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Abstract

Due to the high intensity and MHz repetition rate of photon pulses generated by the Euro-
pean X-ray Free-Electron Laser, the heat load on silicon crystal monochromators can become
large and prevent ideal transmission in Bragg diffraction geometry due to crystal deformation.
Here, we present experimental data illustrating how heat load affects the performance of a
cryogenically cooled monochromator under such conditions. The measurements are in good
agreement with a depth-uniform model of X-ray dynamical diffraction taking beam absorption
and heat deformation of the crystals into account.

1 Introduction
Monochromators are often used at X-ray Free-Electron Lasers (XFELs) to reduce the spectral
bandwidth of pulses generated by self-amplified spontaneous emission (SASE, bandwidth ∆E/E ∼
2 · 10−3). This improves the temporal coherence, which is beneficial for several techniques. For
instance, X-ray Photon Correlation Spectroscopy (XPCS) in Wide-Angle X-ray Scattering (WAXS)
provides a better contrast when a monochromator is used [1, 2]. Also, high-resolution and inelastic
X-ray scattering require narrower bandwidth than SASE provides [3, 4]. Obtaining nano-sized foci
with refractive optics (chromatic focusing) also benefits from a reduction of the X-ray bandwidth
[5].

At European XFEL (EuXFEL), X-ray pulses with the intensity of several mJ and a few fem-
tosecond duration are generated. The pulses are delivered in so-called "trains" which can contain
several hundreds of pulses that are separated by sub-600 µs intervals. That is, within a train of
typically ∼600 µs duration, pulses arrive at MHz repetition rate and 10 trains are delivered per
second. For the moment, 2.25 MHz repetition rate is available on a standard basis at EuXFEL
but the design value of 4.5 MHz has also been achieved [6].

The intense radiation causes deformation of the crystal lattice, which affects the diffraction of X-
rays and degrades the monochromator performance. We study the performance of a cryogenically
cooled Si(111) monochromator that consists of two parallel crystals forming an artificial channel-
cut [7, 8] (Darwin width ∆E/E ∼ 1.4 ·10−4) operating at 9 keV photon energy using experimental
data obtained at the Materials Imaging and Dynamics (MID) instrument of EuXFEL [9, 10]. The
geometry of Si crystals (60 mm length, 35 deg. angular range of Bragg-angle rotation) enables to
use the monochromator in a 5-25 keV photon energy range. To achieve parallel position of both
Si crystals the second crystal can be adjusted in pitch and roll angles. Fine pitch adjustment
with sub-microradian precision is enabled using a piezo-actuator. Both crystals are supplied with
cryogenic cooling using a helium cryocompressor and equipped with heaters to achieve stable
thermal conditions [11]. The temperature is typically set to 100 K which is close to the zero point
of the thermal expansion coefficient of silicon [12].
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In the following, simulations which consider heat propagation during a train [13] and dynamical
diffraction effects [14, 15] (Sections 2, 3) are compared with experimental data (Section 4).

2 Simulation of crystal heating
For the simulation of heat absorption and transfer, the crystal is divided into n cylindrical shells
with inner radii of ri = (i − 1) · dr. i varies from 1 to n and the outer radii of the ith shell is
ri + dr where dr is the thickness of each cylindrical shell [13]. Along the surface normal direction
cylinders are divided into m layers of dz thickness and the position of the jth layer in the depth
coordinate is zj = j · dz, where j varies from 1 to m.

Let us consider a Gaussian pulse whose radial intensity profile reads

I(ri, zj) = I0S(ri)
exp(−r2

i /2σ
2) exp(−zj/a)

2πσ2a
dz, (1)

where I0 is the total pulse energy, S(ri>1) = 2πridr, S(r1) = π · dr2, σ = wequiv/2
√

2 ln 2 where
wequiv is the full-width at half maximum (FWHM) of the beam size at the crystal surface and a is
the depth at which the intensity of the beam decreases by a factor of e. Since the X-rays impinge
the crystal at an angle θ0, the pulse size wequiv = w/

√
sin θ0 is used for the simulations, where w

is the FWHM size of the pulse incident at an angle θ0. a = labs sin θ0, where labs is the absorption
length of X-rays at a given photon energy. The heat load per unit of surface area for the pulse
with the size wequiv is the same as of the pulse with the size w incident at an angle θ0.

The temperature of each cylinder layer with inner radius ri at depth zj is determined by the
heat absorbed per unit of mass. The absorption of an incident pulse and resulting heating are
considered to be instantaneous in comparison with the characteristic time for the redistribution
of temperature (see below for the estimations of the timescales using Eq. 6). The temperature
T0(r, z) at each radius r and depth z (indices of ri and zj are omitted) after the absorption of a
pulse is defined by the absorbed heat per unit of mass in the corresponding cylindrical shell given
by ∫ T0(r,z)

Tinit

cp(T )dT =
I(r, z)

dz · ρS(r)
, (2)

where cp(T ) is the temperature-dependent specific heat of silicon that has been calculated following
Debye’s model[16], ρ is the density of silicon (whose temperature dependence is neglected), and
Tinit is the initial temperature of the crystal. The temperature evolution with time T (t, r, z) is
defined by the heat transfer equation which in the depth direction is written as

∂T (t, r, z)

∂t
= D(T ) · ∂

2T (t, r, z)

∂z2
, (3)

where D(T ) = K(T )/ρcp(T ) is the temperature-dependent thermal diffusivity and K(T ) is the
temperature-dependent thermal conductivity [17]. The boundary conditions for Eq. (3) are

T (0, r, z) = T0(r, z), (4a)
∂T

∂z

∣∣∣∣
z=0

= 0, (4b)

T (t, r, z = zm) = Tinit, (4c)

which correspond to the absence of heat exchange at the crystal surface and a constant temperature
Tinit at depth zm. If a second pulse arrives at an instant t1, the temperature profile T ′(t1, r, z) is
defined analogous to Eq. (2): ∫ T ′(t1,r,z)

T (t1,r,z)

cp(T )dT =
I(r, z)

ρ · dz · S(r)
. (5)

Let us analyze Eq. (3) in order to estimate the characteristic timescale of heat transfer in
the radial and depth directions. The parameters used in the simulations match the parameters
of the experiment described in Sec. 4: Tinit = 100 K, FWHM beam size of 549 µm, a = 21 µm
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corresponding to labs = 97 µm and θ0 = 12.7°, which is the Bragg angle for Si(111) reflection at
9 keV photon energy. For silicon, D(100 K) ≈ 17 cm−2s−1. Considering the heat flow equation (3),
the characteristic time for the redistribution of temperature over a distance L can be estimated as

tchar(L) ∼ L2

D
. (6)

Let us consider two relevant distances in Eq. (6) Lr = 549 µm, which is equal to the beam size,
and in the depth direction Lz = a = 21 µm. For the heat redistribution in the radial direction,
tchar,r = tchar(Lr) = 181 µs, whereas in the depth direction tchar,z = tchar(Lz) = 265 ns. Hence
tchar,r >> tchar,z.

The duration of pulses at European XFEL is estimated to be ∼10-100 fs, which is many orders
of magnitude shorter than the characteristic heat redistribution time, see Eq. (6). Therefore the
assumption of instantaneous heating of the crystal by a pulse is justified. Moreover, the delay time
between individual pulses at European XFEL is typically between 220 and 880 ns which is about
two orders of magnitude smaller than tchar,r. Thus, neglecting heat flow in the radial direction is
justified from one pulse to the next one inside the pulse train. However, tchar,z is of the same order
of magnitude as the time delay between pulses and therefore heat flow in the depth direction during
a train must be accounted for in the simulations. On the other hand, the 0.1 s interval between
pulse trains is much larger than both tchar,r and tchar,z and therefore, by the time the next pulse
train arrives, the crystal has fully recovered to the initial temperature and hence a non-deformed
state.

In the experiment, the crystal is 2 cm thick and is kept at a constant cryogenic tempera-
ture. Therefore, the boundary condition Eq. (4c) defining a constant temperature at depth zm is
applicable.

3 Dynamical diffraction simulations
In the framework of kinematical diffraction, the resulting amplitude in a point with radius-vector
~% is defined by the integral

Es ∝
∫
%0

exp(ik|~%− ~%0|)
|~%− ~%0|

d3%0, (7)

which represents the sum of waves scattered by each point of a scattering object with radius-vectors
~%0 and where k = 2π/λ with λ being the wavelength. In case of a crystal lattice where the atoms
are positioned in a regular manner, secondary scattering of X-rays will have a significant effect on
the resulting diffraction amplitude. This re-scattering in ideal crystals is described by the theory
of dynamical diffraction of X-rays [18]. The Bragg law

2d sin θB = λ (8)

represents the condition for coherent addition of waves scattered by a lattice and defines the Bragg
angle θB at which the strongest scattering is observed for the given lattice spacing d.

The beam induced heating of the crystal described in the previous section causes a deformation
of the lattice, which is different in each point of the crystal. Considering dynamical diffraction,
only the component of the deformation normal to the crystal surface is relevant, since this affects
the lattice spacing used in Eq. (8). In order to estimate the effect of crystal deformation on the
diffraction, we consider the heating of the crystal on the surface, i.e. at z = 0. The lattice
deformation ε(t, r) in the direction normal to the crystal surface caused by heating from Tinit to
T (t, r, z) is given by the accumulated expansion and

ε(t, r) ≡ ∆d(t, r)

dinit
=

∫ T (t,r,z=0)

Tinit

αT (T ) dT, (9)

where αT (T ) is the temperature-dependent linear expansion coefficient of silicon which is close to
zero near 100 K [19], dinit is the lattice spacing at temperature Tinit and ∆d(t, r) is the lattice
spacing change after heating from Tinit.
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We assume that the Bragg condition is fulfilled for a photon energy E0 = hc/λ in the case of a
non-deformed crystal lattice. The diffraction of X-rays with a photon energy E at an instant t and
at radius r is defined by the deviation of the wave vector from the exact Bragg condition [14, 15]

η(E, t, r) =
k2 − (~k + ~h(t, r))2

k2
, (10)

where ~k is the wave vector for the incident beam with photon energy E and ~h(t, r) is the reciprocal
lattice vector h(t, r) = 2π/dinit[1 + ε(t, r)]. In the simulations we assume that all photon energies
are incident at the same angle θB (the Bragg angle for photon energy E0 of the non-deformed
crystal) and hence Eq. (10) can be written as

η (E, t, r) = 2 sin 2θB

(
∆E

E0
+ ε(t, r)

)
tan θB, (11)

where ∆E = E − E0.
The reflection amplitude from an infinitely thick crystal is calculated as [20]

R(E, t, r) =
η(E, t, r)±

√
η(E, t, r)2 − 4χ2

h

2χh
, |R| ≤ 1, (12)

where χh is the first Fourier component of the crystal susceptibility. Eq. (12) defines the reflection
amplitude at each point of the crystal surface and at a given photon energy E. The total reflection
intensity from the crystal is defined as an integral of Eq. (12) over the crystal surface

IE (E, t) ∼
rn∫
0

|R0 (E, t, r) |2 · |R (E, t, r) |2 · exp

(
− r2

2σ2

)
r

σ2
dr, (13)

where R0 (E, t, r) is the reflection amplitude (12) for the non-deformed crystal, i.e. ε (E, t, r) ≡ 0.
The spectral width of the Bragg reflection of Si(111) at 9 keV is ∼1 eV, whereas the spectral

width of the XFEL pulses is ∼20 eV. Thus only a narrow fraction of X-rays is reflected by the
first crystal of the monochromator. Therefore we assume that the second crystal remains unheated
and thus non-deformed and oriented parallel to the first crystal. The reflectivity from two crystals
IR (t) in that case can be calculated as an integral of the reflection intensity (13) over the photon
energies as follows:

IR (t) ∼
∫

∆E0

IE(E, t)dE, (14)

where ∆E0 is the range of photon energies.

Figure 1: Simulations for the effect of heating on the cryo-cooled Si monochromator performance.
a) - simulated temperature profile at surface for various pulses in a train, the legend provides the
total energy that has impinged the crystal since the beginning of the pulse train for a given pulse
number, the energy of each pulse matches the ones measured at experiment, see inset in Fig. 4. b)
- reflection intensity (13) from the crystal within a range of photon energies for the temperature
distributions in a).

Let us analyze the effect of heating on the monochromator performance using the parameters of
the experiment described in Sec. 4: pulse size w = 549 µm, repetition rate 2.25 MHz, Tinit = 100 K,
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pulse energy ranging between 1 and 1.5 mJ, as shown in the inset in Fig. 4, and the simulations
are done for 30% of the pulse energy impinging on the monochromator. The temperature in the
center of the beam footprint reaches values in excess of 300 K, see Fig. 1a), and Bragg’s condition
is no longer fulfilled because, due to the temperature bump, it is several Darwin widths away from
the condition that was met at 100 K [8]. Nevertheless, even when the temperature in the center
of the illuminated area is high, there are areas of the crystal that are cold enough to reflect within
the acceptance of the second crystal, which is assumed to stay cold at 100 K. The temperature
gradient over the illuminated crystal area leads to a broadening of the reflectivity curve and a
decrease of the reflected intensity in Fig. 1b). At the end of the train of 150 pulses arriving at
2.25 MHz repetition rate, i.e. after a total of 47.8 mJ pulse energy has been absorbed by the first
crystal, the monochromator transmission has decreased to less than half of the initial value.

4 Experimental
In order to measure the intensity of the pulses after the monochromator, a porous silica (Vycor)
sample was used to scatter X-rays in the forward direction (small-angle X-ray scattering, SAXS).

Figure 2: Selected components of MID station at European XFEL and their positions relative to
the source.

Figure 3: a) intensity distribution of a pulse after monochromator on the YAG imager, the red
ellipse is a contour at the FWHM of the two-dimensional Gaussian fit. b) Average over 60 images
of the AGIPD area with the strongest SAXS signal. The red solid-line rectangles in b) denote the
four areas of the detector used for data analysis.

An overview of the beamline layout used at the experiment is shown in Fig. 2. The two-
dimensional intensity distribution of the beam was measured using the yttrium aluminium garnet
(YAG) screen imager device at the end of MID photon tunnel. The size of the beam was found by
applying a two-dimensional Gaussian fit to the intensity distribution, see Fig. 3a). The horizontal
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FWHM width of the Gaussian fit wx = 607 µm, the vertical - wy = 496 µm; in the simulations,
w =

√
wxwy = 549 µm, such that the average density of the circular pulse that is used in Eq. (1)

is equivalent to the elliptical beam shown in Fig. 3a). The scattered SAXS intensity was measured
by the Adaptive Gain Integrating Pixel Detector (AGIPD) megapixel detector, which is designed
to acquire full-frame data at frequencies up to 4.5 MHz [21]. The pulse intensity incident on
the monochromator is measured using the X-ray gas monitor (XGM) device[22] installed after
the undulator. Attenuators installed after the XGM are used to reduce the photon flux on the
monochromator and the attenuator transmission was 30% during the experiment. Collimating
compound refractive lenses (CRLs) were used to compensate for the divergence of the beam[23].

In order to measure the scattering from the Vycor sample on AGIPD, only the pixels located
closest to the center of the detector and having the strongest scattering signal were used for analysis
of the monochromator transmission (Fig. 3b). The ratio of the sum of the intensity captured by the
selected pixels to the XGM value provides a figure of merit for the transmission of a given pulse in
a given train. Averaging of this ratio over a large number of trains for each pulse number provides
an estimate of the monochromator transmission dependency on the energy that has impinged on
the first crystal.

Figure 4: Experimental (dots) and theoretical (line) monochromator transmission during a train of
XFEL pulses. The separation between pulses is 0.44 µs, which corresponds to 2.25 MHz repetition
rate. A photon energy 9 keV and a Si(111) reflection was used. The horizontal axis at the top
represents the pulse number, at the bottom - the total energy that has impinged on monochromator
before the respective pulse. The inset shows the energy of each pulse in a train measured by the
XGM and averaged over the trains with 30% of the energy impinges the monochromator. The
experimental monochromator transmission is calculated as the ratio of the sum of AGIPD pixels
to the XGM signal for each pulse in a train, averaged over 498 trains and normalized to the
maximum value. The experimental and theoretical transmission values are normalized to the
maximum values during the train.

The measurements show that the monochromator transmission reduces by a factor of two after
∼50 mJ of X-ray energy or around 150 pulses under the aforementioned conditions, have impinged
on the first crystal at 2.25 MHz repetition rate (Fig. 4). The experimental curves are not shown
with error bars, since the transmission values are averaged over many trains. That is, for a fixed
pulse number in a train, the scattering is produced by statistically independent and intrinsically
random SASE pulses [24]. Even for an ideal monochromator the transmission is determined by the
spectral intensity of the pulse in a bandwidth given by the Darwin width of the monochromator.
Due to the random nature of the spectral fine structure of SASE[24], averaging over a large number
of pulses provides an accurate estimate of the effect of heating on the monochromator transmission.
We attribute the initial rise of the measured monochromator transmission seen in Fig. 4 to possible
systematic drifts of photon energies and/or beam pointing during a pulse train.
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The good agreement between theoretical and experimental values in Fig. 4 indicates that the
simulation model presented in Secs. 2 and 3 provides a qualitatively correct behaviour of monochro-
mator transmission during heating by intense X-ray pulses. Therefore the model can be employed
as a simulation framework to aid the design of crystal optical devices when a high heat load from
intense XFEL pulses is anticipated. The implementation of the code in Python is available to the
public [25].

5 Conclusion
The intra-train transmission of a double-bounce Si(111) cryo-cooled monochromator has been
measured at European XFEL using SASE pulses arriving at 2.25 MHz repetition rate. It has been
shown that after around 150 pulses, which corresponded in this case to a total incident energy of
around 50 mJ, the monochromator transmission decreases by about a factor of two.

A simple one-dimensional model of crystal heating and dynamical diffraction qualitatively re-
produces the measured monochromator transmission. A simulation code is made available to the
public [25] and can be used to simulate the heat load effect on perfect crystal optical elements at
XFELs.
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