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Abstract. The ab initio No-Core Shell Model (NCSM) begins with an intrinsic Hamiltonian
for all nucleons in the nucleus. Realistic two-nucleon and tri-nucleon interactions are
incorporated such as those recently developed from effective field theory and chiral perturbation
theory. We then derive a finite basis-space dependent Hermitian effective Hamiltonian that
conserves all the symmetries of the initial Hamiltonian. The resulting finite Hamiltonian matrix
problem is solved by diagonalization on parallel computers. Applications range from light nuclei
to multiquark systems and, recently, to quantum field theory including systems with bosons.
We present this approach with a sample of recent results.

1. Introduction
It is a great pleasure to outline one of the present-day branches of nuclear theory that is firmly
based on the pioneering works of both of our distinguished honorees - Professors Akito Arima
and Igal Talmi. Among their many achievements, configuration mixing and the multi-particle
harmonic oscillator representation are fundamental to our successes.

In the ab initio No-Core Shell Model (NCSM), we define an Intrinsic “bare” Hamiltonian
to include a realistic nucleon-nucleon (NN) interaction and a theoretical tri-nucleon (NNN)
interaction. The NN interaction model describes the NN data to high precision. The interactions
may arise from any theoretical framework (meson exchange, effective field theory, chiral field
theory, inverse scattering,...) and may have complicated features such as charge-symmetry
breaking, non-locality, and strong repulsive at short distances, among others.
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In order to accommodate strong short-range correlations, we adopt an effective Hamiltonian
approach in which a 2-body or 3-body cluster subsystem of the full A-body problem is solved
exactly. From the exact solutions of the cluster subsystem, an effective Hamiltonian is evaluated
in a model space appropriate to the no-core many-body application at hand. The full A-body
effective Hamiltonian is approximated as a superposition of these cluster effective Hamiltonians
and the no-core many-body problem is solved in the chosen basis space [1]. The A-body
eigensolutions respect the symmetries of the underlying NN and NNN interactions.

In this work, we indicate the utility of the ab initio NCSM for solving quantum many-
body problems in other fields of physics. We refer to multi-quark plus antiquark systems and
Hamiltonian formulations of quantum field theory where initial applications have appeared.

2. Ab initio theory of the nuclear shell model
The method involves a similarity transformation of the “bare” Hamiltonian to derive an
effective Hamiltonian for a finite model space based on realistic NN and NNN interactions [2].
Diagonalization and the evaluation of observables from effective operators created with the same
transformations are carried out on high-performance parallel computers.

For pedagogical purposes, we outline the ab initio NCSM approach with NN interactions
alone and point the reader to the literature for the extensions to include NNN interactions. We
begin with the purely intrinsic Hamiltonian for the A-nucleon system, i.e.,

HA = Trel + V =
1
A

A∑
i<j

(�pi − �pj)2

2m
+

A∑
i<j=1

VN(ij) , (1)

where m is the nucleon mass and VN(ij), the NN interaction, with both strong and
electromagnetic components. We may use either coordinate-space NN potentials, such as the
Argonne potentials [3] or momentum-space dependent NN potentials, such as the CD-Bonn [4].

Next, we add to (1) the center-of-mass Harmonic Oscillator (HO) Hamiltonian HCM =
TCM+UCM, where UCM = 1

2AmΩ2 �R2, �R = 1
A

∑A
i=1 �ri. At convergence, the added HCM term has

no influence on the intrinsic properties. However, when we introduce our cluster approximation
below, the added HCM term facilitates convergence to exact results with increasing basis size.
The modified Hamiltonian, with pseudo-dependence on the HO frequency Ω, can be cast as:

HΩ
A = HA + HCM =

A∑
i=1

[
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i

2m
+

1
2
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i

]
+

A∑
i<j=1

[
VN(ij) − mΩ2

2A
(�ri − �rj)2

]
. (2)

Next, we introduce a unitary transformation, which is designed to accommodate the short-
range two-body correlations in a nucleus, by choosing an antihermitian operator S, acting only
on intrinsic coordinates, such that

H = e−SHΩ
AeS . (3)

In our approach, S is determined by the requirements that H and HΩ
A have the same symmetries

and eigenspectra over the subspace K of the full Hilbert space. In general, both S and the
transformed Hamiltonian are A-body operators. Our simplest, non-trivial approximation to H
is to develop a two-body (a = 2) effective Hamiltonian, where the upper bound of the summations
“A” is replaced by “a”, but the coefficients remain unchanged. We then have an approximation
at a fixed level of clustering, a, with a ≤ A.

H = H(1) + H(a) =
A∑

i=1

hi +
(A
2

)
(A

a

)(a
2

) A∑
i1<i2<...<ia

Ṽi1i2...ia , (4)
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with

Ṽ12...a = e−S(a)
HΩ

a eS(a) −
a∑

i=1

hi , (5)

and S(a) is an a-body operator; HΩ
a = h1 + h2 + h3 + . . . + ha + Va, and Va =

∑a
i<j Vij . We

adopt the HO basis states that are eigenstates of the one-body Hamiltonian
∑A

i=1 hi.
The full Hilbert space is divided into a finite model space (“P -space”) and a complementary

infinite space (“Q-space”), using the projectors P and Q with P + Q = 1. We determine
the transformation operator Sa from the decoupling condition Qae

−S(a)
HΩ

a eS(a)
Pa = 0 and the

simultaneous restrictions PaS
(a)Pa = QaS

(a)Qa = 0. The a-nucleon-state projectors (Pa, Qa)
follow from the definitions of the A-nucleon projectors P , Q.

In the limit a → A, we obtain the exact solutions for dP states of the full problem for any
finite basis space, with flexibility for choice of physical states subject to certain conditions [5].
This approach has a significant residual freedom through an arbitrary residual Pa–space unitary
transformation that leaves the a-cluster properties invariant. Of course, the A-body results are
not invariant under this residual transformation. An effort is underway to exploit this residual
freedom to accelerate convergence in practical applications.

The model space, P2, is defined by Nm via the maximal number of allowed HO quanta of the
A-nucleon basis states, NM, where the sum of the nucleons’ 2n + l ≤ Nm + Nspsmin = NM,
and where Nspsmin denotes the minimal possible HO quanta of the spectators. For 10B,
NM = 12, Nm = 8 for an Nmax = 6 or “6h̄Ω” calculation. With our cluster approximation,
a dependence of our results on Nmax (or equivalently, on Nm or on NM) and on Ω arises. The
residual Nmax and Ω dependences will infer the uncertainty in our results.

At this stage we also add the term HCM again with a large positive coefficient (constrained
via Lagrange multiplier) to separate the physically interesting states with 0s CM motion from
those with excited CM motion. We diagonalize the effective Hamiltonian with an m-scheme
Lanczos method to obtain the P -space eigenvalues and eigenvectors. All observables are then
evaluated free of CM motion effects. In principle, all observables require the same transformation
as implemented for the Hamiltonian. We obtain small renormalization effects on long range
operators such as the rms radius operator and the B(E2) operator when we transform them
to P -space effective operators at the a = 2 cluster level [1, 6]. On the other hand, when a=2,
substantial renormalization was observed for the kinetic energy operator [7]. and for higher
momentum transfer observables [6].

Recent applications include:

(a) spectra and transition rates in p-shell nuclei;
(b) comparisons between NCSM and Hartree-Fock [8];
(c) di-neutron correlations in the 6He halo nucleus [9];
(d) neutrino cross sections on 12C [10];
(e) novel NN interactions using inverse scattering theory plus NCSM [11];
(e) spectra of 16C and 16O [12];
(f) spectroscopy of the A = 47 – 49 nuclei [13, 14];
(g) statistical properties of nuclei based on NCSM and approximations thereto [15];
(h) exotic multiple quark systems [16];
(i) plus others in quantum field theory that will not be discussed due to time limitations.

We first feature results with a soft and bare NN interaction, JISP16, that has been adjusted
through phase equivalent transformations, so as to retain its excellent description of the NN
data while fitting the properties of the p-shell nuclei up through A = 16 [11]. The ground and
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Figure 1. [Left panel] Ground and first excited states of 4He with the JISP16 [11] bare
interaction in basis spaces up to Nmax = 14 as a function of HO energy. [Right panel] Low lying
spectra of 7Li with Idaho N3LO NN potential [18] alone and with two chiral NNN potentials[19].

first excited states of 4He [11] as a function of h̄Ω in Fig. 1 illustrate convergence with increasing
model space. Flatter and more densely packed curves signal convergence with increasing Nmax.
We also find convergence for the ground state RMS radius while the RMS radius of the excited
state shows divergence as one expects for a continuum state. Results obtained with Heff for
JISP16 (not shown) are more rapidly convergent than the bare H results but the energies do
not systematically converge from above since the variational character is absent.

In the right panel of Fig. 1 we display recent results for 7Li [17] obtained with NN and
NNN potentials having their roots in QCD. Here, we use the a=3 cluster approximation in an
6 h̄Ω model space at values of h̄Ω where the ground state energy is minimized. Available NNN
strength parameters are adjusted to fit the binding of the A=3 and A=4 systems and results
with two such fits are shown. Simultaneous good descriptions of both binding and spectra of
7Li emerge when chiral NNN interactions are included.

3. Modified no core shell model
We now turn to heavier systems near 48Ca since it is the lightest nuclear candidate for
neutrinoless double beta-decay. Given the intense interest in this process as a method of
inferring the Majorana mass of the neutrino or for indicating the presence of processes beyond
the Standard Model, it is important that we focus considerable effort on these nuclei.

At present, computational limits prevent a sequence of multi-h̄Ω basis space evaluations so we
resort to small no-core basis spaces (0 – 1h̄Ω) and introduce phenomenological two-body terms
to correct for the expected deficiencies. We restrict our use of the name “ab initio NCSM” solely
to results obtained within the framework outlined above. When we resort to phenomenological
adjustments of the Hamiltonian, we will omit the label “ab initio” and simply refer to the results
as obtained within the “NCSM”. Even with the phenomenological adjustments, our results are
obtained with a pure two-body Hamiltonian, i.e. without single particle energies, and in a no-
core model space leading to significant differences from traditional shell-model calculations in
valence spaces.

The specific forms we found adequate in fits to the low-lying spectra of 48Ca, 48Sc and 48Ti
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Figure 2. [Left panel] Ground state energies in MeV of A = 48 nuclei. At the extremes
of the valley of stability, these experimental energies are determined by systematics. The ab
initio NCSM results labelled ”CD-Bonn” [4] are obtained with Heff in the 1h̄Ω model space,
h̄Ω = 10 MeV and isospin breaking in the P -space, as appropriate to 48Ca. The same Heff

with an added Gaussian central T = 0 term, a similar central T = 1 term and a tensor force
is used for the results labeled ”CD-Bonn + 3 terms”. [Right panel] Negative parity spectra of
49Ca obtained with the same Hamiltonians as the left panel

consist of finite range central and tensor potentials as follows:

V (r) = V0e
−(r/R)2/r2 + V1e

−(r/R)2/r2 + VtS12/r3 (6)

where the isospin-dependent central strengths, VT , are set at V0 = −14.40 MeV · fm2 and
V1 = −22.61 MeV ·fm2 with R = 1.5 fm, the tensor strength Vt = −52.22 MeV ·fm3, and S12

is the conventional tensor operator. Good spectra emerge [13, 14] as well as good total binding
energies shown in the left panel of Fig. 2 with the added terms.

The foremost deficiency of the CD-Bonn Heff in these small model spaces is incorrect ordering
of the 0f7/2 and the 1p3/2 orbits as seen on the far right of Fig. 2. This defect, reflecting
the insufficient spin-orbit splitting well-documented in light nuclei, is repaired by the added
phenomenological terms. Note that 49Ca was not involved in our fitting procedures. It is likely
that the resolution of this problem requires the addition of NNN interactions.

4. Applications of the ab initio no core shell model to field theory
We have investigated the use of the ab initio NCSM to predict level densities for nuclei and
to compare with simpler methods [15], one of which we have developed specifically for no-
core models. The initial results are very encouraging. We find that a mean-field treatment
with the derived Heff to generate the self-consistent single-particle spectrum [8], followed by
statistical occupancy of those levels, can well-reproduce the ab initio NCSM results especially at
higher excitation energies or higher temperatures. One subtlety, that we are currently studying,
concerns the role of the spurious CM excitation which is absent in the NCSM but present in
models based on single-particle spectra.

In order to provide a sense of the wide range of applications for the ab initio NCSM emerging
in nuclear physics, we have calculated a constituent quark model mass spectrum for the light
and heavy mass mesons as a function of Nmax. The Hamiltonian consists of a potential
derived from a relativistic wave equation treatment motivated by QCD and supplemented with
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traditional assumptions of massive constituent quarks [21]. It contains a term resembling one-
gluon exchange and a term with behavior close to linear confinement.

A major goal of this effort is to predict masses for exotic multiquark systems with sufficient
precision to guide experimental searches as we have demonstrated for all-charm tetraquarks [16].
For this reason, all the techniques of the ab initio NCSM are needed, including the effective
Hamiltonian treatment, due to a slow convergence of the bare Hamiltonian mass spectra with
increasing basis size. The introduction of color represents a challenging additional degree of
freedom as we seek to predict global color singlet states which are antisymmetric under that
exchange of color, and which lie below breakup thresholds into known mesons and baryons.

Given the rapid progress of the ab initio NCSM in the last few years, one anticipates additional
applications and extensions. It should have continuing impact on developing the nuclear many-
body “standard model” including improvements in the NN and NNN interactions. It should
contribute high-precision results for the determination of fundamental symmetries in nature such
as nuclear double beta decay and the neutrino mass determination. Extensions to scattering
theory and to the structure of heavier nuclei are underway. Recently, applications to non-
perturbative solutions of quantum field theory have appeared [20] and underscore the potential
for cross-disciplinary applications.
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[14] A. Negoita, S. Stoica, J.P. Vary and P. Navrátil, in preparation.
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