 3 we have that

‖R(rank Ā)(Ak)‖ = O(‖Ak − Ā‖)

as k → ∞, giving a contradiction, since θ ∈ (0, 1). ⊓⊔
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Getting back to the subspace-stabilized SQP, we can now define the map-
ping P : IRn × IRl → IRl×l as follows:

P (x, λ) = U(UTU)−1UT, (39)

where U = U(h′(x), τ |σ(x, λ)|θ) is defined by Algorithm 32 applied to A =
h′(x) and t = τ |σ(x, λ)|θ for some fixed values τ > 0, θ ∈ (0, 1).

It is standard and can be easily checked that

P̄ = Ū(ŪTŪ)−1ŪT

for any choice of a matrix Ū ∈ IRl×(l−r) satisfying rank Ū = l − r and
(h′(x̄))TŪ = 0. From Proposition 5 it then follows that if h is smooth enough
at x̄ and the function σ satisfies (S1), then for any λ∗ ∈ M(x̄) close enough
to λ̄ the mapping P defined by (39) satisfies

lim
k→∞

P (xk, λk) = P̄

for any sequence {(xk, λk)} convergent to (x̄, λ∗). The latter implies

Proposition 6 Let f : IRn → IR be differentiable at x̄ ∈ IRn, and let h :
IRn → IRl be differentiable in a neighborhood of x̄, with its derivative Lipschitz-
continuous with respect to x̄, that is,

h′(x) − h′(x̄) = O(‖x− x̄‖)

as x → x̄. Let x̄ be a stationary point of problem (1), and let λ̄ ∈ M(x̄).
Assume that σ : IRn × IRl → IR satisfies (S1).

Then for any τ > 0 and θ ∈ (0, 1), the mapping P : IRn × IRl → IRl×l

defined by (39), where U = U(h′(x), τ |σ(x, λ)|θ) is defined by Algorithm 32,
satisfies both assumptions (P1) and (P2).

4 Numerical results

In this section we provide some numerical evidence that our stabilization along
the appropriate subspace may indeed be an efficient improvement over the
usual SQP and stabilized SQP methods. As commented above, in [21] it has
been observed that the latter often demonstrates poor performance on prob-
lems with degenerate but not fully degenerate solutions: it has a strong ten-
dency to generate long sequences of short primal-dual steps, thus drastically
slowing down the convergence. Our primary interest is to demonstrate that
stabilization along the subspace can indeed be a remedy for this bad behav-
ior of the full-space stabilized SQP. Evidently, one crucial ingredient of this
remedy is correct identification of the rank of the constraints’ Jacobian.

Our computations were performed in Matlab environment, using its stan-
dard tools to solve linear systems. We recall that for a given current iter-
ate (x, λ) ∈ IRn × IRl, the usual SQP method generates the next iterate as
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(x + ξ, λ + η), where the step (ξ, η) is computed as a solution of the system
(2) with σ = 0. The stabilized SQP method generates the iterates the same
way, but employing σ = σ(x, λ) defined according to (7) with β = 1.

The same σ(x, λ) is used in the subspace-stabilized SQP algorithm with
asymptotically vanishing stabilization, for which the iteration system (2) is
replaced by (4). As for P (x, λ), it is defined according to Proposition 6, em-
ploying Algorithm 32 with the parameter values τ = 0.3 and θ = 0.8, which
appear to be the best choice in our experiments. Recall that this procedure
correctly identifies the rank of the constraints’ Jacobian at the primal solution
when (x, λ) is close to a primal-dual solution of (3) with a noncritical dual
part.

In the subspace-stabilized SQP algorithm with nonvanishing stabilization,
we define P (·) exactly as above, but the algorithm itself employs σ(·) ≡ 1.

In cases of convergence to a critical multiplier σ(xk, λk) usually becomes
too small for large k, so the test (38) fails for A = h′(xk) and t = τ |σ(xk , λk)|θ,
for any s = 0, . . . , l − 1, and therefore Algorithm 32 returns r = l and
P (xk, λk) = 0. In this case, the subspace-stabilized SQP eventually turns
into the pure SQP, and as discussed above, the rate of convergence in this case
is only linear [17, Chapter 7].

We start with the following example.

Example 1 This is problem 20204 from DEGEN test collection [1]. Let n =
l = 2, f(x) = (x2

1 + x2
2)/2, h(x) = ((x2

1 + x2
2)/2− x2, (x

2
1 + x2

2)/2 + x2). Then
x̄ = 0 is the unique feasible point, and hence, the unique solution of problem
(1). Furthermore, rankh′(x̄) = 1, and Lagrange multipliers associated with
x̄ are those λ ∈ IR2 satisfying λ1 = λ2. The unique critical multiplier is
λ̄ = (−1/2, −1/2).

Figure 1 shows the primal sequences of the basic SQP method, the stabi-
lized SQP method, and the subspace-stabilized SQP method with vanishing
and nonvanishing stabilization, starting from x0 = (2, −3), λ0 = (−10, 15).

For the SQP method, the stopping criterion is satisfied after 17 itera-
tions. One can see from Figure 1(a) that the primal sequence converges along
kerh′(x̄), and the convergence rate is linear. The reason is that the dual se-
quence converges to the critical multiplier. We emphasize again that this is a
typical behavior for the SQP method when applied to problems with degen-
erate constraints.

The stabilized SQP demonstrates quite a different behavior: the projec-
tions of the primal iterates onto kerh′(x̄) rapidly converge to zero, while their
projections onto (kerh′(x̄))⊥ move very slowly. The stopping criterion is sat-
isfied only after 30 iterations despite the fact that the limiting multiplier is
noncritical, and that eventually the superlinear convergence rate shows up
(which cannot be seen from Figure 1(b)).

Poor behavior of the SQP and the stabilized SQP methods can be inter-
preted here as the effect of “inadequate dual stabilization”. Dual sequences of
the SQP method are not stabilized along the degeneracy subspace ker(h′(x̄))T,
and as a result, these sequences converge to the critical multiplier along this
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Fig. 1 Primal sequences for Example 1; x0 = (2, −3), λ0 = (−10, 15).

subspace. On the other hand, dual sequences of the stabilized SQP are stabi-
lized not only along the degeneracy subspace, but also along its complement
(ker(h′(x̄))T)⊥ = imh′(x̄), and such “over-stabilization” results in very short
primal-dual steps.

At the same time, the subspace-stabilized SQP method correctly identifies
the rank of h′(x̄) and produces P (xk, λk) close to a P̄ . Hence, dual sequences
are stabilized along the degeneracy subspace only, which results in fast con-
vergence: the stopping criterion is satisfied after 7 and 6 iterations in cases of
vanishing and nonvanishing stabilization, respectively. ⊓⊔

In the rest of this section we provide a comparison of the same methods
but on randomly generated problems with quadratic objective functions and
quadratic equality-constraints, using the generator from [15]. For each triple
(n, l, r) we generated 10 such problems with n variables and l constraints,
such that 0 is a stationary point of each problem, with the rank of constraints’
Jacobian at 0 equal to r, and with some associated Lagrange multiplier λ̄ being
also provided by the generator. We used all triples with n from 2 to 5, l from
1 to n, and r from 0 to l.
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In these experiments, we were interested in “semi-local” behavior of the
SQP and its stabilized versions. To that end, we generated starting points
(x0, λ0) ∈ IRn × IRl satisfying ‖(x0, λ0 − λ̄)‖ ≤ R, for four values R = 0.01,
0.1, 0.5, and 1, in order to figure how the iteration count depends on close-
ness of starting points to solutions. For each problem and each value of R,
we performed 20 runs from such random starting points (all algorithms were
initialized at the same starting points). Run was considered successful when
the stopping criterion ‖Φ(xk, λk)‖ ≤ 10−8 was satisfied before the iteration
count k exceeded 500.

The results are presented below in the form of performance profiles, which
is a slightly modified version of the original proposal in [2]. For each algorithm
the plotted function π : [1, ∞) → [0, 1] is defined as follows. Let kp stand for
the average iteration count of a given algorithm per one successful run for
problem p. Let sp denote the portion of successful runs on this problem. Let
rp be equal to the best (minimum) value of kp over all algorithms. Then

π(τ) =
1

P

∑

p∈S(τ)

sp,

where P is the number of problems in the test set, while S(τ) is the set of
problems for which kp is no more than τ times worse (larger) than the best
result rp:

S(τ) = {p = 1, . . . , P | kp ≤ τrp}, τ ∈ [1, ∞).

In particular, the value π(1) corresponds to the portion of problems for which
the given algorithm demonstrated the best result on the average. The values
of π(τ) for large τ correspond to the portion of successful runs.

In the legend of performance profiles, the stabilized SQP is abbreviated
as sSQP, while the subspace-stabilized SQP with vanishing and nonvanishing
stabilization are abbreviated as s-sSQP (V) and s-sSQP (NV), respectively.

We consider separately the following three cases: the case of fully degener-
ate constraints (r = 0); the case when constraints are degenerate but not fully
degenerate (0 < r < l); and the case of nondegenerate constraints (r = l).
The reason is that in these three cases, the relative behavior of the methods
in question is quite different.

Full degeneracy is of course a rather special kind of degeneracy; we con-
sider it separately because, as discussed above, the stabilized SQP demon-
strates very good performance in this case, and hardly requires any further
improvements. This is confirmed by Figure 2: as expected, the stabilized SQP
seriously outperforms the usual SQP. The subspace-stabilized SQP methods
are somewhat less efficient on this kind of problems, but they are still evidently
better than the usual SQP, especially when initialized close to solutions.

Now we turn our attention to the case when 0 < r < l which is a typi-
cal kind of constraints’ degeneracy. The corresponding results are presented on
Figure 3. As can be seen from Figure 3(a), and as expected from the local con-
vergence theory presented above, if starting points are taken close enough to
solutions, all stabilized methods behave well and significantly outperform the
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Fig. 2 Results for problems with fully degenerate constraints.

usual SQP. However, as can be seen from Figures 3(b)–3(d), with initialization
farther from solutions, performance of the stabilized SQP degrades drastically:
the method starts to produce long series of short steps, and in many cases this
results in failures due to the iteration limit. On the contrary, performance of
the subspace-stabilized SQP methods is not affected so seriously by moving
starting points farther from solutions. In particular, the subspace-stabilized
SQP with vanishing stabilization still requires less iterations on the average
over successful runs than the SQP, and the portion of failures grows not much
faster than for the SQP.

Finally we consider the problems with nondegenerate constraints. For such
problems the SQP usually possesses local superlinear convergence, and hence,
the theory presented above does not give reasons to expect that the stabilized
methods would perform better than the SQP. This is confirmed by Figure 4,
where the overall picture is similar to that in Figure 3 for the nonfully de-
generate case, though the portion of failures for the subspace-stabilized SQP
methods grows significantly faster as the starting points are being moved far-
ther from the solution.
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Fig. 3 Results for problems with nonfully degenerate constraints.

5 Concluding remarks

This paper is intended to demonstrate that stabilization along the degeneracy
subspace is crucially important for a success of SQP methods supplied with
dual stabilization. If stabilization is performed along a smaller subspace (or is
not performed at all, as in the case of the pure SQP method), dual sequences
typically converge to a critical multiplier, and the convergence rate is only
linear. On the other hand, if stabilization is performed along a larger subspace
(or the entire dual space, as in the stabilized SQP method), long sequences
of short steps are typically encountered, inevitably degrading performance of
any globalized algorithm attempting to accept the full stabilized SQP steps
as often as possible. Loosely speaking, the subspace-stabilized SQP method is
a blend of the conventional and stabilized SQP methods: it behaves like the
stabilized SQP along the degeneracy subspace, and like the conventional SQP
on the complement of this subspace. The subspace-stabilized SQP methods
may also generate long sequences of short steps when not close enough to
solutions (e.g., when the rank of the constraints’ Jacobian at the solution is
identified incorrectly), but the area where this does not typically happen is
much larger than that for the stabilized SQP. Therefore, the transition from
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Fig. 4 Results for problems with nondegenerate constraints.

any outer phase algorithm to a local phase might be expected to pass much
more smoothly if the latter would be the subspace-stabilized SQP rather than
the stabilized SQP.
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