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Abstract. Nuclear structure physics is on the threshold of confronting several long-
standing problems such as the origin of shell structure from basic nucleon–nucleon and
three-nucleon interactions. At the same time those interactions are being developed with
increasing contact to QCD, the underlying theory of the strong interactions, using effec-
tive field theory. The motivation is clear – QCD offers the promise of great predictive
power spanning phenomena on multiple scales from quarks and gluons to nuclear struc-
ture. However, new tools that involve non-perturbative methods are required to build
bridges from one scale to the next. We present an overview of recent theoretical and
computational progress with a Hamiltonian approach to build these bridges and provide
illustrative results for the nuclear structure of light nuclei and quantum field theory.
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1. Introduction

Recent advances in achieving ab-initio solutions of the non-relativistic quantum
many-body problem, with strong interactions based on quantum chromodynam-
ics (QCD), have raised the promise that the properties of atomic nuclei may be
derived from first principles. Along with this comes the prospect that a micro-
scopic approach with meaningful predictive power is emerging. The capability to
predict reactions not accessible in laboratory experiments, along with quantified
uncertainties, has major implications for nuclear astrophysics and for applications
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to nuclear energy and other fields. Furthermore, achieving accurate nuclear wave
functions signals the advent of precision tests of fundamental symmetries and ac-
cess to physics beyond the Standard Model. Neutrinoless double beta decay is a
leading example where precision nuclear matrix elements would play a major role
in the interpretation of the experiments that are underway or are in the planning
phases.

A successful microscopic non-perturbative Hamiltonian approach to low-energy
nuclear physics also has major implications for the eventual direct solution of QCD
in the framework of light-front quantization. Beyond achieving a successful de-
scription of hadron spectroscopy, light-front Hamiltonian field theory promises to
produce the amplitudes that would generate, among other experimental quantities,
the celebrated generalized parton distribution functions. At the fundamental level,
these amplitudes would reveal the spin content of the proton and resolve the current
experimental puzzle, sometimes referred to as the ‘spin crisis’.

In this paper, we review some highlights of the recent progress that illuminate the
path we are pursuing. We illustrate key ingredients of the theoretical frameworks
and the role of leadership class computers.

2. Hamiltonian many-body theory

Non-relativistic quantum mechanics for many particles lies at the heart of our
approach. We will indicate that this approach, with suitable changes, is sufficient for
a covariant treatment of relativistic quantum field theory. We adopt the quantum
Hamiltonian matrix formulation of the eigenvalue problem in the Dirac notation
for the Hermitian many-body Hamiltonian H:

H|Ψi〉 = Ei|Ψi〉. (1)

We also expand the eigenvectors |Ψi〉 in a set of convenient basis states |Φj〉:

|Ψi〉 =
∑

j

Aij |Φj〉. (2)

The overall task is then to evaluate the chosen Hamiltonian in the selected finite
basis space and carry out the diagonalization to produce the eigenvalues Ei and
the eigenvectors |Ψi〉 at least for the low-lying spectra. Convergence is measured
by increasing the size of the finite basis until the low-lying spectra become inde-
pendent of parameters defining the basis space and independent of the cut-off. One
employs the resulting eigenvectors to evaluate matrix elements of observables that
are compared with experiment where available.

Our approach is simple, direct and intuitive. However, there are major theoretical
and computational challenges. The path forward can be represented by the answers
to a set of key questions:

1. What are the interactions defining the Hamiltonian?
2. What is the physically sensible basis space?
3. How to preserve all the symmetries imbedded in H?
4. How to renormalize the Hamiltonian for the chosen finite basis space?
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5. How to numerically solve the large sparse matrix eigenvalue problem?
6. How is convergence measured and how are uncertainties assessed?

While space does not permit detailed answers here, we will introduce some of
the key elements with references to the literature. One point that deserves special
mention is the great technical progress that has been achieved in solving the large
sparse matrix eigenvalue problem with the Lanczos algorithm on leadership class
computers [1–3].

3. Applications to light nuclei

Specific answers to these questions have been developed for the ab-initio no core
shell model (NCSM) [4] and no core full configuration (NCFC) [5] approaches
to solve nuclear structure with realistic nucleon–nucleon (NN) and three-nucleon
(NNN) interactions.

In the realization of the NCSM with close ties to QCD, one adopts a finite basis-
space renormalization method and applies it to realistic nucleon–nucleon (NN) and
three-nucleon (NNN) interactions (derived from chiral effective field theory) to solve
nuclei with atomic numbers A = 10–13 [6]. Experimental binding energies, spectra,
electromagnetic moments and transition rates are well-reproduced.

In the NCFC approach [5], one adopts a realistic NN interaction that is soft
enough that renormalization may not be necessary and binding energies obtained
from a sequence of finite matrix solutions may be extrapolated to the infinite matrix
limit. Owing to the variational principle and uniform convergence, one is able to
assess the theoretical uncertainties in the extrapolated result. One again obtains
good agreement with experiment.

The primary advantages of these methods are the flexibility for choosing the
Hamiltonian, the method of renormalization/regularization and the basis space.
These advantages impel us to adopt the basis function approach in light-front quan-
tum field theory which we discuss further below.

In our applications to light nuclei we select the 3D harmonic oscillator for the
single fermion states and construct the many-body basis states by enumerating all
unique, Pauli-allowed, states with the total number of oscillator quanta limited by
Nmax, the number of oscillator quanta above the minimum needed for the nucleus
under consideration. Thus Nmax and the harmonic oscillator energy ~Ω represent
the two parameters characterizing the finite basis representation of the eigenstates.
Results independent of these two basis space parameters are considered to be the
converged exact results for that Hamiltonian.

We present in figure 1 the spectra of 6Li in the NCFC approach with the realistic
JISP16 NN interaction [7]. The progression of the eigenenergies from the left-most
column, proceeds with increasing Nmax towards convergence and are connected by
solid lines. The experimental results are given in the right-most column. Two
methods of extrapolation are presented, referred to as ‘A’ and ‘B’, along with their
assessed uncertainties. Results for ‘B’ are connected by dotted lines while results for
‘A’ are presented in the column close to the experimental results. The agreement in
total energies is good and the level ordering is correct. There is an overall shift of
about 0.4 MeV between the converged results and experiment. The RMS deviation
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Figure 1. Spectra of 6Li obtained in a sequence of basis space truncations
up to Nmax = 16 and extrapolated with two different methods, ‘A’ and ‘B’,
described in ref. [5] and compared with experiment.

between theory and experiment is 0.739 MeV for the total energies. The RMS
deviation in excitation energies above the ground state is 0.336 MeV. The residual
differences may be ascribed to the neglect of a three-body force.

It is important to note that the Gamow–Teller matrix element for β-decay from
6He to 6Li has been investigated in detail [8] with the same JISP16 interaction and
found to be within 2% of the experimental result. It was previously reported that
the ground state quadrupole moment of 6Li, which involves large cancellations, is
close to the experimental results with JISP16 [7]. The overall impression is that we
have achieved an excellent description of the low-lying properties of 6Li.

Figure 2 provides another view of the present status of ab-initio microscopic
nuclear many-body theory with the eigenenergies of the first excited 0+ of 12C as
a function of the oscillator energy ~Ω for values of Nmax incrementing by 2 from
2 through 8. In addition, we include two recently calculated points at Nmax = 10.
The latter two points represent solving for the low-lying eigenvalues of a matrix
with dimension 7,830,355,795. Each of these solutions required 8 h of wall-clock
time on approximately 100,000 cpu’s of the Jaguar Facility at Oak Ridge National
Laboratory. With a few additional Nmax = 10 points, we will be able to update
the extrapolation shown in the figure and reduce the uncertainty by an estimated
factor of 2.

4. Approach to quantum field theory

Hamiltonian light-front quantum field theory has a long history [9]. Our approach
is to establish a convenient basis space expansion of the light-front amplitudes by
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Figure 2. Energy of the first excited 0+ state in 12C as a function of oscillator
energy ~Ω for values of Nmax incrementing by 2. The extrapolated result
indicated in the figure is based on method ‘A’ of ref. [5] and employs only the
results through Nmax = 8.

solving the sparse Hamiltonian matrix eigenvalue problem following the techniques
developed for the ab-initio no core methods outlined above. We refer to our ap-
proach as the basis light-front quantization (BLFQ) method. Recently, we have
presented our initial applications of this method [10,11] and we summarize here the
main ingredients.

We define the radial coordinate ρ and polar angle φ, the usual cylindrical coor-
dinates in (x1, x2), x± = x0 ± x3 and x⊥ = (x1, x2) for our light-front coordinates.
The variable x+ is taken to be the light-front time and x− is the longitudinal co-
ordinate. We take the ‘null plane’, x+ = 0, for our quantization surface. In the
BLFQ approach we adopt a light-front single-particle basis space consisting of the
2D harmonic oscillator for the transverse modes in (ρ, φ) and a discretized momen-
tum space basis for the longitudinal modes. Note that this basis is consistent with
recent developments in AdS/CFT correspondence with QCD [12–16]. We omit the
longitudinal zero mode when choosing periodic boundary conditions and note that
they are absent when choosing antiperiodic boundary conditions.

The 2D oscillator states are characterized by their principal quantum number n,
orbital quantum number m and harmonic oscillator energy Ω. It is convenient to
interpret the 2D oscillator as a function of the dimensionless radial variable

√
M0Ωρ

where M0 has units of mass and ρ is in units of length. Thus, the length scale for
transverse modes is set by the chosen value of

√
M0Ω.

The properly orthonormalized wave functions, Φn,m(ρ, φ) = 〈ρφ|nm〉 =
fn,m(ρ)χm(φ), are given in terms of the generalized Laguerre polynomials,
L
|m|
n (M0Ωρ2), by
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fn,m(ρ) =
√

2M0Ω

√
n!

(n + |m|)! e
−M0Ωρ2/2

×
(√

M0Ωρ
)|m|

L|m|n (M0Ωρ2) (3)

χm(φ) =
1√
2π

eimφ (4)

with 2D harmonic oscillator eigenvalues En,m = (2n + |m| + 1)Ω. The orthonor-
malization is fixed by

〈nm|n′m′〉 =
∫ ∞

0

∫ 2π

0

ρ dρ dφΦn,m(ρ, φ)∗ Φn′,m′(ρ, φ) = δn,n′δm,m′ (5)

which allows for an arbitrary phase factor eiα that we have taken to be unity. The
Fourier transformed wave functions, the momentum space wave functions, have
the same analytic structure in both coordinate and momentum space, a convenient
feature reminiscent of a plane-wave basis.

In an initial application of the BLFQ approach, we consider an electron confined
to a transverse harmonic trap or cavity. Our goal is to evaluate the anomalous mag-
netic moment, the anomalous gravitomagnetic moment, and various form factors
of the electron arising from QED. We evaluate these observables and take the limit
where the cavity is removed to compare with results from perturbation theory.

We implement a transverse 2D harmonic oscillator basis with length scale fixed
by the trap and finite modes in the longitudinal direction with antiperiodic (peri-
odic) boundary conditions for the fermions (bosons). We plan to adopt the NCSM
method for factorizing the eigensolutions into simple products of intrinsic and total
momentum solutions in the transverse direction [4]. Following ref. [9] we intro-
duce the total invariant mass-squared M2 for these low-lying physical states in
terms of a Hamiltonian H times a dimensionless integer for the total light-front
momentum K

M2 + P⊥P⊥ → M2 + const. = P+P− = KH, (6)

where we absorb the constant into M2. The Hamiltonian H for this system is
defined to include an unperturbed cavity contribution, a sum of the occupied modes
i in each many-parton state that involves a scale set by the combined constant
Λ2 = 2M0Ω:

H = 2M0P
−
c =

2M0Ω
K

∑

i

2ni + |mi|+ 1
xi

+ HI . (7)

In eq. (7) the term HI represents lepton–photon vertices arising from QED. Within
the light-front treatment there are only two classes of such vertices. In the first class,
we have a lepton emitting or absorbing a photon plus other time orderings where,
for example, a photon transforms to a lepton–antilepton pair. In the second class
we have an instantaneous interaction between a lepton and a photon, higher-order
terms that arise from a constraint equation.
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We adopt symmetry constraints corresponding to properties of QED and two cut-
offs for our many-parton states. For symmetries, we fix the total charge Z and the
total angular momentum projection quantum number Mj along the x− direction.
For cut-offs, we select the total light-front momentum, K, and the maximum total
quanta allowed in the transverse mode of each many-parton state, Nmax. The
chosen symmetries and cut-offs are expressed in terms of sums over the quantum
numbers of the single-parton degrees of freedom contained in each many-parton
state of the system in the following way:

∑

i

qi = Z, (8)

∑

i

mi + si = Mj , (9)

∑

i

xi = 1 =
1
K

∑

i

ki, (10)

∑

i

2ni + |mi|+ 1 ≤ Nmax, (11)

where ki is the half integer (integer) that defines the longitudinal modes for the
ith fermion (boson). The range of the number of fermion–antifermion pairs and
bosons is limited by the cut-offs in the modes (K and Nmax) since each parton
carries a finite amount of longitudinal momentum. Furthermore, since each parton
carries at least one oscillator quanta for transverse motion, the basis is also limited
to Nmax partons. One may also elect to truncate the many-parton basis by limiting
the number of fermion–antifermion pairs and/or the number of bosons. For our
initial application here, where we intend to compare with results from low-order
perturbation theory, we limit the basis to single lepton and lepton–photon basis
states.

Since we work in a transverse 2D oscillator basis and assign a transverse motion
single-particle state for each parton, the basis is complete in that it specifies the
motion of the system’s centre of mass (CM). The special properties of the harmonic
oscillator allow the factorization of each solution into an amplitude of intrinsic
motions times the amplitude of the CM motion with the method of regularization
we have chosen. We can then easily divide out that CM motion component as the
need arises in subsequent calculations that employ the resulting amplitudes.

In figure 3 we show the eigenvalues (multiplied by K) for a light-front QED
Hamiltonian in a basis space limited to the fermion and fermion–boson sectors. For
this particular example we chose the harmonic oscillator parameters as Ω = 0.1
MeV and M0 = 0.511 MeV, and the fermion mass was chosen to be equal to M0.
We chose the basis space such that the basis states have total Mj = Mt + S = 1

2 ,
and we simultaneously increase the K and Nmax cut-offs. As a result, the sizes
of the Hamiltonian matrices increase rapidly. For K = Nmax = 2, 3, 4, 5, the
dimensions of the corresponding matrices are 2 × 2, 12 × 12, 38 × 38 and 99 × 99
respectively.

The number of the single fermion basis states increases slowly with increasing
K = Nmax cut-off. For K = Nmax = 2, 3, 4, 5 the number of single fermion basis
states is 1, 2, 2, 3, respectively. Our lowest-lying eigenvalues correspond to solutions
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Figure 3. Mass eigenstates of a single electron in a transverse cavity as a
function of the cut-offs up through K = Nmax = 5. The light (dark) dots
signify the eigenvalues before (after) renormalization to the physical electron
mass.

dominated by these states and they appear with nearly harmonic separations in
figure 3 as would be expected at the coupling of QED.

The higher eigenstates are the ones dominated by the fermion–boson basis states
that interact with each other in leading order through the instantaneous fermion–
boson interaction. Their multiplicity increases rapidly with increasing K = Nmax

and they exhibit significant mixing with each other as well as weak mixing with the
lowest-lying states. The eigenvalues dominated by the fermion–boson basis states
cluster in nearly degenerate groups above the lowest-lying states.

Note that there are two spectra presented at each value of K = Nmax in figure 3
signified by the lighter and the darker dots. The lighter dots represent the results of
straightforward diagonalization of eq. (7) in that light-front basis. The darker dots
represent the results after a renomalization process to fix the lowest mass eigenvalue
at the physical mass of the electron. We adopt the renormalization procedure
termed ‘sector-dependent renormalization’ [17], which, for the weak coupling of
QED and the cavity used here, represents small adjustments in the mass eigenstates
as seen in figure 3.

5. Progress towards QCD

We can extend the BLFQ approach to solve for mesons and baryons within QCD by
implementing the SU(3) colour degree of freedom for each parton – three colours
for each fermion and eight for each boson. We consider two versions of implement-
ing the global colour-singlet constraint for this restricted situation. In both cases
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Figure 4. Number of colour space states that apply to each space-spin config-
uration of multi-gluon states for two methods of enumerating the colour basis
states. The upper curves are counts of all colour configurations with zero
colour projection. The lower curves are counts of the global colour singlets
alone.

we enumerate the colour space states to integrate with each space-spin state of
the corresponding partonic character. For simplicity, we will restrict the present
illustration to the case of multi-gluon states.

In the first case, we follow ref. [18] by enumerating the single parton states with
all possible values of SU(3) colour. Thus each space-spin fermion state goes over
to three space-spin colour states. Similarly, each space-spin boson state generates
a multiplicity of eight states when SU(3) colour is included. We then construct all
many-parton states having zero colour projection. Within this basis one will have
all the allowed global colour-singlet states along with some of the allowed colour
non-singlet states. Within a dynamical calculation, the global colour-singlet states
are isolated by adding a Lagrange multiplier term in many-parton colour space
to the Hamiltonian so that the unphysical colour non-singlet states are pushed
higher in the spectrum away from the physical colour single states. To evaluate the
multiplicative factor governing the increase in basis space dimension arising from
this treatment of colour, we enumerate the resulting colour-singlet projected colour
space states for multi-gluon basis states and display the results as the upper curves
in figure 4.

In the second case, we restrict the basis space to global colour singlets and this
results in the lower curves in figure 4. The second method, presented in ref. [19],
produces a typical factor of 30–40 lower multiplicity at the upper ends of these
curves at the cost of increased computation time for matrix elements of the inter-
acting Hamiltonian. That is, each interacting matrix element of QCD in the global
colour-singlet basis is a transformation of a submatrix in the zero colour projection
basis. Either implementation of colour dramatically increases the state density over
the case of QED, but the use of a global colour-singlet constraint is clearly more
effective in minimizing the dramatic increase in basis space states due to the colour
degree of freedom.
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We note that, for the pure multi-fermion basis space sector we could also use the
methods introduced and applied successfully in 1+1-dimensional QCD [20]. That
is, the number of global colour singlets for a given fermion-only basis state, with
other (non-colour) quantum numbers specified, is independent of the number of
spatial dimensions.

6. Conclusions and outlook

We have entered an era where non-perturbative solutions for quantum many-body
systems within a Hamiltonian framework offers the opportunity to build a bridge
from quantum field theory to the properties of atomic nuclei. When this is success-
ful, we will have a theoretical framework with unprecedented predictive power that
spans multiple physical scales. Ultimately, this offers a framework for tests of the
fundamental laws of nature, such as lepton number conservation via neutrinoless
double beta decay. Though we have defined a path for achieving these goals, a
great deal of work is needed to achieve it. Advances in algorithm development and
computational facilities will continue to play a critical role in these developments.
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